Stream: Internet Engineering Task Force (IETF)

RFC: 9173

Category: Standards Track

Published: January 2022

ISSN: 2070-1721

Authors: E.Birrane, Il A White S.Heiner
JHU/APL JHU/APL JHU/APL

RFC 9173
Default Security Contexts for Bundle Protocol
Security (BPSec)

Abstract

This document defines default integrity and confidentiality security contexts that can be used
with Bundle Protocol Security (BPSec) implementations. These security contexts are intended to
be used both for testing the interoperability of BPSec implementations and for providing basic
security operations when no other security contexts are defined or otherwise required for a
network.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at https://www.rfc-editor.org/info/rfc9173.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights
reserved.

Birrane, III, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9173
https://www.rfc-editor.org/info/rfc9173

RFC9173 BPSec Default Security Contexts January 2022

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction
2. Requirements Language
3. Integrity Security Context BIB-HMAC-SHA2
3.1. Overview
3.2. Scope
3.3. Parameters
3.3.1. SHA Variant
3.3.2. Wrapped Key
3.3.3. Integrity Scope Flags

3.3.4. Enumerations

3.4. Results
3.5. Key Considerations
3.6. Security Processing Considerations
3.7. Canonicalization Algorithms
3.8. Processing
3.8.1. Keyed Hash Generation
3.8.2. Keyed Hash Verification

4. Security Context BCB-AES-GCM
4.1. Overview
4.2. Scope
4.3. Parameters
4.3.1. Initialization Vector (IV)
4.3.2. AES Variant
4.3.3. Wrapped Key

Birrane, III, et al. Standards Track Page 2

https://trustee.ietf.org/license-info

RFC9173 BPSec Default Security Contexts January 2022

4.3.4. AAD Scope Flags

4.3.5. Enumerations

4.4. Results
44.1. Authentication Tag

4.4.2. Enumerations

4.5. Key Considerations

4.6. GCM Considerations

4.7. Canonicalization Algorithms
4.7.1. Calculations Related to Ciphertext
4.7.2. Additional Authenticated Data

4.8. Processing
4.8.1. Encryption
4.8.2. Decryption

5. IANA Considerations
5.1. Security Context Identifiers
5.2. Integrity Scope Flags
5.3. AAD Scope Flags

5.4. Guidance for Designated Experts

6. Security Considerations
6.1. Key Management
6.2. Key Handling
6.3. AES GCM
6.4. AES Key Wrap

6.5. Bundle Fragmentation

7. Normative References
Appendix A. Examples
A.l. Example 1 - Simple Integrity
A.1.1. Original Bundle
A.1.2. Security Operation Overview

A.1.3. Block Integrity Block

Birrane, III, et al. Standards Track Page 3

RFC9173 BPSec Default Security Contexts January 2022

A.1.4. Final Bundle

A.2. Example 2 - Simple Confidentiality with Key Wrap
A.2.1. Original Bundle
A.2.2. Security Operation Overview
A.2.3. Block Confidentiality Block
A.2.4. Final Bundle

A.3. Example 3 - Security Blocks from Multiple Sources
A.3.1. Original Bundle
A.3.2. Security Operation Overview
A.3.3. Block Integrity Block
A.34. Block Confidentiality Block
A.3.5. Final Bundle

A.4. Example 4 - Security Blocks with Full Scope
A4.1. Original Bundle
A4.2. Security Operation Overview
A4.3. Block Integrity Block
A4.4. Block Confidentiality Block
A.45. Final Bundle

Appendix B. CDDL Expression
Acknowledgments

Authors' Addresses

1. Introduction

The Bundle Protocol Security (BPSec) specification [RFC9172] provides inter-bundle integrity and

confidentiality operations for networks deploying the Bundle Protocol (BP) [RFC9171]. BPSec

defines BP extension blocks to carry security information produced under the auspices of some

security context.

Birrane, III, et al. Standards Track

Page 4

RFC9173 BPSec Default Security Contexts January 2022

This document defines two security contexts (one for an integrity service and one for a
confidentiality service) for populating BPSec Block Integrity Blocks (BIBs) and Block
Confidentiality Blocks (BCBs). This document assumes familiarity with the concepts and
terminology associated with BP and BPSec, as these security contexts are used with BPSec
security blocks and other BP blocks carried within BP bundles.

These contexts generate information that MUST be encoded using the Concise Binary Object
Representation (CBOR) specification documented in [RFC8949].

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

3. Integrity Security Context BIB-HMAC-SHA2

3.1. Overview

The BIB-HMAC-SHAZ2 security context provides a keyed-hash Message Authentication Code (MAC)
over a set of plaintext information. This context uses the Secure Hash Algorithm 2 (SHA-2)
discussed in [SHS] combined with the Hashed Message Authentication Code (HMAC) keyed hash
discussed in [RFC2104]. The combination of HMAC and SHA-2 as the integrity mechanism for this
security context was selected for two reasons:

1. The use of symmetric keys allows this security context to be used in places where an
asymmetric-key infrastructure (such as a public key infrastructure) might be impractical.

2. The combination HMAC-SHA2 represents a well-supported and well-understood integrity
mechanism with multiple implementations available.

BIB-HMAC-SHAZ2 supports three variants of HMAC-SHA, based on the supported length of the
SHA-2 hash value. These variants correspond to HMAC 256/256, HMAC 384/384, and HMAC 512/512
as defined in Table 7 ("HMAC Algorithm Values") of [RFC8152]. The selection of which variant is
used by this context is provided as a security context parameter.

The output of the HMAC MUST be equal to the size of the SHA2 hashing function: 256 bits for
SHA-256, 384 bits for SHA-384, and 512 bits for SHA-512.

The BIB-HMAC-SHAZ2 security context MUST have the security context identifier specified in

Section 5.1.

