Stream: Internet Engineering Task Force (IETF)

RFC: 9051
Obsoletes: 3501
Category: Standards Track
Published: August 2021
ISSN: 2070-1721
Authors: A. Melnikov, Ed. B. Leiba, Ed.
Isode Ltd Futurewei Technologies

RFC 9051
Internet Message Access Protocol (IMAP) - Version
4rev2

Abstract

The Internet Message Access Protocol Version 4rev2 (IMAP4rev2) allows a client to access and
manipulate electronic mail messages on a server. IMAP4rev2 permits manipulation of mailboxes
(remote message folders) in a way that is functionally equivalent to local folders. IMAP4rev2 also
provides the capability for an offline client to resynchronize with the server.

IMAP4rev2 includes operations for creating, deleting, and renaming mailboxes; checking for new
messages; removing messages permanently; setting and clearing flags; parsing per RFCs 5322,
2045, and 2231; searching; and selective fetching of message attributes, texts, and portions
thereof. Messages in IMAP4rev2 are accessed by the use of numbers. These numbers are either
message sequence numbers or unique identifiers.

IMAP4rev2 does not specify a means of posting mail; this function is handled by a mail
submission protocol such as the one specified in RFC 6409.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9051.

Melnikov & Leiba Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9051
https://www.rfc-editor.org/rfc/rfc3501
https://www.rfc-editor.org/info/rfc9051

RFC 9051 IMAP4rev2 August 2021

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF Contributions published or
made publicly available before November 10, 2008. The person(s) controlling the copyright in
some of this material may not have granted the IETF Trust the right to allow modifications of
such material outside the IETF Standards Process. Without obtaining an adequate license from
the person(s) controlling the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may not be created outside the
IETF Standards Process, except to format it for publication as an RFC or to translate it into
languages other than English.

Table of Contents

1. How to Read This Document
1.1. Organization of This Document
1.2. Conventions Used in This Document

1.3. Special Notes to Implementors

2. Protocol Overview
2.1. Link Level
2.2. Commands and Responses
2.2.1. Client Protocol Sender and Server Protocol Receiver

2.2.2. Server Protocol Sender and Client Protocol Receiver

2.3. Message Attributes
2.3.1. Message Numbers
2.3.2. Flags Message Attribute
2.3.3. Internal Date Message Attribute
2.3.4. RFC822.SIZE Message Attribute

Melnikov & Leiba Standards Track Page 2

https://trustee.ietf.org/license-info

RFC 9051 IMAP4rev2 August 2021

2.3.5. Envelope Structure Message Attribute

2.3.6. Body Structure Message Attribute
2.4. Message Texts

3. State and Flow Diagram
3.1. Not Authenticated State
3.2. Authenticated State
3.3. Selected State
3.4. Logout State

4. Data Formats
4.1. Atom
4.1.1. Sequence Set and UID Set

4.2. Number
4.3. String

4.3.1. 8-Bit and Binary Strings
4.4. Parenthesized List

4.5. NIL

5. Operational Considerations
5.1. Mailbox Naming
5.1.1. Mailbox Hierarchy Naming

5.1.2. Namespaces

5.2. Mailbox Size and Message Status Updates
5.3. Response When No Command in Progress
5.4. Autologout Timer

5.5. Multiple Commands in Progress (Command Pipelining)

6. Client Commands
6.1. Client Commands - Any State
6.1.1. CAPABILITY Command
6.1.2. NOOP Command
6.1.3. LOGOUT Command

Melnikov & Leiba Standards Track Page 3

RFC 9051 IMAP4rev2

6.2. Client Commands - Not Authenticated State
6.2.1. STARTTLS Command
6.2.2. AUTHENTICATE Command
6.2.3. LOGIN Command

6.3. Client Commands - Authenticated State
6.3.1. ENABLE Command
6.3.2. SELECT Command
6.3.3. EXAMINE Command
6.3.4. CREATE Command
6.3.5. DELETE Command
6.3.6. RENAME Command
6.3.7. SUBSCRIBE Command
6.3.8. UNSUBSCRIBE Command
6.3.9. LIST Command
6.3.10. NAMESPACE Command
6.3.11. STATUS Command
6.3.12. APPEND Command
6.3.13. IDLE Command

6.4. Client Commands - Selected State
6.4.1. CLOSE Command
6.4.2. UNSELECT Command
6.4.3. EXPUNGE Command
6.4.4. SEARCH Command
6.4.5. FETCH Command
6.4.6. STORE Command
6.4.7. COPY Command
6.4.8. MOVE Command
6.4.9. UID Command

6.5. Client Commands - Experimental/Expansion

Melnikov & Leiba Standards Track

August 2021

Page 4

RFC 9051 IMAP4rev2 August 2021

7. Server Responses
7.1. Server Responses - Generic Status Responses
7.1.1. OK Response
7.1.2. NO Response
7.1.3. BAD Response
7.1.4. PREAUTH Response
7.1.5. BYE Response

7.2. Server Responses - Server Status
7.2.1. ENABLED Response
7.2.2. CAPABILITY Response

7.3. Server Responses - Mailbox Status
7.3.1. LIST Response
7.3.2. NAMESPACE Response
7.3.3. STATUS Response
7.3.4. ESEARCH Response
7.3.5. FLAGS Response

7.4. Server Responses - Mailbox Size

7.4.1. EXISTS Response

7.5. Server Responses - Message Status
7.5.1. EXPUNGE Response
7.5.2. FETCH Response

7.6. Server Responses - Command Continuation Request

8. Sample IMAP4rev2 Connection
9. Formal Syntax
10. Author's Note
11. Security Considerations
11.1. TLS-Related Security Considerations
11.2. STARTTLS Command versus Use of Implicit TLS Port
11.3. Client Handling of Unsolicited Responses Not Suitable for the Current Connection State

11.4. COPYUID and APPENDUID Response Codes

Melnikov & Leiba Standards Track Page 5

RFC 9051 IMAP4rev2 August 2021

11.5. LIST Command and Other Users' Namespace
11.6. Use of MD5

11.7. Other Security Considerations

12. IANA Considerations
12.1. Updates to IMAP Capabilities Registry
12.2. GSSAPI/SASL Service Name
12.3. LIST Selection Options, LIST Return Options, and LIST Extended Data Items
12.4. IMAP Mailbox Name Attributes and IMAP Response Codes

13. References
13.1. Normative References
13.2. Informative References
13.2.1. Related Protocols
13.2.2. Historical Aspects of IMAP and Related Protocols

Appendix A. Backward Compatibility with IMAP4rev1

A.1. Mailbox International Naming Convention for Compatibility with IMAP4rev1

Appendix B. Backward Compatibility with BINARY Extension
Appendix C. Backward Compatibility with LIST-EXTENDED Extension
Appendix D. 63-Bit Body Part and Message Sizes

Appendix E. Changes from RFC 3501 / IMAP4rev1

Appendix F. Other Recommended IMAP Extensions
Acknowledgements

Index

Authors' Addresses

Melnikov & Leiba Standards Track Page 6

RFC 9051 IMAP4rev2 August 2021

1. How to Read This Document

1.1. Organization of This Document

This document is written from the point of view of the implementor of an IMAP4rev2 client or
server. Beyond the protocol overview in Section 2, it is not optimized for someone trying to
understand the operation of the protocol. The material in Sections 3, 4, and 5 provides the
general context and definitions with which IMAP4rev2 operates.

Sections 6, 7, and 9 describe the IMAP commands, responses, and syntax, respectively. The
relationships among these are such that it is almost impossible to understand any of them
separately. In particular, do not attempt to deduce command syntax from the command section
alone; instead, refer to "Formal Syntax" (Section 9).

1.2. Conventions Used in This Document

"Conventions" are basic principles or procedures. Document conventions are noted in this
section.

In examples, "C:" and "S:" indicate lines sent by the client and server, respectively. Note that each
line includes the terminating CRLF.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

The word "can" (not "may") is used to refer to a possible circumstance or situation, as opposed to
an optional facility of the protocol.

"User" is used to refer to a human user, whereas "client" refers to the software being run by the
user.

"Connection" refers to the entire sequence of client/server interaction from the initial
establishment of the network connection until its termination.

"Session" refers to the sequence of client/server interaction from the time that a mailbox is
selected (SELECT or EXAMINE command) until the time that selection ends (SELECT or EXAMINE
of another mailbox, CLOSE command, UNSELECT command, or connection termination).

The term "Implicit TLS" refers to the automatic negotiation of TLS whenever a TCP connection is
made on a particular TCP port that is used exclusively by that server for TLS connections. The
term "Implicit TLS" is intended to contrast with the use of the STARTTLS command in IMAP that
is used by the client and the server to explicitly negotiate TLS on an established cleartext TCP
connection.

Melnikov & Leiba Standards Track Page 7

RFC 9051 IMAP4rev2 August 2021

Characters are 8-bit UTF-8 (of which 7-bit US-ASCII is a subset), unless otherwise specified. Other
character sets are indicated using a "CHARSET", as described in [MIME-IMT] and defined in
[CHARSET]. CHARSETSs have important additional semantics in addition to defining a character
set; refer to these documents for more detail.

There are several protocol conventions in IMAP. These refer to aspects of the specification that
are not strictly part of the IMAP protocol but reflect generally accepted practice.
Implementations need to be aware of these conventions, and avoid conflicts whether or not they
implement the convention. For example, "&" may not be used as a hierarchy delimiter since it
conflicts with the Mailbox International Naming Convention, and other uses of "&" in mailbox
names are impacted as well.

1.3. Special Notes to Implementors

Implementors of the IMAP protocol are strongly encouraged to read the IMAP implementation
recommendations document [IMAP-IMPLEMENTATION] in conjunction with this document, to
help understand the intricacies of this protocol and how best to build an interoperable product.

IMAP4rev?2 is designed to be upwards compatible from the IMAP4rev1 [RFC3501], IMAP2
[IMAP2], and unpublished IMAP2bhis [IMAP2BIS] protocols. IMAP4rev?2 is largely compatible with
the IMAP4rev1 protocol described in RFC 3501 and the IMAP4 protocol described in [RFC1730];
the exception being in certain facilities added in [RFC1730] and [RFC3501] that proved
problematic and were subsequently removed or replaced by better alternatives. In the course of
the evolution of IMAP4rev2, some aspects in the earlier protocols have become obsolete.
Obsolete commands, responses, and data formats that an IMAP4rev2 implementation can
encounter when used with an earlier implementation are described in Appendices A and E and
[IMAP-OBSOLETE]. IMAP4rev2 supports 63-bit body parts and message sizes. IMAP4rev2
compatibility with BINARY and LIST-EXTENDED IMAP extensions are described in Appendices B
and C, respectively.

Other compatibility issues with IMAP2his, the most common variant of the earlier protocol, are
discussed in [[IMAP-COMPAT]. A full discussion of compatibility issues with rare (and presumed
extinct) variants of [IMAP2] is in [IMAP-HISTORICAL]J; this document is primarily of historical
interest.

IMAP was originally developed for the older [RFC822] standard, and as a consequence, the
"RFC822.SIZE" fetch item in IMAP incorporates "RFC822" in its name. "RFC822" should be
interpreted as a reference to the updated [RFC5322] standard.

IMAP4rev2 does not specify a means of posting mail; this function is handled by a mail
submission protocol such as the one specified in [RFC6409].

Melnikov & Leiba Standards Track Page 8

RFC 9051 IMAP4rev2 August 2021

2. Protocol Overview

2.1. Link Level

The IMAP4rev2 protocol assumes a reliable data stream such as that provided by TCP. When TCP
is used, an IMAP4rev2 server listens on port 143 (cleartext port) or port 993 (Implicit TLS port).

2.2. Commands and Responses

An IMAP4rev2 connection consists of the establishment of a client/server network connection, an
initial greeting from the server, and client/server interactions. These client/server interactions
consist of a client command, server data, and a server completion result response.

All interactions transmitted by client and server are in the form of lines, that is, strings that end
with a CRLF. The protocol receiver of an IMAP4rev2 client or server is reading either a line or a
sequence of octets with a known count followed by a line.

2.2.1. Client Protocol Sender and Server Protocol Receiver

The client command begins an operation. Each client command is prefixed with an identifier
(typically a short alphanumeric string, e.g., AO001, A0002, etc.) called a "tag". A different tag is
generated by the client for each command. More formally: the client SHOULD generate a unique
tag for every command, but a server MUST accept tag reuse.

Clients MUST follow the syntax outlined in this specification strictly. It is a syntax error to send a
command with missing or extraneous spaces or arguments.

There are two cases in which a line from the client does not represent a complete command. In
one case, a command argument is quoted with an octet count (see the description of literal in
Section 4.3); in the other case, the command arguments require server feedback (see the
AUTHENTICATE command in Section 6.2.2). In either case, the server sends a command
continuation request response if it is ready for the octets (if appropriate) and the remainder of
the command. This response is prefixed with the token "+".

Note: If, instead, the server detected an error in the command, it sends a BAD completion
response with a tag matching the command (as described below) to reject the command and
prevent the client from sending any more of the command.

It is also possible for the server to send a completion response for some other command (if
multiple commands are in progress) or untagged data. In either case, the command
continuation request is still pending; the client takes the appropriate action for the response
and reads another response from the server. In all cases, the client MUST send a complete
command (including receiving all command continuation request responses and sending
command continuations for the command) before initiating a new command.

Melnikov & Leiba Standards Track Page 9

RFC 9051 IMAP4rev2 August 2021

The protocol receiver of an IMAP4rev2 server reads a command line from the client, parses the
command and its arguments, and transmits server data and a server command completion result
response.

2.2.2. Server Protocol Sender and Client Protocol Receiver

Data transmitted by the server to the client and status responses that do not indicate command
completion are prefixed with the token "*" and are called untagged responses.

Server data MAY be sent as a result of a client command or MAY be sent unilaterally by the
server. There is no syntactic difference between server data that resulted from a specific
command and server data that were sent unilaterally.

The server completion result response indicates the success or failure of the operation. It is
tagged with the same tag as the client command that began the operation. Thus, if more than one
command is in progress, the tag in a server completion response identifies the command to
which the response applies. There are three possible server completion responses: OK (indicating
success), NO (indicating failure), or BAD (indicating a protocol error such as unrecognized
command or command syntax error).

Servers SHOULD strictly enforce the syntax outlined in this specification. Any client command
with a protocol syntax error, including (but not limited to) missing or extraneous spaces or
arguments, SHOULD be rejected and the client given a BAD server completion response.

The protocol receiver of an IMAP4rev2 client reads a response line from the server. It then takes

action on the response based upon the first token of the response, which can be a tag, a "*", or a
l|+"‘

A client MUST be prepared to accept any server response at all times. This includes server data
that was not requested. Server data SHOULD be remembered (cached), so that the client can
reference its remembered copy rather than sending a command to the server to request the data.
In the case of certain server data, the data MUST be remembered, as specified elsewhere in this
document.

This topic is discussed in greater detail in "Server Responses" (see Section 7).

2.3. Message Attributes

In addition to message text, each message has several attributes associated with it. These
attributes can be retrieved individually or in conjunction with other attributes or message texts.

2.3.1. Message Numbers

Messages in IMAP4rev2 are accessed by one of two numbers: the Unique Identifier (UID) or the
message sequence number.

2.3.1.1. Unique Identifier (UID) Message Attribute

Melnikov & Leiba Standards Track Page 10

RFC 9051 IMAP4rev2 August 2021

A UID is an unsigned non-zero 32-bit value assigned to each message, which when used with the
unique identifier validity value (see below) forms a 64-bit value that MUST NOT refer to any other
message in the mailbox or any subsequent mailbox with the same name forever. Unique
identifiers are assigned in a strictly ascending fashion in the mailbox; as each message is added
to the mailbox, it is assigned a higher UID than those of all message(s) that are already in the
mailbox. Unlike message sequence numbers, unique identifiers are not necessarily contiguous.

The unique identifier of a message MUST NOT change during the session and SHOULD NOT change
between sessions. Any change of unique identifiers between sessions MUST be detectable using
the UIDVALIDITY mechanism discussed below. Persistent unique identifiers are required for a
client to resynchronize its state from a previous session with the server (e.g., disconnected or
offline access clients [IMAP-MODELY)); this is discussed further in [IMAP-DISC].

Associated with every mailbox are two 32-bit unsigned non-zero values that aid in unique
identifier handling: the next unique identifier value (UIDNEXT) and the unique identifier validity
value (UIDVALIDITY).

The next unique identifier value is the predicted value that will be assigned to a new message in
the mailbox. Unless the unique identifier validity also changes (see below), the next unique
identifier value MUST have the following two characteristics. First, the next unique identifier
value MUST NOT change unless new messages are added to the mailbox; and second, the next
unique identifier value MUST change whenever new messages are added to the mailbox, even if
those new messages are subsequently expunged.

Note: The next unique identifier value is intended to provide a means for a client to
determine whether any messages have been delivered to the mailbox since the
previous time it checked this value. It is not intended to provide any guarantee that
any message will have this unique identifier. A client can only assume, at the time
that it obtains the next unique identifier value, that messages arriving after that
time will have a UID greater than or equal to that value.

The unique identifier validity value is sent in a UIDVALIDITY response code in an OK untagged
response at mailbox selection time. If unique identifiers from an earlier session fail to persist in
this session, the unique identifier validity value MUST be greater than the one used in the earlier
session. A good UIDVALIDITY value to use is a 32-bit representation of the current date/time
when the value is assigned: this ensures that the value is unique and always increases. Another
possible alternative is a global counter that gets incremented every time a mailbox is created.

Note: Ideally, unique identifiers SHOULD persist at all times. Although this specification
recognizes that failure to persist can be unavoidable in certain server environments, it
strongly encourages message store implementation techniques that avoid this problem. For
example:

1. Unique identifiers MUST be strictly ascending in the mailbox at all times. If the physical
message store is reordered by a non-IMAP agent, the unique identifiers in the mailbox MUST
be regenerated, since the former unique identifiers are no longer strictly ascending as a
result of the reordering.

Melnikov & Leiba Standards Track Page 11

RFC 9051 IMAP4rev2 August 2021

2. If the message store has no mechanism to store unique identifiers, it must regenerate unique
identifiers at each session, and each session must have a unique UIDVALIDITY value. Note
that this situation can be very disruptive to client message caching.

3. If the mailbox is deleted/renamed and a new mailbox with the same name is created at a
later date, the server must either keep track of unique identifiers from the previous instance
of the mailbox or assign a new UIDVALIDITY value to the new instance of the mailbox.

4. The combination of mailbox name, UIDVALIDITY, and UID must refer to a single, immutable
(or expunged) message on that server forever. In particular, the internal date, RFC822.SIZE,
envelope, body structure, and message texts (all BODY]...] fetch data items) MUST never
change. This does not include message numbers, nor does it include attributes that can be set
by a STORE command (such as FLAGS). When a message is expunged, its UID MUST NOT be
reused under the same UIDVALIDITY value.

2.3.1.2. Message Sequence Number Message Attribute

A message sequence number is a relative position from 1 to the number of messages in the
mailbox. This position MUST be ordered by ascending unique identifiers. As each new message is
added, it is assigned a message sequence number that is 1 higher than the number of messages in
the mailbox before that new message was added.

Message sequence numbers can be reassigned during the session. For example, when a message
is permanently removed (expunged) from the mailbox, the message sequence number for all
subsequent messages is decremented. The number of messages in the mailbox is also
decremented. Similarly, a new message can be assigned a message sequence number that was
once held by some other message prior to an expunge.

In addition to accessing messages by relative position in the mailbox, message sequence
numbers can be used in mathematical calculations. For example, if an untagged "11 EXISTS" is
received, and previously an untagged "8 EXISTS" was received, three new messages have arrived
with message sequence numbers of 9, 10, and 11. As another example, if message 287 in a 523-
message mailbox has UID 12345, there are exactly 286 messages that have lesser UIDs and 236
messages that have greater UIDs.