3.2. Scope

The scope of BIB-HMAC-SHA2 is the set of information used to produce the plaintext over which a
keyed hash is calculated. This plaintext is termed the "Integrity-Protected Plaintext (IPPT)". The
content of the IPPT is constructed as the concatenation of information whose integrity is being

Birrane, III, et al. Standards Track Page 5

RFC9173 BPSec Default Security Contexts January 2022

preserved from the BIB-HMAC-SHA2 security source to its security acceptor. There are five types
of information that can be used in the generation of the IPPT, based on how broadly the concept
of integrity is being applied. These five types of information, whether they are required, and why
they are important for integrity are discussed as follows.

Security target contents
The contents of the block-type-specific data field of the security target MUST be included in the
IPPT. Including this information protects the security target data and is considered the
minimal, required set of information for an integrity service on the security target.

IPPT scope
The determination of which optional types of information were used when constructing the
IPPT MUST always be included in the IPPT. Including this information ensures that the scope of
the IPPT construction at a security source matches the scope of the IPPT construction at
security verifiers and security acceptors.

Primary block
The primary block identifies a bundle, and once created, the contents of this block are
immutable. Changes to the primary block associated with the security target indicate that the
security target (and BIB) might no longer be in the correct bundle.

For example, if a security target and associated BIB are copied from one bundle to another
bundle, the BIB might still contain a verifiable signature for the security target unless
information associated with the bundle primary block is included in the keyed hash carried by
the BIB.

Including this information in the IPPT protects the integrity of the association of the security
target with a specific bundle.

Other fields of the security target
The other fields of the security target include block identification and processing information.
Changing this information changes how the security target is treated by nodes in the network
even when the "user data" of the security target are otherwise unchanged.

For example, if the block processing control flags of a security target are different at a security
verifier than they were originally set at the security source, then the policy for handling the
security target has been modified.

Including this information in the IPPT protects the integrity of the policy and identification of
the security target data.

Other fields of the BIB
The other fields of the BIB include block identification and processing information. Changing
this information changes how the BIB is treated by nodes in the network, even when other
aspects of the BIB are unchanged.

Birrane, III, et al. Standards Track Page 6

RFC9173 BPSec Default Security Contexts January 2022

For example, if the block processing control flags of the BIB are different at a security verifier
than they were originally set at the security source, then the policy for handling the BIB has
been modified.

Including this information in the IPPT protects the integrity of the policy and identification of
the security service in the bundle.

NOTE: The security context identifier and security context parameters of the
security block are not included in the IPPT because these parameters, by
definition, are required to verify or accept the security service. Successful
verification at security verifiers and security acceptors implies that these
parameters were unchanged since being specified at the security source. This is
the case because keys cannot be reused across security contexts and because the
integrity scope flags used to define the IPPT are included in the IPPT itself.

The scope of the BIB-HMAC-SHA2 security context is configured using an optional security
context parameter.

3.3. Parameters

BIB-HMAC-SHAZ2 can be parameterized to select SHA-2 variants, communicate key information,
and define the scope of the IPPT.

3.3.1. SHA Variant

This optional parameter identifies which variant of the SHA-2 algorithm is to be used in the
generation of the authentication code.

This value MUST be encoded as a CBOR unsigned integer.

Valid values for this parameter are as follows.

Value Description
5 HMAC 256/256 as defined in Table 7 ("HMAC Algorithm Values") of [RFC8152]
6 HMAC 384/384 as defined in Table 7 ("HMAC Algorithm Values") of [RFC8152]

7 HMAC 512/512 as defined in Table 7 ("HMAC Algorithm Values") of [RFC8152]

Table 1: SHA Variant Parameter Values

When not provided, implementations SHOULD assume a value of 6 (indicating use of HMAC
384/384), unless an alternate default is established by local security policy at the security source,
verifiers, or acceptor of this integrity service.

Birrane, III, et al. Standards Track Page 7

RFC9173 BPSec Default Security Contexts January 2022

3.3.2. Wrapped Key

This optional parameter contains the output of the AES key wrap function as defined in
[RFC3394]. Specifically, this parameter holds the ciphertext produced when running this key wrap
algorithm with the input string being the symmetric HMAC key used to generate the security
results present in the security block. The value of this parameter is used as input to the AES key
wrap authenticated decryption function at security verifiers and security acceptors to determine
the symmetric HMAC key needed for the proper validation of the security results in the security
block.

This value MUST be encoded as a CBOR byte string.

If this parameter is not present, then security verifiers and acceptors MUST determine the proper
key as a function of their local BPSec policy and configuration.

3.3.3. Integrity Scope Flags

This optional parameter contains a series of flags that describe what information is to be
included with the block-type-specific data when constructing the IPPT value.

This value MUST be represented as a CBOR unsigned integer, the value of which MUST be
processed as a 16-bit field. The maximum value of this field, as a CBOR unsigned integer, MUST be
65535.

When not provided, implementations SHOULD assume a value of 7 (indicating all assigned fields),
unless an alternate default is established by local security policy at the security source, verifier, or
acceptor of this integrity service.

Implementations MUST set reserved and unassigned bits in this field to 0 when constructing these
flags at a security source. Once set, the value of this field MUST NOT be altered until the security
service is completed at the security acceptor in the network and removed from the bundle.

Bits in this field represent additional information to be included when generating an integrity
signature over the security target. These bits are defined as follows.

Bit 0 (the low-order bit, 0x0001): Include primary block flag
Bit 1 (0x0002): Include target header flag

Bit 2 (0x0004): Include security header flag

Bits 3-7: Reserved

Bits 8-15: Unassigned

Birrane, III, et al. Standards Track Page 8

RFC9173 BPSec Default Security Contexts January 2022

3.3.4. Enumerations

The BIB-HMAC-SHAZ2 security context parameters are listed in Table 2. In this table, the "Parm 1d"
column refers to the expected parameter identifier described in Section 3.10 ("Parameter and
Result Identification") of [RFC9172].

An empty "Default Value" column indicates that the security context parameter does not have a
default value.