2.3.2. Flags Message Attribute

A message has a list of zero or more named tokens, known as "flags", associated with it. A flag is
set by its addition to this list and is cleared by its removal. There are two types of flags in
IMAP4rev2: system flags and keywords. A flag of either type can be permanent or session-only.

A system flag is a flag name that is predefined in this specification and begins with "\". Certain
system flags (\Deleted and \Seen) have special semantics described elsewhere in this document.
The currently defined system flags are:

\Seen Message has been read
\Answered Message has been answered

\Flagged Message is "flagged" for urgent/special attention

Melnikov & Leiba Standards Track Page 12

RFC 9051 IMAP4rev2 August 2021

\Deleted Message is "deleted" for removal by later EXPUNGE
\Draft Message has not completed composition (marked as a draft).
\Recent This flag was in use in IMAP4rev1 and is now deprecated.

A keyword is defined by the server implementation. Keywords do not begin with "\". Servers MAY
permit the client to define new keywords in the mailbox (see the description of the
PERMANENTFLAGS response code for more information). Some keywords that start with "$" are
also defined in this specification.

This document defines several keywords that were not originally defined in [RFC3501] but were
found to be useful by client implementations. These keywords SHOULD be supported (allowed in
SEARCH and allowed and preserved in APPEND, COPY, and MOVE commands) by server
implementations:

$Forwarded
Message has been forwarded to another email address by being embedded within, or
attached to a new message. An email client sets this keyword when it successfully forwards
the message to another email address. Typical usage of this keyword is to show a different (or
additional) icon for a message that has been forwarded. Once set, the flag SHOULD NOT be
cleared.

$MDNSent
Message Disposition Notification [RFC8098] was generated and sent for this message. See
[RFC3503] for more details on how this keyword is used and for requirements on clients and
servers.

$Junk
The user (or a delivery agent on behalf of the user) may choose to mark a message as
definitely containing junk ($Junk; see also the related keyword $NotJunk). The $Junk keyword
can be used to mark, group, or hide undesirable messages (and such messages might be
moved or deleted later). See [[MAP-KEYWORDS-REG] for more information.

$NotJunk
The user (or a delivery agent on behalf of the user) may choose to mark a message as
definitely not containing junk ($NotJunk; see also the related keyword $Junk). The $NotJunk
keyword can be used to mark, group, or show messages that the user wants to see. See [IMAP-
KEYWORDS-REG] for more information.

$Phishing
The $Phishing keyword can be used by a delivery agent to mark a message as highly likely to
be a phishing email. A message that's determined to be a phishing email by the delivery agent
should also be considered a junk email and have the appropriate junk filtering applied,
including setting the $Junk flag and placing the message in the \Junk special-use mailbox (see
Section 7.3.1), if available.

Melnikov & Leiba Standards Track Page 13

RFC 9051 IMAP4rev2 August 2021

If both the $Phishing flag and the $Junk flag are set, the user agent should display an
additional warning message to the user. Additionally, the user agent might display a warning,
such as something of the form, "This message may be trying to steal your personal
information,"” when the user clicks on any hyperlinks within the message.

The requirement for both $Phishing and $Junk to be set before a user agent displays a
warning is for better backwards compatibility with existing clients that understand the $Junk
flag but not the $Phishing flag. This is so that when an unextended client removes the $Junk
flag, an extended client will also show the correct state. See [[MAP-KEYWORDS-REG] for more
information.

$Junk and $NotJunk are mutually exclusive. If more than one of these is set for a message, the
client MUST treat it as if none are set, and it SHOULD unset both of them on the IMAP server.

Other registered keywords can be found in the "IMAP and JMAP Keywords" registry [[MAP-
KEYWORDS-REG]. New keywords SHOULD be registered in this registry using the procedure
specified in [RFC5788].

A flag can be permanent or session-only on a per-flag basis. Permanent flags are those that the
client can add or remove from the message flags permanently; that is, concurrent and
subsequent sessions will see any change in permanent flags. Changes to session flags are valid
only in that session.

2.3.3. Internal Date Message Attribute

An Internal Date message attribute is the internal date and time of the message on the server.
This is not the date and time in the [RFC5322] header but rather a date and time that reflects
when the message was received. In the case of messages delivered via [SMTP], this is the date
and time of final delivery of the message as defined by [SMTP]. In the case of messages created
by the IMAP4rev2 COPY or MOVE command, this SHOULD be the same as the Internal Date
attribute of the source message. In the case of messages created by the IMAP4rev2 APPEND
command, this SHOULD be the date and time as specified in the APPEND command description.
All other cases are implementation defined.

2.3.4. RFC822.SIZE Message Attribute

RFC822.SIZE is the number of octets in the message when the message is expressed in [RFC5322]
format. This size SHOULD match the result of a "FETCH BODY[]" command. If the message is
internally stored in some other format, the server calculates the size and often stores it for later
use to avoid the need for recalculation.

2.3.5. Envelope Structure Message Attribute

An envelope structure is a parsed representation of the [RFC5322] header of the message. Note
that the IMAP envelope structure is not the same as an [SMTP] envelope.

2.3.6. Body Structure Message Attribute

A body structure is a parsed representation of the [MIME-IMB] body structure information of the
message.

Melnikov & Leiba Standards Track Page 14

RFC 9051 IMAP4rev2 August 2021

2.4. Message Texts

In addition to being able to fetch the full [RFC5322] text of a message, IMAP4rev2 permits the
fetching of portions of the full message text. Specifically, it is possible to fetch the [RFC5322]
message header, the [RFC5322] message body, a [MIME-IMB] body part, or a [MIME-IMB] header.

3. State and Flow Diagram

Once the connection between client and server is established, an IMAP4rev2 connection is in one
of four states. The initial state is identified in the server greeting. Most commands are only valid
in certain states. It is a protocol error for the client to attempt a command while the connection is
in an inappropriate state, and the server will respond with a BAD or NO (depending upon server
implementation) command completion result.

3.1. Not Authenticated State

In the not authenticated state, the client MUST supply authentication credentials before most
commands will be permitted. This state is entered when a connection starts unless the
connection has been pre-authenticated.

3.2. Authenticated State

In the authenticated state, the client is authenticated and MUST select a mailbox to access before
commands that affect messages will be permitted. This state is entered when a pre-authenticated
connection starts, when acceptable authentication credentials have been provided, after an error
in selecting a mailbox, or after a successful CLOSE or UNSELECT command.

3.3. Selected State

In a selected state, a mailbox has been selected to access. This state is entered when a mailbox
has been successfully selected.

3.4. Logout State

In the logout state, the connection is being terminated. This state can be entered as a result of a
client request (via the LOGOUT command) or by unilateral action on the part of either the client
or the server.

If the client requests the logout state, the server MUST send an untagged BYE response and a
tagged OK response to the LOGOUT command before the server closes the connection; and the
client MUST read the tagged OK response to the LOGOUT command before the client closes the
connection.

Melnikov & Leiba Standards Track Page 15

RFC 9051 IMAP4rev2 August 2021

A server SHOULD NOT unilaterally close the connection without first sending an untagged BYE
response that contains the reason for doing so. A client SHOULD NOT unilaterally close the
connection; instead, it SHOULD issue a LOGOUT command. If the server detects that the client has
unilaterally closed the connection, the server MAY omit the untagged BYE response and simply
close its connection.

B e e +
|connection established|
e +
|
\/
o +
| server greeting |
o +
[(1) I (2) Il (3)
\/ [[|
#ooooooooooooo-] ||
[Not Authenticated| [| [|
et + ||
L (7) 11 (4) | | |
[| \/ \/ [|
[#mmooomooooooos + ||
| | Authenticated |<=++ |
[#mmmmmmommmmoooes o ||
[| [T (7) 11 (5) 11 (6) [l
[| | \/ | | [|
	[#mmome- +]			
]]	Selected	==++	
	[#mmeos +			
[] [1 (7) []				
\/ \/ \/ \/				
ittt T e +				
Logout				
e et e T +				
\/				
Fom - +				
both sides close the connection]				
o +

Legend for the above diagram:

(1) connection without pre-authentication (OK greeting)
(2) pre-authenticated connection (PREAUTH greeting)
(3) rejected connection (BYE greeting)

(4) successful LOGIN or AUTHENTICATE command

(5) successful SELECT or EXAMINE command

(6) CLOSE or UNSELECT command, unsolicited CLOSED response code, or failed SELECT or
EXAMINE command

@) LOGOUT command, server shutdown, or connection closed

Melnikov & Leiba Standards Track Page 16

RFC 9051 IMAP4rev2 August 2021

4. Data Formats

IMAP4rev2 uses textual commands and responses. Data in IMAP4rev2 can be in one of several
forms: atom, number, string, parenthesized list, or NIL. Note that a particular data item may take
more than one form; for example, a data item defined as using "astring" syntax may be either an
atom or a string.

4.1. Atom

An atom consists of one or more non-special characters.

4.1.1. Sequence Set and UID Set

A set of messages can be referenced by a sequence set containing either message sequence
numbers or unique identifiers. See Section 9 for details. A sequence set can contain ranges of
sequence numbers (such as "5:50"), an enumeration of specific sequence numbers, or a
combination of the above. A sequence set can use the special symbol "*" to represent the
maximum sequence number in the mailbox. A sequence set never contains unique identifiers.

A "UID set" is similar to the sequence set, but uses unique identifiers instead of message sequence
numbers, and is not permitted to contain the special symbol "*".

4.2. Number

A number consists of one or more digit characters and represents a numeric value.

4.3. String

A string is in one of three forms: synchronizing literal, non-synchronizing literal, or quoted
string. The synchronizing literal form is the general form of a string, without limitation on the
characters the string may include. The non-synchronizing literal form is also the general form,
but it has a length restriction. The quoted string form is an alternative that avoids the overhead
of processing a literal, but has limitations on the characters that may be used.

When the distinction between synchronizing and non-synchronizing literals is not important,
this document only uses the term "literal".

A synchronizing literal is a sequence of zero or more octets (including CR and LF), prefix-quoted
with an octet count in the form of an open brace ("{"), the number of octets, a close brace ("}"),
and a CRLF. In the case of synchronizing literals transmitted from server to client, the CRLF is
immediately followed by the octet data. In the case of synchronizing literals transmitted from
client to server, the client MUST wait to receive a command continuation request (described later
in this document) before sending the octet data (and the remainder of the command).