ParmId Parm Name CBOREncoding Type Default Value
1 SHA Variant unsigned integer 6
2 Wrapped Key byte string
3 Integrity Scope Flags unsigned integer 7

Table 2: BIB-HMAC-SHAZ Security Context Parameters

3.4. Results

The BIB-HMAC-SHAZ2 security context results are listed in Table 3. In this table, the "Result Id"
column refers to the expected result identifier described in Section 3.10 ("Parameter and Result
Identification") of [RFC9172].

Result Result Name CBOR Encoding Description
Id Type
1 Expected byte string The output of the HMAC calculation at the
HMAC security source.

Table 3: BIB-HMAC-SHAZ2 Security Results

3.5. Key Considerations

HMAC keys used with this context MUST be symmetric and MUST have a key length equal to the
output of the HMAC. For this reason, HMAC key lengths will be integers divisible by 8 bytes, and
special padding-aware AES key wrap algorithms are not needed.

It is assumed that any security verifier or security acceptor performing an integrity verification
can determine the proper HMAC key to be used. Potential sources of the HMAC key include (but
are not limited to) the following:

* Pre-placed keys selected based on local policy.
* Keys extracted from material carried in the BIB.
* Session keys negotiated via a mechanism external to the BIB.

Birrane, III, et al. Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc9172#section-3.10
https://www.rfc-editor.org/rfc/rfc9172#section-3.10
https://www.rfc-editor.org/rfc/rfc9172#section-3.10
https://www.rfc-editor.org/rfc/rfc9172#section-3.10
https://www.rfc-editor.org/rfc/rfc9172#section-3.10
https://www.rfc-editor.org/rfc/rfc9172#section-3.10

RFC9173 BPSec Default Security Contexts January 2022

When an AES Key Wrap (AES-KW) [RFC3394] wrapped Kkey is present in a security block, it is
assumed that security verifiers and security acceptors can independently determine the key
encryption key (KEK) used in the wrapping of the symmetric HMAC key.

As discussed in Section 6 and emphasized here, it is strongly recommended that keys be protected
once generated, both when they are stored and when they are transmitted.

3.6. Security Processing Considerations

An HMAC calculated over the same IPPT with the same key will always have the same value. This
regularity can lead to practical side-channel attacks whereby an attacker could produce known
plaintext, guess at an HMAC tag, and observe the behavior of a verifier. With a modest number of
trials, a side-channel attack could produce an HMAC tag for attacker-provided plaintext without
the attacker ever knowing the HMAC key.

A common method of observing the behavior of a verifier is precise analysis of the timing
associated with comparisons. Therefore, one way to prevent behavior analysis of this type is to
ensure that any comparisons of the supplied and expected authentication tag occur in constant
time.

A constant-time comparison function SHOULD be used for the comparison of authentication tags
by any implementation of this security context. In cases where such a function is difficult or
impossible to use, the impact of side-channel attacks (in general) and timing attacks (specifically)
need to be considered as part of the implementation.

3.7. Canonicalization Algorithms

This section defines the canonicalization algorithm used to prepare the IPPT input to the BIB-
HMAC-SHA2 integrity mechanism. The construction of the IPPT depends on the settings of the
integrity scope flags that can be provided as part of customizing the behavior of this security
context.

In all cases, the canonical form of any portion of an extension block MUST be created as
described in [RFC9172]. The canonicalization algorithms defined in [RFC9172] adhere to the
canonical forms for extension blocks defined in [RFC9171] but resolve ambiguities related to how
values are represented in CBOR.

The IPPT is constructed using the following process. While integrity scope flags might not be
included in the BIB representing the security operation, they MUST be included in the IPPT value
itself.

1. The canonical form of the IPPT starts as the CBOR encoding of the integrity scope flags in
which all unset flags, reserved bits, and unassigned bits have been set to 0. For example, if the
primary block flag, target header flag, and security header flag are each set, then the initial
value of the canonical form of the IPPT will be 0x07.

2.I1f the primary block flag of the integrity scope flags is set to 1 and the security target is not the
bundle's primary block, then a canonical form of the bundle's primary block MUST be
calculated and the result appended to the IPPT.

Birrane, III, et al. Standards Track Page 10

RFC9173 BPSec Default Security Contexts January 2022

3.If the target header flag of the integrity scope flags is set to 1 and the security target is not the
bundle's primary block, then the canonical form of the block type code, block number, and
block processing control flags associated with the security target MUST be calculated and, in
that order, appended to the IPPT.

4. If the security header flag of the integrity scope flags is set to 1, then the canonical form of the
block type code, block number, and block processing control flags associated with the BIB
MUST be calculated and, in that order, appended to the IPPT.

5. The canonical form of the security target MUST be calculated and appended to the IPPT. If the
security target is the primary block, this is the canonical form of the primary block.
Otherwise, this is the canonical form of the block-type-specific data of the security target.

NOTE: When the security target is the bundle's primary block, the canonicalization
steps associated with the primary block flag and the target header flag are skipped.
Skipping primary block flag processing, in this case, avoids adding the bundle's
primary block twice in the IPPT calculation. Skipping target header flag processing,
in this case, is necessary because the primary block of a bundle does not have the
expected elements of a block header such as block number and block processing
control flags.

3.8. Processing

3.8.1. Keyed Hash Generation

During keyed hash generation, two inputs are prepared for the appropriate HMAC/SHA2
algorithm: the HMAC key and the IPPT. These data items MUST be generated as follows.

» The HMAC key MUST have the appropriate length as required by local security policy. The key
can be generated specifically for this integrity service, given as part of local security policy, or
obtained through some other key management mechanism as discussed in Section 3.5.

* Prior to the generation of the IPPT, if a Cyclic Redundancy Check (CRC) value is present for the
target block of the BIB, then that CRC value MUST be removed from the target block. This
involves both removing the CRC value from the target block and setting the CRC type field of
the target block to "no CRC is present."

* Once CRC information is removed, the IPPT MUST be generated as discussed in Section 3.7.
Upon successful hash generation, the following action MUST occur.

* The keyed hash produced by the HMAC/SHA2 variant MUST be added as a security result for
the BIB representing the security operation on this security target, as discussed in Section 3.4.

Finally, the BIB containing information about this security operation MUST be updated as follows.
These operations can occur in any order.

* The security context identifier for the BIB MUST be set to the context identifier for BIB-HMAC-
SHAZ2.

Birrane, III, et al. Standards Track Page 11

RFC9173 BPSec Default Security Contexts January 2022

* Any local flags used to generate the IPPT MUST be placed in the integrity scope flags security
context parameter for the BIB unless these flags are expected to be correctly configured at
security verifiers and acceptors in the network.

* The HMAC key MAY be included as a security context parameter, in which case it MUST be
wrapped using the AES key wrap function as defined in [RFC3394] and the results of the
wrapping added as the wrapped key security context parameter for the BIB.

» The SHA variant used by this security context SHOULD be added as the SHA variant security
context parameter for the BIB if it differs from the default key length. Otherwise, this
parameter MAY be omitted if doing so provides a useful reduction in message sizes.

Problems encountered in the keyed hash generation MUST be processed in accordance with local
BPSec security policy.

3.8.2. Keyed Hash Verification

During keyed hash verification, the input of the security target and an HMAC key are provided to
the appropriate HMAC/SHAZ2 algorithm.

During keyed hash verification, two inputs are prepared for the appropriate HMAC/SHA2
algorithm: the HMAC key and the IPPT. These data items MUST be generated as follows.

» The HMAC key MUST be derived using the wrapped key security context parameter if such a
parameter is included in the security context parameters of the BIB. Otherwise, this key MUST
be derived in accordance with security policy at the verifying node as discussed in Section 3.5.

» The IPPT MUST be generated as discussed in Section 3.7 with the value of integrity scope flags
being taken from the integrity scope flags security context parameter. If the integrity scope
flags parameter is not included in the security context parameters, then these flags MAY be
derived from local security policy.

The calculated HMAC output MUST be compared to the expected HMAC output encoded in the
security results of the BIB for the security target. If the calculated HMAC and expected HMAC are
identical, the verification MUST be considered a success. Otherwise, the verification MUST be
considered a failure.

If the verification fails or otherwise experiences an error or if any needed parameters are
missing, then the verification MUST be treated as failed and processed in accordance with local
security policy.

This security service is removed from the bundle at the security acceptor as required by the BPSec
specification [RFC9172]. If the security acceptor is not the bundle destination and if no other
integrity service is being applied to the target block, then a CRC MUST be included for the target
block. The CRC type, as determined by policy, is set in the target block's CRC type field, and the
corresponding CRC value is added as the CRC field for that block.

Birrane, III, et al. Standards Track Page 12

RFC9173 BPSec Default Security Contexts January 2022

4. Security Context BCB-AES-GCM

4.1. Overview

The BCB-AES-GCM security context replaces the block-type-specific data field of its security target
with ciphertext generated using the Advanced Encryption Standard (AES) cipher operating in
Galois/Counter Mode (GCM) [AES-GCM]. The use of AES-GCM was selected as the cipher suite for
this confidentiality mechanism for several reasons:

1. The selection of a symmetric-key cipher suite allows for relatively smaller keys than
asymmetric-key cipher suites.

2. The selection of a symmetric-key cipher suite allows this security context to be used in places
where an asymmetric-key infrastructure (such as a public key infrastructure) might be
impractical.

3. The use of the Galois/Counter Mode produces ciphertext with the same size as the plaintext
making the replacement of target block information easier as length fields do not need to be
changed.

4. The AES-GCM cipher suite provides authenticated encryption, as required by the BPSec
protocol.

Additionally, the BCB-AES-GCM security context generates an authentication tag based on the
plaintext value of the block-type-specific data and other additional authenticated data (AAD) that
might be specified via parameters to this security context.

This security context supports two variants of AES-GCM, based on the supported length of the
symmetric key. These variants correspond to A128GCM and A256GCM as defined in Table 9
("Algorithm Value for AES-GCM") of [RFC8152].

The BCB-AES-GCM security context MUST have the security context identifier specified in Section
5.1.

4.2. Scope

There are two scopes associated with BCB-AES-GCM: the scope of the confidentiality service and
the scope of the authentication service. The first defines the set of information provided to the
AES-GCM cipher for the purpose of producing ciphertext. The second defines the set of
information used to generate an authentication tag.

The scope of the confidentiality service defines the set of information provided to the AES-GCM
cipher for the purpose of producing ciphertext. This MUST be the full set of plaintext contained in
the block-type-specific data field of the security target.

Birrane, III, et al. Standards Track Page 13

RFC9173 BPSec Default Security Contexts January 2022

The scope of the authentication service defines the set of information used to generate an
authentication tag carried with the security block. This information contains all data protected
by the confidentiality service and the scope flags used to identify other optional information; it
MAY include other information (additional authenticated data), as follows.

Primary block
The primary block identifies a bundle, and once created, the contents of this block are
immutable. Changes to the primary block associated with the security target indicate that the
security target (and BCB) might no longer be in the correct bundle.

For example, if a security target and associated BCB are copied from one bundle to another
bundle, the BCB might still be able to decrypt the security target even though these blocks were
never intended to exist in the copied-to bundle.

Including this information as part of additional authenticated data ensures that the security
target (and security block) appear in the same bundle at the time of decryption as at the time
of encryption.

Other fields of the security target
The other fields of the security target include block identification and processing information.
Changing this information changes how the security target is treated by nodes in the network
even when the "user data" of the security target are otherwise unchanged.

For example, if the block processing control flags of a security target are different at a security
verifier than they were originally set at the security source, then the policy for handling the
security target has been modified.

Including this information as part of additional authenticated data ensures that the ciphertext
in the security target will not be used with a different set of block policy than originally set at
the time of encryption.

Other fields of the BCB
The other fields of the BCB include block identification and processing information. Changing
this information changes how the BCB is treated by nodes in the network, even when other
aspects of the BCB are unchanged.