The non-synchronizing literal is an alternative form of synchronizing literal and may be used
from client to server anywhere a synchronizing literal is permitted. The non-synchronizing
literal form MUST NOT be sent from server to client. The non-synchronizing literal is

Melnikov & Leiba Standards Track Page 17

RFC 9051 IMAP4rev2 August 2021

distinguished from the synchronizing literal by having a plus ("+") between the octet count and
the closing brace ("}"). The server does not generate a command continuation request in
response to a non-synchronizing literal, and clients are not required to wait before sending the
octets of a non-synchronizing literal. Unless otherwise specified in an IMAP extension, non-
synchronizing literals MUST NOT be larger than 4096 octets. Any literal larger than 4096 bytes
MUST be sent as a synchronizing literal. (Non-synchronizing literals defined in this document are
the same as non-synchronizing literals defined by the LITERAL- extension from [RFC7888]. See
that document for details on how to handle invalid non-synchronizing literals longer than 4096
octets and for interaction with other IMAP extensions.)

A quoted string is a sequence of zero or more Unicode characters, excluding CR and LF, encoded
in UTF-8, with double quote (<">) characters at each end.

The empty string is represented as "" (a quoted string with zero characters between double
quotes), as {0} followed by a CRLF (a synchronizing literal with an octet count of 0), or as {0+}
followed by a CRLF (a non-synchronizing literal with an octet count of 0).

Note: Even if the octet count is 0, a client transmitting a synchronizing literal MUST wait to
receive a command continuation request.

4.3.1. 8-Bit and Binary Strings

8-bit textual and binary mail is supported through the use of a [MIME-IMB] content transfer
encoding. IMAP4rev2 implementations MAY transmit 8-bit or multi-octet characters in literals but
SHOULD do so only when the [CHARSET] is identified.

IMAP4rev?2 is compatible with [[18N-HDRS]. As a result, the identified charset for header-field
values with 8-bit content is UTF-8 [UTF-8]. IMAP4rev2 implementations MUST accept and MAY
transmit [UTF-8] text in quoted-strings as long as the string does not contain NUL, CR, or LF. This
differs from IMAP4rev1 implementations.

Although a BINARY content transfer encoding is defined, unencoded binary strings are not
permitted, unless returned in a <literal8> in response to a BINARY.PEEK[<section-
binary>]<<partial>> or BINARY[<section-binary>]<<partial>> FETCH data item. A "binary string"
is any string with NUL characters. A string with an excessive amount of CTL characters MAY also
be considered to be binary. Unless returned in response to BINARY.PEEK]...]/BINARY[...] FETCH,
client and server implementations MUST encode binary data into a textual form, such as base64,
before transmitting the data.

4.4. Parenthesized List

Data structures are represented as a "parenthesized list"; a sequence of data items, delimited by
space, and bounded at each end by parentheses. A parenthesized list can contain other
parenthesized lists, using multiple levels of parentheses to indicate nesting.

The empty list is represented as () -- a parenthesized list with no members.

Melnikov & Leiba Standards Track Page 18

RFC 9051 IMAP4rev2 August 2021

4.5. NIL

The special form "NIL" represents the non-existence of a particular data item that is represented
as a string or parenthesized list, as distinct from the empty string "" or the empty parenthesized
list 0.

Note: NIL is never used for any data item that takes the form of an atom. For

example, a mailbox name of "NIL" is a mailbox named NIL as opposed to a non-

existent mailbox name. This is because mailbox uses "astring" syntax, which is an

atom or a string. Conversely, an addr-name of NIL is a non-existent personal name,

because addr-name uses "nstring" syntax, which is NIL or a string, but never an
atom.

Examples:

The following LIST response:
* LIST () "/" NIL

is equivalent to:
* LIST () "/" "NIL"

as LIST response ABNF is using "astring" for mailbox name.

However, the following response:
* FETCH 1 (BODY[1] NIL)
is not equivalent to:
* FETCH 1 (BODY[1] "NIL")

The former indicates absence of the body part, while the latter means that it contains a string
with the three characters "NIL".

5. Operational Considerations

The following rules are listed here to ensure that all IMAP4rev2 implementations interoperate
properly.

Melnikov & Leiba Standards Track Page 19

RFC 9051 IMAP4rev2 August 2021

5.1. Mailbox Naming

In IMAP4rev2, mailbox names are encoded in Net-Unicode [NET-UNICODE] (this differs from
IMAP4rev1). Client implementations MAY attempt to create Net-Unicode mailbox names and
MUST interpret any 8-bit mailbox names returned by LIST as [NET-UNICODE]. Server
implementations MUST prohibit the creation of 8-bit mailbox names that do not comply with Net-
Unicode. However, servers MAY accept a denormalized UTF-8 mailbox name and convert it to
Unicode Normalization Form C (NFC) (as per Net-Unicode requirements) prior to mailbox
creation. Servers that choose to accept such denormalized UTF-8 mailbox names MUST accept
them in all IMAP commands that have a mailbox name parameter. In particular, SELECT <name>
must open the same mailbox that was successfully created with CREATE <name>, even if <name>
is a denormalized UTF-8 mailbox name.

The case-insensitive mailbox name INBOX is a special name reserved to mean "the primary
mailbox for this user on this server". (Note that this special name might not exist on some servers
for some users, for example, if the user has no access to personal namespace.) The interpretation
of all other names is implementation dependent.

In particular, this specification takes no position on case sensitivity in non-INBOX mailbox
names. Some server implementations are fully case sensitive in ASCII range; others preserve the
case of a newly created name but otherwise are case insensitive; and yet others coerce names to
a particular case. Client implementations must be able to interact with any of these.

There are certain client considerations when creating a new mailbox name:

1. Any character that is one of the atom-specials (see "Formal Syntax" in Section 9) will require
that the mailbox name be represented as a quoted string or literal.

2. CTL and other non-graphic characters are difficult to represent in a user interface and are
best avoided. Servers MAY refuse to create mailbox names containing Unicode CTL
characters.

3. Although the list-wildcard characters ("%" and "*") are valid in a mailbox name, it is difficult
to use such mailbox names with the LIST command due to the conflict with wildcard
interpretation.

4. Usually, a character (determined by the server implementation) is reserved to delimit levels
of hierarchy.

5. Two characters, "#" and "&", have meanings by convention and should be avoided except
when used in that convention. See Section 5.1.2.1 and Appendix A.1, respectively.

5.1.1. Mailbox Hierarchy Naming

If it is desired to export hierarchical mailbox names, mailbox names MUST be left-to-right
hierarchical, using a single ASCII character to separate levels of hierarchy. The same hierarchy
separator character is used for all levels of hierarchy within a single name.

5.1.2. Namespaces

Melnikov & Leiba Standards Track Page 20

RFC 9051 IMAP4rev2 August 2021

Personal Namespace:
A namespace that the server considers within the personal scope of the authenticated user on
a particular connection. Typically, only the authenticated user has access to mailboxes in their
Personal Namespace. It is the part of the namespace that belongs to the user and is allocated
for mailboxes. If an INBOX exists for a user, it MUST appear within the user's Personal
Namespace. In the typical case, there SHOULD be only one Personal Namespace per user on a
server.

Other Users' Namespace:
A namespace that consists of mailboxes from the Personal Namespaces of other users. To
access mailboxes in the Other Users' Namespace, the currently authenticated user MUST be
explicitly granted access rights. For example, it is common for a manager to grant to their
administrative support staff access rights to their mailbox. In the typical case, there SHOULD
be only one Other Users' Namespace per user on a server.

Shared Namespace:
A namespace that consists of mailboxes that are intended to be shared amongst users and do
not exist within a user's Personal Namespace.

The namespaces a server uses MAY differ on a per-user basis.

5.1.2.1. Historic Mailbox Namespace Naming Convention

By convention, the first hierarchical element of any mailbox name that begins with "#" identifies
the "namespace" of the remainder of the name. This makes it possible to disambiguate between
different types of mailbox stores, each of which have their own namespaces.

For example, implementations that offer access to USENET newsgroups MAY use the "#news"
namespace to partition the USENET newsgroup namespace from that of other mailboxes.
Thus, the comp.mail.misc newsgroup would have a mailbox name of "#news.comp.mail.misc",
and the name "comp.mail.misc" can refer to a different object (e.g., a user's private mailbox).

Namespaces that include the "#" character are not IMAP URL [IMAP-URL] friendly and require
the "#" character to be represented as %23 when within URLSs. As such, server implementors MAY
instead consider using namespace prefixes that do not contain the "#" character.

5.1.2.2. Common Namespace Models

The previous version of this protocol did not define a default server namespace. Two common
namespace models have evolved:

The "Personal Mailbox" model, in which the default namespace that is presented consists of only
the user's personal mailboxes. To access shared mailboxes, the user must use an escape
mechanism to reach another namespace.

The "Complete Hierarchy" model, in which the default namespace that is presented includes the
user's personal mailboxes along with any other mailboxes they have access to.

Melnikov & Leiba Standards Track Page 21

RFC 9051 IMAP4rev2 August 2021

5.2. Mailbox Size and Message Status Updates

At any time, a server can send data that the client did not request. Sometimes, such behavior is
required by this specification and/or extensions. For example, agents other than the server may
add messages to the mailbox (e.g., new message delivery); change the flags of the messages in the
mailbox (e.g., simultaneous access to the same mailbox by multiple agents); or even remove
messages from the mailbox. A server MUST send mailbox size updates automatically if a mailbox
size change is observed during the processing of a command. A server SHOULD send message
flag updates automatically, without requiring the client to request such updates explicitly.

Special rules exist for server notification of a client about the removal of messages to prevent
synchronization errors; see the description of the EXPUNGE response (Section 7.5.1) for more
detail. In particular, it is NOT permitted to send an EXISTS response that would reduce the
number of messages in the mailbox; only the EXPUNGE response can do this.