For example, if the block processing control flags of the BCB are different at a security
acceptor than they were originally set at the security source, then the policy for handling the
BCB has been modified.

Including this information as part of additional authenticated data ensures that the policy
and identification of the security service in the bundle has not changed.

NOTE: The security context identifier and security context parameters of the
security block are not included as additional authenticated data because these
parameters, by definition, are those needed to verify or accept the security
service. Therefore, it is expected that changes to these values would result in

Birrane, III, et al. Standards Track Page 14

RFC9173 BPSec Default Security Contexts January 2022

failures at security verifiers and security acceptors. This is the case because keys
cannot be reused across security contexts and because the AAD scope flags used
to identify the AAD are included in the AAD.

The scope of the BCB-AES-GCM security context is configured using an optional security context
parameter.

4.3. Parameters

BCB-AES-GCM can be parameterized to specify the AES variant, initialization vector, key
information, and identify additional authenticated data.

4.3.1. Initialization Vector (IV)

This optional parameter identifies the initialization vector (IV) used to initialize the AES-GCM
cipher.

The length of the initialization vector, prior to any CBOR encoding, MUST be between 8-16 bytes. A
value of 12 bytes SHOULD be used unless local security policy requires a different length.

This value MUST be encoded as a CBOR byte string.

The initialization vector can have any value, with the caveat that a value MUST NOT be reused for
multiple encryptions using the same encryption key. This value MAY be reused when encrypting
with different keys. For example, if each encryption operation using BCB-AES-GCM uses a newly
generated key, then the same IV can be reused.

4.3.2. AES Variant

This optional parameter identifies the AES variant being used for the AES-GCM encryption, where
the variant is identified by the length of key used.

This value MUST be encoded as a CBOR unsigned integer.

Valid values for this parameter are as follows.

Value Description
1 A128GCM as defined in Table 9 ("Algorithm Value for AES-GCM") of [RFC8152]

3 A256GCM as defined in Table 9 ("Algorithm Value for AES-GCM") of [RFC8152]

Table 4: AES Variant Parameter Values

When not provided, implementations SHOULD assume a value of 3 (indicating use of A256GCM),
unless an alternate default is established by local security policy at the security source, verifier, or
acceptor of this integrity service.

Regardless of the variant, the generated authentication tag MUST always be 128 bits.

Birrane, III, et al. Standards Track Page 15

RFC9173 BPSec Default Security Contexts January 2022

4.3.3. Wrapped Key

This optional parameter contains the output of the AES key wrap function as defined in
[RFC3394]. Specifically, this parameter holds the ciphertext produced when running this key wrap
algorithm with the input string being the symmetric AES key used to generate the security results
present in the security block. The value of this parameter is used as input to the AES key wrap
authenticated decryption function at security verifiers and security acceptors to determine the
symmetric AES key needed for the proper decryption of the security results in the security block.

This value MUST be encoded as a CBOR byte string.

If this parameter is not present, then security verifiers and acceptors MUST determine the proper
key as a function of their local BPSec policy and configuration.

4.3.4. AAD Scope Flags

This optional parameter contains a series of flags that describe what information is to be
included with the block-type-specific data of the security target as part of additional
authenticated data (AAD).

This value MUST be represented as a CBOR unsigned integer, the value of which MUST be
processed as a 16-bit field. The maximum value of this field, as a CBOR unsigned integer, MUST be
65535.

When not provided, implementations SHOULD assume a value of 7 (indicating all assigned fields),
unless an alternate default is established by local security policy at the security source, verifier, or
acceptor of this integrity service.

Implementations MUST set reserved and unassigned bits in this field to 0 when constructing these
flags at a security source. Once set, the value of this field MUST NOT be altered until the security
service is completed at the security acceptor in the network and removed from the bundle.

Bits in this field represent additional information to be included when generating an integrity
signature over the security target. These bits are defined as follows.

Bit 0 (the low-order bit, 0x0001): Include primary block flag
Bit 1 (0x0002): Include target header flag

Bit 2 (0x0004): Include security header flag

Bits 3-7: Reserved

Bits 8-15: Unassigned

Birrane, III, et al. Standards Track Page 16

RFC9173 BPSec Default Security Contexts January 2022

4.3.5. Enumerations

The BCB-AES-GCM security context parameters are listed in Table 5. In this table, the "Parm 1d"
column refers to the expected parameter identifier described in Section 3.10 ("Parameter and
Result Identification") of [RFC9172].

An empty "Default Value" column indicates that the security context parameter does not have a
default value.

ParmId Parm Name CBOR Encoding Type DefaultValue
1 Initialization Vector byte string
2 AES Variant unsigned integer 3
3 Wrapped Key byte string
4 AAD Scope Flags unsigned integer 7

Table 5: BCB-AES-GCM Security Context Parameters

4.4. Results

The BCB-AES-GCM security context produces a single security result carried in the security block:
the authentication tag.

NOTES:

 The ciphertext generated by the cipher suite is not considered a security result as it is stored
in the block-type-specific data field of the security target block. When operating in GCM
mode, AES produces ciphertext of the same size as its plaintext; therefore, no additional logic
is required to handle padding or overflow caused by the encryption in most cases.

o If the authentication tag can be separated from the ciphertext, then the tag MAY be separated
and stored in the authentication tag security result field. Otherwise, the security target block
MUST be resized to accommodate the additional 128 bits of authentication tag included with
the generated ciphertext replacing the block-type-specific data field of the security target
block.

4.4.1. Authentication Tag

The authentication tag is generated by the cipher suite over the security target plaintext input to
the cipher suite as combined with any optional additional authenticated data. This tag is used to
ensure that the plaintext (and important information associated with the plaintext) is
authenticated prior to decryption.

If the authentication tag is included in the ciphertext placed in the security target block-type-
specific data field, then this security result MUST NOT be included in the BCB for that security
target.