Regardless of what implementation decisions a client makes on remembering data from the
server, a client implementation MUST remember mailbox size updates. It MUST NOT assume that
any command after the initial mailbox selection will return the size of the mailbox.

5.3. Response When No Command in Progress

Server implementations are permitted to send an untagged response (except for EXPUNGE) while
there is no command in progress. Server implementations that send such responses MUST deal
with flow control considerations. Specifically, they MUST either (1) verify that the size of the data
does not exceed the underlying transport's available window size or (2) use non-blocking writes.

5.4. Autologout Timer

If a server has an inactivity autologout timer that applies to sessions after authentication, the
duration of that timer MUST be at least 30 minutes. The receipt of any command from the client
during that interval resets the autologout timer.

Note that this specification doesn't have any restrictions on an autologout timer used before
successful client authentication. In particular, servers are allowed to use a shortened pre-
authentication timer to protect themselves from Denial-of-Service attacks.

5.5. Multiple Commands in Progress (Command Pipelining)

The client MAY send another command without waiting for the completion result response of a
command, subject to ambiguity rules (see below) and flow control constraints on the underlying
data stream. Similarly, a server MAY begin processing another command before processing the
current command to completion, subject to ambiguity rules. However, any command
continuation request responses and command continuations MUST be negotiated before any
subsequent command is initiated.

Melnikov & Leiba Standards Track Page 22

RFC 9051 IMAP4rev2 August 2021

The exception is if an ambiguity would result because of a command that would affect the results
of other commands. If the server detects a possible ambiguity, it MUST execute commands to
completion in the order given by the client.

The most obvious example of ambiguity is when a command would affect the results of another
command. One example is a FETCH that would cause \Seen flags to be set and a SEARCH UNSEEN
command.

A non-obvious ambiguity occurs with commands that permit an untagged EXPUNGE response
(commands other than FETCH, STORE, and SEARCH), since an untagged EXPUNGE response can
invalidate sequence numbers in a subsequent command. This is not a problem for FETCH,
STORE, or SEARCH commands because servers are prohibited from sending EXPUNGE responses
while any of those commands are in progress. Therefore, if the client sends any command other
than FETCH, STORE, or SEARCH, it MUST wait for the completion result response before sending a
command with message sequence numbers.

Note: EXPUNGE responses are permitted while UID FETCH, UID STORE, and UID SEARCH are
in progress. If the client sends a UID command, it MUST wait for a completion result response
before sending a command that uses message sequence numbers (this may include UID
SEARCH). Any message sequence numbers in an argument to UID SEARCH are associated with
messages prior to the effect of any untagged EXPUNGE responses returned by the UID
SEARCH.

For example, the following non-waiting command sequences are invalid:

FETCH + NOOP + STORE
STORE + COPY + FETCH
COPY + COPY

The following are examples of valid non-waiting command sequences:

FETCH + STORE + SEARCH + NOOP
STORE + COPY + EXPUNGE

UID SEARCH + UID SEARCH may be valid or invalid as a non-waiting command sequence,
depending upon whether or not the second UID SEARCH contains message sequence numbers.

Use of a SEARCH result variable (see Section 6.4.4.1) creates direct dependency between two
commands. See Section 6.4.4.2 for more considerations about pipelining such dependent
commands.

6. Client Commands

IMAP4rev2 commands are described in this section. Commands are organized by the state in
which the command is permitted. Commands that are permitted in multiple states are listed in
the minimum permitted state (for example, commands valid in authenticated and selected states
are listed in the authenticated state commands).

Melnikov & Leiba Standards Track Page 23

RFC 9051 IMAP4rev2 August 2021

Command arguments, identified by "Arguments:" in the command descriptions below, are
described by function, not by syntax. The precise syntax of command arguments is described in
"Formal Syntax" (Section 9).

Some commands cause specific server responses to be returned; these are identified by
"Responses:" in the command descriptions below. See the response descriptions in "Responses"
(Section 7) for information on these responses and in "Formal Syntax" (Section 9) for the precise
syntax of these responses. It is possible for server data to be transmitted as a result of any
command. Thus, commands that do not specifically require server data specify "no specific
responses for this command" instead of "none".

The "Result:" in the command description refers to the possible tagged status responses to a
command and any special interpretation of these status responses.

The state of a connection is only changed by successful commands that are documented as
changing state. A rejected command (BAD response) never changes the state of the connection or
of the selected mailbox. A failed command (NO response) generally does not change the state of
the connection or of the selected mailbox, with the exception of the SELECT and EXAMINE
commands.

6.1. Client Commands - Any State
The following commands are valid in any state: CAPABILITY, NOOP, and LOGOUT.

6.1.1. CAPABILITY Command

Arguments: none
Responses: ~ REQUIRED untagged response: CAPABILITY

Result: OK- capability completed
BAD - arguments invalid

The CAPABILITY command requests a listing of capabilities (e.g., extensions and/or modifications
of server behavior) that the server supports. The server MUST send a single untagged
CAPABILITY response with "IMAP4rev2" as one of the listed capabilities before the (tagged) OK
response.

A capability name that begins with "AUTH=" indicates that the server supports that particular
authentication mechanism as defined in the Simple Authentication and Security Layer (SASL)
[SASL]. All such names are, by definition, part of this specification.

Other capability names refer to extensions, revisions, or amendments to this specification. See
the documentation of the CAPABILITY response in Section 7.2.2 for additional information. If
IMAP4rev1 capability is not advertised, no capabilities, beyond the base IMAP4rev2 set defined
in this specification, are enabled without explicit client action to invoke the capability. If both

Melnikov & Leiba Standards Track Page 24

RFC 9051 IMAP4rev2 August 2021

IMAP4revl and IMAP4rev2 capabilities are advertised, no capabilities, beyond the base
IMAP4rev1 set specified in [RFC3501], are enabled without explicit client action to invoke the
capability.

Client and server implementations MUST implement the STARTTLS (Section 6.2.1) and
LOGINDISABLED capabilities on cleartext ports. Client and server implementations MUST also
implement AUTH=PLAIN (described in [PLAIN]) capability on both cleartext and Implicit TLS
ports. See the Security Considerations (Section 11) for important information.

Unless otherwise specified, all registered extensions to IMAP4rev1 are also valid extensions to
IMAP4rev2.

Example:

C: abcd CAPABILITY

S: * CAPABILITY IMAP4rev2 STARTTLS AUTH=GSSAPI
LOGINDISABLED

S: abcd OK CAPABILITY completed

C: efgh STARTTLS

S: efgh OK STARTTLS completed

<TLS negotiation, further commands are under TLS layer>

C: ijkl CAPABILITY

S: * CAPABILITY IMAP4rev2 AUTH=GSSAPI AUTH=PLAIN

S: ijkl OK CAPABILITY completed

6.1.2. NOOP Command

Arguments: none
Responses: no specific responses for this command (but see below)

Result: OK- noop completed
BAD - command unknown or arguments invalid

The NOOP command always succeeds. It does nothing.

Since any command can return a status update as untagged data, the NOOP command can be
used as a periodic poll for new messages or message status updates during a period of inactivity
(the IDLE command; see Section 6.3.13) should be used instead of NOOP if real-time updates to
mailbox state are desirable). The NOOP command can also be used to reset any inactivity
autologout timer on the server.

Melnikov & Leiba Standards Track Page 25

RFC 9051 IMAP4rev2 August 2021

Example:

: abe2 NOOP
: aBB2 OK NOOP completed

w o

: ad47 NOOP

: * 22 EXPUNGE

: % 23 EXISTS

: % 14 FETCH (UID 1305 FLAGS (\Seen \Deleted))
: aB47 OK NOOP completed

(NN N N e]

6.1.3. LOGOUT Command

Arguments: none
Responses: ~ REQUIRED untagged response: BYE

Result: OK- logout completed
BAD - command unknown or arguments invalid

The LOGOUT command informs the server that the client is done with the connection. The server
MUST send a BYE untagged response before the (tagged) OK response, and then close the network
connection.

Example:

C: A@23 LOGOUT

S: * BYE IMAP4rev2 Server logging out

S: A023 OK LOGOUT completed

(Server and client then close the connection)

6.2. Client Commands - Not Authenticated State

In the not authenticated state, the AUTHENTICATE or LOGIN command establishes
authentication and enters the authenticated state. The AUTHENTICATE command provides a
general mechanism for a variety of authentication techniques, privacy protection, and integrity
checking, whereas the LOGIN command uses a conventional user name and plaintext password
pair and has no means of establishing privacy protection or integrity checking.

The STARTTLS command is an alternative form of establishing session privacy protection and
integrity checking but does not by itself establish authentication or enter the authenticated state.

Server implementations MAY allow access to certain mailboxes without establishing
authentication. This can be done by means of the ANONYMOUS [SASL] authenticator described
in [ANONYMOUS]. An older convention is a LOGIN command using the userid "anonymous"; in
this case, a password is required although the server may choose to accept any password. The
restrictions placed on anonymous users are implementation dependent.

Melnikov & Leiba Standards Track Page 26

RFC 9051 IMAP4rev2 August 2021

Once authenticated (including as anonymous), it is not possible to re-enter not authenticated
state.

In addition to the universal commands (CAPABILITY, NOOP, and LOGOUT), the following
commands are valid in the not authenticated state: STARTTLS, AUTHENTICATE, and LOGIN. See
the Security Considerations (Section 11) for important information about these commands.

6.2.1. STARTTLS Command

Arguments: none
Responses: no specific response for this command

Result: OK- starttls completed, begin TLS negotiation
NO - TLS negotiation can't be initiated, due to server configuration error
BAD - STARTTLS received after a successful TLS negotiation or arguments invalid

Note that the STARTTLS command is available only on cleartext ports. The server MUST always
respond with a tagged BAD response when the STARTTLS command is received on an Implicit
TLS port.

A TLS [TLS-1.3] negotiation begins immediately after the CRLF at the end of the tagged OK
response from the server. Once a client issues a STARTTLS command, it MUST NOT issue further
commands until a server response is seen and the TLS negotiation is complete. Some past server
implementations incorrectly implemented STARTTLS processing and are known to contain
STARTTLS plaintext command injection vulnerability [CERT-555316]. In order to avoid this
vulnerability, server implementations MUST do one of the following if any data is received in the
same TCP buffer after the CRLF that starts the STARTTLS command:

1. Extra data from the TCP buffer is interpreted as the beginning of the TLS handshake. (If the
data is in cleartext, this will result in the TLS handshake failing.)

2. Extra data from the TCP buffer is thrown away.

Note that the first option is friendlier to clients that pipeline the beginning of the STARTTLS
command with TLS handshake data.

After successful TLS negotiation, the server remains in the non-authenticated state, even if client
credentials are supplied during the TLS negotiation. This does not preclude an authentication
mechanism such as EXTERNAL (defined in [SASL]) from using client identity determined by the
TLS negotiation.

Once TLS has been started, the client MUST discard cached information about server capabilities
and SHOULD reissue the CAPABILITY command. This is necessary to protect against active
attacks that alter the capabilities list prior to STARTTLS. The server MAY advertise different
capabilities and, in particular, SHOULD NOT advertise the STARTTLS capability, after a successful
STARTTLS command.

Melnikov & Leiba Standards Track Page 27

RFC 9051 IMAP4rev2 August 2021

Example:

. av01 CAPABILITY

: * CAPABILITY IMAP4rev2 STARTTLS LOGINDISABLED
: aB01 OK CAPABILITY completed

: afe2 STARTTLS

: adB2 OK Begin TLS negotiation now

TLS negotiation, further commands are under TLS layer>
: a3 CAPABILITY

: * CAPABILITY IMAP4rev2 AUTH=PLAIN

: aBB3 OK CAPABILITY completed

: ad04 AUTHENTICATE PLAIN dGVzdABOZXNOAHR1c3Q=
: a@B4 OK Success (tls protection)

DOULWLONDNVDOLW!MO

6.2.2. AUTHENTICATE Command

Arguments: SASL authentication mechanism name
OPTIONAL initial response

Responses: continuation data can be requested

Result: OK- authenticate completed, now in authenticated state
NO - authenticate failure: unsupported authentication mechanism, credentials
rejected
BAD - command unknown or arguments invalid, authentication exchange
canceled

The AUTHENTICATE command indicates a [SASL] authentication mechanism to the server. If the
server supports the requested authentication mechanism, it performs an authentication protocol
exchange to authenticate and identify the client. It MAY also negotiate an OPTIONAL security
layer for subsequent protocol interactions. If the requested authentication mechanism is not
supported, the server SHOULD reject the AUTHENTICATE command by sending a tagged NO
response.

The AUTHENTICATE command supports the optional "initial response" feature defined in Section
4 of [SASL]. The client doesn't need to use it. If a SASL. mechanism supports "initial response”, but
it is not specified by the client, the server handles it as specified in Section 3 of [SASL].

The service name specified by this protocol's profile of [SASL] is "imap".

The authentication protocol exchange consists of a series of server challenges and client
responses that are specific to the authentication mechanism. A server challenge consists of a
command continuation request response with the "+" token followed by a base64-encoded (see
Section 4 of [RFC4648]) string. The client response consists of a single line consisting of a base64-
encoded string. If the client wishes to cancel an authentication exchange, it issues a line
consisting of a single "*". If the server receives such a response, or if it receives an invalid base64
string (e.g., characters outside the base64 alphabet or non-terminal "="), it MUST reject the
AUTHENTICATE command by sending a tagged BAD response.

Melnikov & Leiba Standards Track Page 28

https://www.rfc-editor.org/rfc/rfc4422#section-4
https://www.rfc-editor.org/rfc/rfc4422#section-4
https://www.rfc-editor.org/rfc/rfc4422#section-3
https://www.rfc-editor.org/rfc/rfc4648#section-4

RFC 9051 IMAP4rev2 August 2021

As with any other client response, the initial response MUST be encoded as base64. It also MUST
be transmitted outside of a quoted string or literal. To send a zero-length initial response, the
client MUST send a single pad character ("="). This indicates that the response is present, but it is
a zero-length string.

When decoding the base64 data in the initial response, decoding errors MUST be treated as in any
normal SASL client response, i.e., with a tagged BAD response. In particular, the server should
check for any characters not explicitly allowed by the base64 alphabet, as well as any sequence
of base64 characters that contains the pad character ('=") anywhere other than the end of the
string (e.g., "=AAA" and "AAA=BBB" are not allowed).

If the client uses an initial response with a SASL mechanism that does not support an initial
response, the server MUST reject the command with a tagged BAD response.

If a security layer is negotiated through the [SASL] authentication exchange, it takes effect
immediately following the CRLF that concludes the authentication exchange for the client and
the CRLF of the tagged OK response for the server.

While client and server implementations MUST implement the AUTHENTICATE command itself,
it is not required to implement any authentication mechanisms other than the PLAIN mechanism
described in [PLAIN]. Also, an authentication mechanism is not required to support any security
layers.

Note: a server implementation MUST implement a configuration in which it does NOT permit
any plaintext password mechanisms, unless the STARTTLS command has been negotiated,
TLS has been negotiated on an Implicit TLS port, or some other mechanism that protects the
session from password snooping has been provided. Server sites SHOULD NOT use any
configuration that permits a plaintext password mechanism without such a protection
mechanism against password snooping. Client and server implementations SHOULD
implement additional [SASL] mechanisms that do not use plaintext passwords, such as the
GSSAPI mechanism described in [RFC4752], the SCRAM-SHA-256/SCRAM-SHA-256-PLUS
[SCRAM-SHA-256] mechanisms, and/or the EXTERNAL [SASL] mechanism for mutual TLS
authentication. (Note that the SASL framework allows for the creation of SASL mechanisms
that support 2-factor authentication (2FA); however, none are fully ready to be recommended
by this document.)

Servers and clients can support multiple authentication mechanisms. The server SHOULD list its
supported authentication mechanisms in the response to the CAPABILITY command so that the
client knows which authentication mechanisms to use.

A server MAY include a CAPABILITY response code in the tagged OK response of a successful
AUTHENTICATE command in order to send capabilities automatically. It is unnecessary for a
client to send a separate CAPABILITY command if it recognizes these automatic capabilities. This
should only be done if a security layer was not negotiated by the AUTHENTICATE command,
because the tagged OK response as part of an AUTHENTICATE command is not protected by

Melnikov & Leiba Standards Track Page 29

RFC 9051

IMAP4rev2

August 2021

encryption/integrity checking. [SASL] requires the client to re-issue a CAPABILITY command in
this case. The server MAY advertise different capabilities after a successful AUTHENTICATE
command.

If an AUTHENTICATE command fails with a NO response, the client MAY try another

authentication mechanism by issuing another AUTHENTICATE command. It MAY also attempt to
authenticate by using the LOGIN command (see Section 6.2.3 for more detail). In other words, the
client MAY request authentication types in decreasing order of preference, with the LOGIN
command as a last resort.

The authorization identity passed from the client to the server during the authentication
exchange is interpreted by the server as the user name whose privileges the client is requesting.

Example:

S:

* OK [CAPABILITY IMAP4rev2 STARTTLS AUTH=GSSAPI]

Capabilities

CF
S:
G3

ABB1 AUTHENTICATE GSSAPI

+
YIIB+wYJKoZIhvcSAQICAQBuggHGMIIB5qADAgEF0oQMCAQ6iBw
MFACAAAACjggEmYYIBIjCCAR6gAWIBBaESGxB1Lndhc2hpbmdo
b24uZWR10i0wK6ADAgED0oSQwIhsEaWlhcBsac2hpdmFtcy5jYW
Mud2FzaGluZ3Rvbi51ZHWjgdMwgdCgAwIBAaEDAgEDoOHDBIHA
c¢S1GSa5b+fXnPZNmXB9SjL8011j2SKyb+3S0iXM1jen/jNkpJX
AleKTz6BQPzj8duz8EtoOuNfKgweViyn/9B9bccyTuuAE2HIOY
C/PHXNNU9ZrBziJ8LmOBtTNc98kUpjXnHZhsMcz5Mx2GR6dGknb
I0iaGcRerMUsWOuBmKKKRmMVMMdRIT3EZdpgqsBd7jZCNMWotjhi
vd5zovQlFqQ2Wjc2+y46vKP/iXxWIuQJuDiisyXFOY8+5GTpAL
pHDc1/pIGmMMIG]joAMCAQGigZsEgZg2on5mSuxoDHEATWIbcWIn
FdFxDKpdrQhVGVRDIzcCMCTzvUbogb5KjYT1NJKJIsTjRQiBYBdE
NKfzK+g5D1V8nrw81uOcP8NOQCLR5XkoMHCODr /80ziQzbNghx
06652NpftOLQwJvenwDI13YxpwOdMXzkWZN/XrEqOWp6GCgXTB
vCyLWL1WnbaUkZdEYbKHBPjd8t/1x5Yg==

: + YGgGCSqGSIb3EgECAgIAb1kwV6ADAgEFOQMCAQ+iSzBJoAMC

AQGiQgRAtHTEUOP2BXb9sBYFR4SJ1DZxmg39IxmRBOhXRKADA®
UHTCOT9Bq30sUTXU1kBCsFLoa8j+gvGD1gHuqzWHPSQg==

: + YDMGCSqGSIb3EGECAGIBAAD/////6jcyG4GE3KkTzBeBiVHe

ceP2CWYBSROTAQAgAAQEBAQ=

: YDMGCSqGSIb3EgECAgIBAAD/////3LQBHXTpFfZgrejpL1LImP

wkhbfa2QteAQAgAGTyYwE=

: ABBT OK GSSAPI authentication successful

The following example demonstrates the use of an initial response.