Birrane, III, et al. Standards Track Page 17

https://www.rfc-editor.org/rfc/rfc9172#section-3.10
https://www.rfc-editor.org/rfc/rfc9172#section-3.10
https://www.rfc-editor.org/rfc/rfc9172#section-3.10

RFC9173 BPSec Default Security Contexts January 2022

The length of the authentication tag, prior to any CBOR encoding, MUST be 128 bits.
This value MUST be encoded as a CBOR byte string.

4.4.2. Enumerations

The BCB-AES-GCM security context results are listed in Table 6. In this table, the "Result Id"
column refers to the expected result identifier described in Section 3.10 ("Parameter and Result
Identification") of [RFC9172].

ResultId Result Name CBOR Encoding Type

1 Authentication Tag byte string
Table 6: BCB-AES-GCM Security Results

4.5. Key Considerations

Keys used with this context MUST be symmetric and MUST have a key length equal to the key
length defined in the security context parameters or as defined by local security policy at security
verifiers and acceptors. For this reason, content-encrypting key lengths will be integers divisible
by 8 bytes, and special padding-aware AES key wrap algorithms are not needed.

Itis assumed that any security verifier or security acceptor can determine the proper key to be
used. Potential sources of the key include (but are not limited to) the following.

* Pre-placed keys selected based on local policy.
* Keys extracted from material carried in the BCB.
* Session keys negotiated via a mechanism external to the BCB.

When an AES-KW wrapped key is present in a security block, it is assumed that security verifiers
and security acceptors can independently determine the KEK used in the wrapping of the
symmetric AES content-encrypting key.

The security provided by block ciphers is reduced as more data is processed with the same key.
The total number of AES blocks processed with a single key for AES-GCM is recommended to be

less than 254, as described in Appendix B of [AES-GCM].

Additionally, there exist limits on the number of encryptions that can be performed with the same
key. The total number of invocations of the authenticated encryption function with a single key

for AES-GCM is required to not exceed 232, as described in Section 8.3 of [AES-GCM].

As discussed in Section 6 and emphasized here, it is strongly recommended that keys be protected
once generated, both when they are stored and when they are transmitted.

Birrane, III, et al. Standards Track Page 18

https://www.rfc-editor.org/rfc/rfc9172#section-3.10
https://www.rfc-editor.org/rfc/rfc9172#section-3.10
https://www.rfc-editor.org/rfc/rfc9172#section-3.10

RFC9173 BPSec Default Security Contexts January 2022

4.6. GCM Considerations

The GCM cryptographic mode of AES has specific requirements that MUST be followed by
implementers for the secure function of the BCB-AES-GCM security context. While these
requirements are well documented in [AES-GCM], some of them are repeated here for emphasis.

» With the exception of the AES-KW function, the IVs used by the BCB-AES-GCM security context
are considered to be per-invocation IVs. The pairing of a per-invocation IV and a security key
MUST be unique. A per-invocation IV MUST NOT be used with a security key more than one
time. If a per-invocation IV and key pair are repeated, then the GCM implementation is
vulnerable to forgery attacks. Because the loss of integrity protection occurs with even a
single reuse, this situation is often considered to have catastrophic security consequences.
More information regarding the importance of the uniqueness of the IV value can be found
in Appendix A of [AES-GCM].

Methods of generating unique IV values are provided in Section 8 of [AES-GCM]. For example,
one method decomposes the IV value into a fixed field and an invocation field. The fixed field
is a constant value associated with a device, and the invocation field changes on each
invocation (such as by incrementing an integer counter). Implementers SHOULD carefully
read all relevant sections of [AES-GCM] when generating any mechanism to create unique
IVs.

» The AES-KW function used to wrap keys for the security contexts in this document uses a
single, globally constant IV input to the AES cipher operation and thus is distinct from the
aforementioned requirement related to per-invocation IVs.

* While any tag-based authentication mechanism has some likelihood of being forged, this
probability is increased when using AES-GCM. In particular, short tag lengths combined with
very long messages SHOULD be avoided when using this mode. The BCB-AES-GCM security
context requires the use of 128-bit authentication tags at all times. Concerns relating to the
size of authentication tags is discussed in Appendices B and C of [AES-GCM].

* As discussed in Appendix B of [AES-GCM], implementations SHOULD limit the number of
unsuccessful verification attempts for each key to reduce the likelihood of guessing tag
values. This type of check has potential state-keeping issues when AES-KW is used, since an
attacker could cause a large number of keys to be used at least once.

* As discussed in Section 8 ("Security Considerations") of [RFC9172], delay-tolerant networks
have a higher occurrence of replay attacks due to the store-and-forward nature of the
network. Because GCM has no inherent replay attack protection, implementors SHOULD
attempt to detect replay attacks by using mechanisms such as those described in Appendix D
of [AES-GCM].

4.7. Canonicalization Algorithms

This section defines the canonicalization algorithms used to prepare the inputs used to generate
both the ciphertext and the authentication tag.

Birrane, III, et al. Standards Track Page 19

https://www.rfc-editor.org/rfc/rfc9172#section-8
https://www.rfc-editor.org/rfc/rfc9172#section-8

RFC9173 BPSec Default Security Contexts January 2022

In all cases, the canonical form of any portion of an extension block MUST be created as
described in [RFC9172]. The canonicalization algorithms defined in [RFC9172] adhere to the
canonical forms for extension blocks defined in [RFC9171] but resolve ambiguities related to how
values are represented in CBOR.

4.7.1. Calculations Related to Ciphertext

The BCB operates over the block-type-specific data of a block, but the BP always encodes these
data within a single, definite-length CBOR byte string. Therefore, the plaintext used during
encryption MUST be calculated as the value of the block-type-specific data field of the security
target excluding the BP CBOR encoding.

Table 7 shows two CBOR-encoded examples and the plaintext that would be extracted from them.
The first example is an unsigned integer, while the second is a byte string.

CBOR Encoding (Hex) CBOR Part Plaintext Part (Hex)
(Hex)
18ED 18 ED
C24CDEADBEEFDEADBEEFDEADBEEF C24C DEADBEEFDEADBEEFDEADBEEF

Table 7: CBOR Plaintext Extraction Examples

The ciphertext used during decryption MUST be calculated as the single, definite-length CBOR byte
string representing the block-type-specific data field excluding the CBOR byte string identifying
byte and optional CBOR byte string length field.