Melnikov & Leiba Standards Track

Page 30

RFC 9051 IMAP4rev2 August 2021

Example:

S: % OK [CAPABILITY IMAP4rev2 STARTTLS AUTH=GSSAPI
LOGINDISABLED] Server ready

C: A@1 STARTTLS

S: A@1 OK STARTTLS completed

<TLS negotiation, further commands are under TLS layer>
: A@2 CAPABILITY

: % CAPABILITY IMAP4rev2 AUTH=GSSAPI AUTH=PLAIN

: AB2 OK CAPABILITY completed

: AB3 AUTHENTICATE PLAIN dGVzdABOZXNBAHR1lc3Q=

: AB3 OK Success (tls protection)

[P NP NN Ne]

Note that because the initial response is optional, the following negotiation (which does not use
the initial response) is still valid and MUST be supported by the server:

. client connects to server and negotiates a TLS
protection layer ...
. Co1 CAPABILITY
: % CAPABILITY IMAP4rev2 AUTH=PLAIN
: CO1 OK Completed
: AB1 AUTHENTICATE PLAIN
Do+
: dGVzdABOZXNOAHR1c3Q=
: AB1 OK Success (tls protection)

DHDOMWOUWW!WO

Note that in the above example there is a space following the "+" from the server.

The following is an example authentication using the SASL EXTERNAL mechanism (defined in
[SASL]) under a TLS protection layer and an empty initial response:

. client connects to server and negotiates a TLS
protection layer ...
: CO1 CAPABILITY
: % CAPABILITY IMAP4rev2 AUTH=PLAIN AUTH=EXTERNAL
: CO1 OK Completed
: AB1 AUTHENTICATE EXTERNAL =
: AB1 OK Success (tls protection)

(NP N N Ne]

Note: The line breaks within server challenges and client responses are for editorial clarity and
are not in real authenticators.

6.2.3. LOGIN Command

Arguments: user name
password

Responses: no specific responses for this command

Melnikov & Leiba Standards Track Page 31

RFC 9051 IMAP4rev2 August 2021

Result: OK- login completed, now in authenticated state
NO - login failure: user name or password rejected
BAD - command unknown or arguments invalid

The LOGIN command identifies the client to the server and carries the plaintext password
authenticating this user. The LOGIN command SHOULD NOT be used except as a last resort (after
attempting and failing to authenticate using the AUTHENTICATE command one or more times),
and it is recommended that client implementations have a means to disable any automatic use of
the LOGIN command.

A server MAY include a CAPABILITY response code in the tagged OK response to a successful
LOGIN command in order to send capabilities automatically. It is unnecessary for a client to send
a separate CAPABILITY command if it recognizes these automatic capabilities.

Example:

C: a001 LOGIN SMITH SESAME
S: afo1 OK LOGIN completed

Note: Use of the LOGIN command over an insecure network (such as the Internet) is a security
risk, because anyone monitoring network traffic can obtain plaintext passwords. For that reason,
clients MUST NOT use LOGIN on unsecure networks.

Unless the client is accessing IMAP service on an Implicit TLS port [RFC8314], the STARTTLS
command has been negotiated, or some other mechanism that protects the session from
password snooping has been provided, a server implementation MUST implement a
configuration in which it advertises the LOGINDISABLED capability and does NOT permit the
LOGIN command. Server sites SHOULD NOT use any configuration that permits the LOGIN
command without such a protection mechanism against password snooping. A client
implementation MUST NOT send a LOGIN command if the LOGINDISABLED capability is
advertised.

6.3. Client Commands - Authenticated State

In the authenticated state, commands that manipulate mailboxes as atomic entities are
permitted. Of these commands, SELECT and EXAMINE will select a mailbox for access and enter
the selected state.

In addition to the universal commands (CAPABILITY, NOOP, and LOGOUT), the following
commands are valid in the authenticated state: ENABLE, SELECT, EXAMINE, NAMESPACE,
CREATE, DELETE, RENAME, SUBSCRIBE, UNSUBSCRIBE, LIST, STATUS, APPEND, and IDLE.

6.3.1. ENABLE Command

Arguments: capability names

Responses: no specific responses for this command

Melnikov & Leiba Standards Track Page 32

RFC 9051 IMAP4rev2 August 2021

Result: OK- Relevant capabilities enabled
BAD - No arguments, or syntax error in an argument

Several IMAP extensions allow the server to return unsolicited responses specific to these
extensions in certain circumstances. However, servers cannot send those unsolicited responses
(with the exception of response codes (see Section 7.1) included in tagged or untagged OK/NO/
BAD responses, which can always be sent) until they know that the clients support such
extensions and thus will be able to correctly parse and process the extension response data.

The ENABLE command provides an explicit indication from the client that it supports particular
extensions. It is designed such that the client can send a simple constant string with the
extensions it supports, and the server will enable the shared subset that both support.

The ENABLE command takes a list of capability names and requests the server to enable the
named extensions. Once enabled using ENABLE, each extension remains active until the IMAP
connection is closed. For each argument, the server does the following:

o If the argument is not an extension known to the server, the server MUST ignore the
argument.

o If the argument is an extension known to the server, and it is not specifically permitted to be
enabled using ENABLE, the server MUST ignore the argument. (Note that knowing about an
extension doesn't necessarily imply supporting that extension.)

o If the argument is an extension that is supported by the server and that needs to be enabled,
the server MUST enable the extension for the duration of the connection. Note that once an
extension is enabled, there is no way to disable it.

If the ENABLE command is successful, the server MUST send an untagged ENABLED response
(Section 7.2.1), which includes all enabled extensions as specified above. The ENABLED response
is sent even if no extensions were enabled.

Clients SHOULD only include extensions that need to be enabled by the server. For example, a
client can enable IMAP4rev2-specific behavior when both IMAP4rev1 and IMAP4rev2 are
advertised in the CAPABILITY response. Future RFCs may add to this list.

The ENABLE command is only valid in the authenticated state, before any mailbox is selected.
Clients MUST NOT issue ENABLE once they SELECT/EXAMINE a mailbox; however, server
implementations don't have to check that no mailbox is selected or was previously selected
during the duration of a connection.

The ENABLE command can be issued multiple times in a session. It is additive; that is, "ENABLE a
b", followed by "ENABLE c", is the same as a single command "ENABLE a b c¢". When multiple
ENABLE commands are issued, each corresponding ENABLED response SHOULD only contain
extensions enabled by the corresponding ENABLE command, i.e., for the above example, the
ENABLED response to "ENABLE c" should not contain "a" or "b".

There are no limitations on pipelining ENABLE. For example, it is possible to send ENABLE and
then immediately SELECT, or a LOGIN immediately followed by ENABLE.

Melnikov & Leiba Standards Track Page 33

RFC 9051 IMAP4rev2 August 2021

The server MUST NOT change the CAPABILITY list as a result of executing ENABLE; that is, a
CAPABILITY command issued right after an ENABLE command MUST list the same capabilities as
a CAPABILITY command issued before the ENABLE command. This is demonstrated in the
following example. Note that below "X-GOOD-IDEA" is a fictitious extension capability that can be
ENABLED.

: t1 CAPABILITY

. % CAPABILITY IMAP4rev2 ID LITERAL+ X-GOOD-IDEA
: t1 OK foo

: t2 ENABLE CONDSTORE X-GOOD-IDEA

. * ENABLED X-GOOD-IDEA

: t2 OK foo

. t3 CAPABILITY

. % CAPABILITY IMAP4rev2 ID LITERAL+ X-GOOD-IDEA
: t3 OK foo again

HDDOLOULULOWLW!WO

In the following example, the client enables the Conditional Store (CONDSTORE) extension
[REC7162]:

C: a1l ENABLE CONDSTORE
S: * ENABLED CONDSTORE
S: al OK Conditional Store enabled

6.3.1.1. Note to Designers of Extensions That May Use the ENABLE Command

Designers of IMAP extensions are discouraged from creating extensions that require ENABLE
unless there is no good alternative design. Specifically, extensions that cause potentially
incompatible behavior changes to deployed server responses (and thus benefit from ENABLE)
have a higher complexity cost than extensions that do not.

6.3.2. SELECT Command

Arguments: mailbox name

Responses: REQUIRED untagged responses: FLAGS, EXISTS, LIST
REQUIRED OK untagged responses: PERMANENTFLAGS, UIDNEXT, UIDVALIDITY

Result: OK- select completed, now in selected state
NO - select failure, now in authenticated state: no such mailbox, can't access
mailbox

BAD - command unknown or arguments invalid

The SELECT command selects a mailbox so that messages in the mailbox can be accessed. Before
returning an OK to the client, the server MUST send the following untagged data to the client.
(The order of individual responses is not important.) Note that earlier versions of this protocol,
such as the IMAP4rev1 version specified in [RFC2060], only required the FLAGS and EXISTS

Melnikov & Leiba Standards Track Page 34

RFC 9051 IMAP4rev2 August 2021

untagged responses and UIDVALIDITY response code. Client implementations that need to
remain compatible with such older IMAP versions have to implement default behavior for
missing data, as discussed with the individual items.

FLAGS
Defined flags in the mailbox. See the description of the FLAGS response in Section 7.3.5 for
more detail.

<n> EXISTS
The number of messages in the mailbox. See the description of the EXISTS response in Section
7.4.1 for more detail.

LIST
The server MUST return a LIST response with the mailbox name. The list of mailbox attributes
MUST be accurate. If the server allows denormalized UTF-8 mailbox names (see Section 5.1)
and the supplied mailbox name differs from the normalized version, the server MUST return
LIST with the OLDNAME extended data item. See Section 6.3.9.7 for more details.

OK [PERMANENTFLAGS (<list of flags>)]
A list of message flags that the client can change permanently. If this is missing, the client
should assume that all flags can be changed permanently.

OK [UIDNEXT <n>]
The next unique identifier value. Refer to Section 2.3.1.1 for more information.

OK [UIDVALIDITY <n>]
The unique identifier validity value. Refer to Section 2.3.1.1 for more information.

Only one mailbox can be selected at a time in a connection; simultaneous access to multiple
mailboxes requires multiple connections. The SELECT command automatically deselects any
currently selected mailbox before attempting the new selection. Consequently, if a mailbox is
selected and a SELECT command that fails is attempted, no mailbox is selected. When deselecting
a selected mailbox, the server MUST return an untagged OK response with the "[CLOSED]"
response code when the currently selected mailbox is closed (see Section 7.1).

If the client is permitted to modify the mailbox, the server SHOULD prefix the text of the tagged
OK response with the "[READ-WRITE]" response code.

If the client is not permitted to modify the mailbox but is permitted read access, the mailbox is
selected as read-only, and the server MUST prefix the text of the tagged OK response to SELECT
with the "[READ-ONLY]" response code. Read-only access through SELECT differs from the
EXAMINE command in that certain read-only mailboxes MAY permit the change of permanent
state on a per-user (as opposed to global) basis. Netnews messages marked in a server-based
.newsrc file are an example of such per-user permanent state that can be modified with read-
only mailboxes.

Melnikov & Leiba Standards Track Page 35

RFC 9051

Example:

DDOLOLLBLOH!WO

*
*
*

o @
*
*
A

A

Example:

(72] DD LBLBLDOLOO—ULULLOLOLnO

A

* % X X

A
..some time later...]
A

¥ % ok 3k X X ok

A

IMAP4rev2 August 2021

142 SELECT INBOX

172 EXISTS

OK [UIDVALIDITY 3857529045] UIDs valid

OK [UIDNEXT 4392] Predicted next UID

FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
OK [PERMANENTFLAGS (\Deleted \Seen *)] Limited
LIST () "/" INBOX

142 OK [READ-WRITE] SELECT completed

142 SELECT INBOX

172 EXISTS

OK [UIDVALIDITY 3857529045] UIDs valid

OK [UIDNEXT 4392] Predicted next UID

FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
OK [PERMANENTFLAGS (\Deleted \Seen *)] Limited
142 OK [READ-WRITE] SELECT completed

143 SELECT Drafts

OK [CLOSED] Previous mailbox is now closed

5 EXISTS

OK [UIDVALIDITY 9877410381] UIDs valid

OK [UIDNEXT 102] Predicted next UID

LIST () "/" Drafts

FLAGS (\Answered \Flagged \Deleted \Seen \Draft)

OK [PERMANENTFLAGS (\Deleted \Seen \Answered

\Flagged \Draft *)] System flags and keywords allowed
143 OK [READ-WRITE] SELECT completed

Note that IMAP4revl-compliant servers can also send the untagged RECENT response that was
deprecated in IMAP4rev2, e.g., "* 0 RECENT". Pure IMAP4rev2 clients are advised to ignore the
untagged RECENT response.

6.3.3. EXAMINE Command

Arguments: mailbox name

Responses: REQUIRED untagged responses: FLAGS, EXISTS, LIST

Result:

REQUIRED OK untagged responses: PERMANENTFLAGS, UIDNEXT, UIDVALIDITY

OK- examine completed, now in selected state

NO - examine failure, now in authenticated state: no such mailbox, can't access
mailbox

BAD - command unknown or arguments invalid

Melnikov & Leiba Standards Track Page 36

RFC 9051 IMAP4rev2 August 2021

The EXAMINE command is identical to SELECT and returns the same output; however, the
selected mailbox is identified as read-only. No changes to the permanent state of the mailbox,
including per-user state, are permitted.

The text of the tagged OK response to the EXAMINE command MUST begin with the "[READ-
ONLY]" response code.

Example:

: A932 EXAMINE blurdybloop

17 EXISTS

OK [UIDVALIDITY 3857529045] UIDs valid

OK [UIDNEXT 4392] Predicted next UID

LIST () "/" blurdybloop

FLAGS (\Answered \Flagged \Deleted \Seen \Draft)

OK [PERMANENTFLAGS ()] No permanent flags permitted
932 OK [READ-ONLY] EXAMINE completed

DO LLLOL!WO

> ok ok % ok X ok

6.3.4. CREATE Command

Arguments: mailbox name
Responses: ~ OPTIONAL untagged response: LIST

Result: OK- create completed
NO - create failure: can't create mailbox with that name
BAD - command unknown or arguments invalid

The CREATE command creates a mailbox with the given name. An OK response is returned only
if a new mailbox with that name has been created. It is an error to attempt to create INBOX or a
mailbox with a name that refers to an extant mailbox. Any error in creation will return a tagged
NO response. If a client attempts to create a UTF-8 mailbox name that is not a valid Net-Unicode
name, the server MUST reject the creation or convert the name to Net-Unicode prior to creating
the mailbox. If the server decides to convert (normalize) the name, it SHOULD return an
untagged LIST with an OLDNAME extended data item, with the OLDNAME value being the
supplied mailbox name and the name parameter being the normalized mailbox name. (See
Section 6.3.9.7 for more details.)

Mailbozxes created in one IMAP session MAY be announced to other IMAP sessions using an
unsolicited LIST response. If the server automatically subscribes a mailbox when it is created,
then the unsolicited LIST response for each affected subscribed mailbox name MUST include the
\Subscribed attribute.

If the mailbox name is suffixed with the server's hierarchy separator character (as returned from
the server by a LIST command), this is a declaration that the client intends to create mailbox
names under this name in the hierarchy. Server implementations that do not require this
declaration MUST ignore the declaration. In any case, the name created is without the trailing
hierarchy delimiter.

Melnikov & Leiba Standards Track Page 37

RFC 9051 IMAP4rev2 August 2021

If the server's hierarchy separator character appears elsewhere in the name, the server SHOULD
create any superior hierarchical names that are needed for the CREATE command to be
successfully completed. In other words, an attempt to create "foo/bar/zap” on a server in which
"[" is the hierarchy separator character SHOULD create foo/ and foo/bar/ if they do not already
exist.

If a new mailbox is created with the same name as a mailbox that was deleted, its unique
identifiers MUST be greater than any unique identifiers used in the previous incarnation of the
mailbox unless the new incarnation has a different unique identifier validity value. See the
description of the UID command in Section 6.4.9 for more detail.

Example:

C: A0O3 CREATE owatagusiam/

S: A0B3 OK CREATE completed

C: A0O4 CREATE owatagusiam/blurdybloop

S: A0O4 OK CREATE completed

C: ABBS5 CREATE NonNormalized

S: * LIST () "/" "Normalized" ("OLDNAME" ("NonNormalized"))
S: A0B5 OK CREATE completed

(In the last example, imagine that "NonNormalized" is a non-NFC normalized Unicode mailbox
name and that "Normalized" is its NFC normalized version.)

Note: The interpretation of this example depends on whether "/" was returned as the
hierarchy separator from LIST. If "/" is the hierarchy separator, a new level of
hierarchy named "owatagusiam" with a member called "blurdybloop" is created.
Otherwise, two mailboxes at the same hierarchy level are created.

6.3.5. DELETE Command

Arguments: mailbox name
Responses: ~ OPTIONAL untagged response: LIST

Result: OK- delete completed
NO - delete failure: can't delete mailbox with that name
BAD - command unknown or arguments invalid

The DELETE command permanently removes the mailbox with the given name. A tagged OK
response is returned only if the mailbox has been deleted. It is an error to attempt to delete
INBOX or a mailbox name that does not exist.

The DELETE command MUST NOT remove inferior hierarchical names. For example, if a mailbox
"foo" has an inferior "foo.bar" (assuming "." is the hierarchy delimiter character), removing "foo"
MUST NOT remove "foo.bar". It is an error to attempt to delete a name that has inferior

hierarchical names and also has the \Noselect mailbox name attribute (see the description of the

LIST response (Section 7.3.1) for more details).

Melnikov & Leiba Standards Track Page 38

RFC 9051 IMAP4rev2 August 2021

It is permitted to delete a name that has inferior hierarchical names and does not have the
\Noselect mailbox name attribute. If the server implementation does not permit deleting the
name while inferior hierarchical names exist, then it SHOULD disallow the DELETE command by
returning a tagged NO response. The NO response SHOULD include the HASCHILDREN response
code. Alternatively, the server MAY allow the DELETE command, but it sets the \Noselect mailbox
name attribute for that name.

If the server returns an OK response, all messages in that mailbox are removed by the DELETE
command.

The value of the highest-used unique identifier of the deleted mailbox MUST be preserved so that
a new mailbox created with the same name will not reuse the identifiers of the former
incarnation, unless the new incarnation has a different unique identifier validity value. See the
description of the UID command in Section 6.4.9 for more detail.

If the server decides to convert (normalize) the mailbox name, it SHOULD return an untagged
LIST with the "\NonExistent" attribute and OLDNAME extended data item, with the OLDNAME
value being the supplied mailbox name and the name parameter being the normalized mailbox
name. (See Section 6.3.9.7 for more details.)

Mailboxes deleted in one IMAP session MAY be announced to other IMAP sessions using an
unsolicited LIST response, containing the "\NonExistent" attribute.

Example:

: A682 LIST "" *

: % LIST () "/" blurdybloop
: % LIST (\Noselect) "/" foo
: % LIST () "/" foo/bar

: A682 OK LIST completed

: A683 DELETE blurdybloop

: A683 OK DELETE completed

: A684 DELETE foo

: A684 NO Name "foo" has inferior hierarchical names
: A685 DELETE foo/bar

: A685 OK DELETE Completed

: A686 LIST "" *

: * LIST (\Noselect) "/" foo
: A686 OK LIST completed

: A687 DELETE foo

: A687 OK DELETE Completed

NDOULULOUNLOLOULOULLWLmMO

Melnikov & Leiba Standards Track Page 39

RFC 9051 IMAP4rev2 August 2021

Example:
C: A82 LIST "" =
S: * LIST () "." blurdybloop
S: x LIST () "." foo
S: % LIST () "." foo.bar
S: A82 OK LIST completed
C: A83 DELETE blurdybloop
S: A83 OK DELETE completed
C: A84 DELETE foo
S: A84 OK DELETE Completed
C: A85 LIST "" *
S: x LIST () "." foo.bar
S: A85 OK LIST completed
C: A86 LIST "" %
S: * LIST (\Noselect) "." foo
S: A86 OK LIST completed

6.3.6. RENAME Command

Arguments: existing mailbox name
new mailbox name

Responses: OPTIONAL untagged response: LIST

Result: OK- rename completed
NO - rename failure: can't rename mailbox with that name, can't rename to
mailbox with that name
BAD - command unknown or arguments invalid

The RENAME command changes the name of a mailbox. A tagged OK response is returned only if
the mailbox has been renamed. It is an error to attempt to rename from a mailbox name that
does not exist or to a mailbox name that alrea