All other fields of the security target (such as the block type code, block number, block processing
control flags, or any CRC information) MUST NOT be considered as part of encryption or
decryption.

4.7.2. Additional Authenticated Data

The construction of additional authenticated data depends on the AAD scope flags that can be
provided as part of customizing the behavior of this security context.

The canonical form of the AAD input to the BCB-AES-GCM mechanism is constructed using the
following process. While the AAD scope flags might not be included in the BCB representing the
security operation, they MUST be included in the AAD value itself. This process MUST be followed
when generating AAD for either encryption or decryption.

1. The canonical form of the AAD starts as the CBOR encoding of the AAD scope flags in which
all unset flags, reserved bits, and unassigned bits have been set to 0. For example, if the
primary block flag, target header flag, and security header flag are each set, then the initial
value of the canonical form of the AAD will be 0x07.

2.1f the primary block flag of the AAD scope flags is set to 1, then a canonical form of the
bundle's primary block MUST be calculated and the result appended to the AAD.

Birrane, III, et al. Standards Track Page 20

RFC9173 BPSec Default Security Contexts January 2022

3.If the target header flag of the AAD scope flags is set to 1, then the canonical form of the block
type code, block number, and block processing control flags associated with the security
target MUST be calculated and, in that order, appended to the AAD.

4. If the security header flag of the AAD scope flags is set to 1, then the canonical form of the
block type code, block number, and block processing control flags associated with the BIB
MUST be calculated and, in that order, appended to the AAD.

4.8. Processing

4.8.1. Encryption

During encryption, four data elements are prepared for input to the AES-GCM cipher: the
encryption key, the IV, the security target plaintext to be encrypted, and any additional
authenticated data. These data items MUST be generated as follows.

Prior to encryption, if a CRC value is present for the target block, then that CRC value MUST be
removed. This requires removing the CRC field from the target block and setting the CRC type field
of the target block to "no CRC is present.”

* The encryption key MUST have the appropriate length as required by local security policy. The
key might be generated specifically for this encryption, given as part of local security policy,
or obtained through some other key management mechanism as discussed in Section 4.5.

* The IV selected MUST be of the appropriate length. Because replaying an IV in counter mode
voids the confidentiality of all messages encrypted with said IV, this context also requires a
unique IV for every encryption performed with the same key. This means the same key and IV
combination MUST NOT be used more than once.

* The security target plaintext for encryption MUST be generated as discussed in Section 4.7.1.

* Additional authenticated data MUST be generated as discussed in Section 4.7.2, with the value
of AAD scope flags being taken from local security policy.

Upon successful encryption, the following actions MUST occur.

* The ciphertext produced by AES-GCM MUST replace the bytes used to define the plaintext in
the security target block's block-type-specific data field. The block length of the security target
MUST be updated if the generated ciphertext is larger than the plaintext (which can occur
when the authentication tagis included in the ciphertext calculation, as discussed in Section
44).

* The authentication tag calculated by the AES-GCM cipher MAY be added as a security result
for the security target in the BCB holding results for this security operation, in which case it
MUST be processed as described in Section 4.4.

* The authentication tag MUST be included either as a security result in the BCB representing
the security operation or (with the ciphertext) in the security target block-type-specific data
field.

Birrane, III, et al. Standards Track Page 21

RFC9173 BPSec Default Security Contexts January 2022

Finally, the BCB containing information about this security operation MUST be updated as
follows. These operations can occur in any order.

* The security context identifier for the BCB MUST be set to the context identifier for BCB-AES-
GCM.

* The IV input to the cipher MUST be added as the IV security context parameter for the BCB.

* Any local flags used to generate AAD for this cipher MUST be placed in the AAD scope flags
security context parameter for the BCB unless these flags are expected to be correctly
configured at security verifiers and security acceptors in the network.

* The encryption key MAY be included as a security context parameter, in which case it MUST
be wrapped using the AES key wrap function as defined in [RFC3394] and the results of the
wrapping added as the wrapped key security context parameter for the BCB.

» The AES variant used by this security context SHOULD be added as the AES variant security
context parameter for the BCB if it differs from the default key length. Otherwise, this
parameter MAY be omitted if doing so provides a useful reduction in message sizes.

Problems encountered in the encryption MUST be processed in accordance with local security
policy. This MAY include restoring a CRC value removed from the target block prior to encryption,
if the target block is allowed to be transmitted after an encryption error.

4.8.2. Decryption

During decryption, five data elements are prepared for input to the AES-GCM cipher: the
decryption key, the IV, the security target ciphertext to be decrypted, any additional authenticated
data, and the authentication tag generated from the original encryption. These data items MUST
be generated as follows.

* The decryption key MUST be derived using the wrapped key security context parameter if
such a parameter is included in the security context parameters of the BCB. Otherwise, this
key MUST be derived in accordance with local security policy at the decrypting node as
discussed in Section 4.5.

» The IV MUST be set to the value of the IV security context parameter included in the BCB. If
the IV parameter is not included as a security context parameter, an IV MAY be derived as a
function of local security policy and other BCB contents, or a lack of an IV security context
parameter in the BCB MAY be treated as an error by the decrypting node.

* The security target ciphertext for decryption MUST be generated as discussed in Section 4.7.1.

» Additional authenticated data MUST be generated as discussed in Section 4.7.2 with the value
of AAD scope flags being taken from the AAD scope flags security context parameter. If the
AAD scope flags parameter is not included in the security context parameters, then these
flags MAY be derived from local security policy in cases where the set of such flags is
determinable in the network.

» The authentication tag MUST be present either as a security result in the BCB representing the
security operation or (with the ciphertext) in the security target block-type-specific data field.

Birrane, III, et al. Standards Track Page 22

RFC9173 BPSec Default Security Contexts January 2022

Upon successful decryption, the following action MUST occur.

* The plaintext produced by AES-GCM MUST replace the bytes used to define the ciphertext in
the security target block's block-type-specific data field. Any changes to the security target
block length field MUST be corrected in cases where the plaintext has a different length than
the replaced ciphertext.

If the security acceptor is not the bundle destination and if no other integrity or confidentiality
service is being applied to the target block, then a CRC MUST be included for the target block. The
CRC type, as determined by policy, is set in the target block's CRC type field and the corresponding
CRCvalue is added as the CRC field for that block.

If the ciphertext fails to authenticate, if any needed parameters are missing, or if there are other
problems in the decryption, then the decryption MUST be treated as failed and processed in
accordance with local security policy.

5. IANA Considerations

5.1. Security Context Identifiers

This specification allocates two security context identifiers from the "BPSec Security Context
Identifiers" registry defined in [RFC9172].

Value Description Reference
1 BIB-HMAC-SHA2 RFC9173

2 BCB-AES-GCM RFC9173

Table 8: Additional Entries for the BPSec
Security Context Identifiers Registry

5.2. Integrity Scope Flags

The BIB-HMAC-SHAZ2 security context has an Integrity Scope Flags field for which IANA has
created and now maintains a new registry named "BPSec BIB-HMAC-SHA2 Integrity Scope Flags"
on the "Bundle Protocol" registry page. Table 9 shows the initial values for this registry.

The registration policy for this registry is Specification Required [RFC8126].

The value range is unsigned 16-bit integer.

Bit Position (right toleft) Description Reference
0 Include primary block flag RFC9173
1 Include target header flag RFC9173

Birrane, III, et al. Standards Track Page 23

RFC9173 BPSec Default Security Contexts January 2022

Bit Position (right to left) Description Reference
2 Include security header flag RFC 9173
37 Reserved RFC9173
8-15 Unassigned

Table 9: BPSec BIB-HMAC-SHAZ2 Integrity Scope Flags Registry

5.3. AAD Scope Flags

The BCB-AES-GCM security context has an AAD Scope Flags field for which IANA has created and
now maintains a new registry named "BPSec BCB-AES-GCM AAD Scope Flags" on the "Bundle
Protocol" registry page. Table 10 shows the initial values for this registry.

The registration policy for this registry is Specification Required.

The value range is unsigned 16-bit integer.

Bit Position (right to left) Description Reference
0 Include primary block flag RFC9173
1 Include target header flag RFC9173
2 Include security header flag RFC 9173
3-7 Reserved RFC9173
8-15 Unassigned

Table 10: BPSec BCB-AES-GCM AAD Scope Flags Registry

5.4. Guidance for Designated Experts

New assignments within the "BPSec BIB-HMAC-SHA2 Integrity Scope Flags" and "BPSec BCB-AES-
GCM AAD Scope Flags" registries require review by a Designated Expert (DE). This section
provides guidance to the DE when performing their reviews. Specifically, a DE is expected to
perform the following activities.

* Ascertain the existence of suitable documentation (a specification) as described in [RFC8126]
and verify that the document is permanently and publicly available.

* Ensure that any changes to the "BPSec BIB-HMAC-SHA2 Integrity Scope Flags" registry clearly
state how new assignments interact with existing flags and how the inclusion of new
assignments affects the construction of the IPPT value.

* Ensure that any changes to the "BPSec BCB-AES-GCM AAD Scope Flags" registry clearly state
how new assignments interact with existing flags and how the inclusion of new assignments
affects the construction of the AAD input to the BCB-AES-GCM mechanism.

Birrane, III, et al. Standards Track Page 24

RFC9173 BPSec Default Security Contexts January 2022

* Ensure that any processing changes proposed with new assignments do not alter any
required behavior in this specification.

6. Security Considerations

Security considerations specific to a single security context are provided in the description of that
context (see Sections 3 and 4). This section discusses security considerations that should be
evaluated by implementers of any security context described in this document. Considerations
can also be found in documents listed as normative references and should also be reviewed by
security context implementors.

6.1. Key Management

The delayed and disrupted nature of Delay-Tolerant Networking (DTN) complicates the process of
key management because there might not be reliable, timely, round-trip exchange between
security sources, security verifiers, and security acceptors in the network. This is true when there
is a substantial signal propagation delay between nodes, when nodes are in a highly challenged
communications environment, and when nodes do not support bidirectional communication.

In these environments, key establishment protocols that rely on round-trip information
exchange might not converge on a shared secret in a timely manner (or at all). Also, key
revocation or key verification mechanisms that rely on access to a centralized authority (such as
a certificate authority) might similarly fail in the stressing conditions of DTN.

For these reasons, the default security contexts described in this document rely on symmetric-key
cryptographic mechanisms because asymmetric-key infrastructure (such as a public key
infrastructure) might be impractical in this environment.

BPSec assumes that "key management is handled as a separate part of network management"
[RFC9172]. This assumption is also made by the security contexts defined in this document, which
do not define new protocols for key derivation, exchange of KEKs, revocation of existing keys, or
the security configuration or policy used to select certain keys for certain security operations.

Nodes using these security contexts need to perform the following kinds of activities,
independent of the construction, transmission, and processing of BPSec security blocks.

* Establish shared KEKs with other nodes in the network using an out-of-band mechanism. This
might include pre-sharing of KEKs or the use of older key establishment mechanisms prior to
the exchange of BPSec security blocks.

* Determine when a key is considered exhausted and no longer to be used in the generation,
verification, or acceptance of a security block.

* Determine when a key is considered invalid and no longer to be used in the generation,
verification, or acceptance of a security block. Such revocations can be based on a variety of
mechanisms, including local security policy, time relative to the generation or use of the key,
or other mechanisms specified through network management.

Birrane, III, et al. Standards Track Page 25

RFC9173 BPSec Default Security Contexts January 2022

* Determine, through an out-of-band mechanism such as local security policy, what keys are to
be used for what security blocks. This includes the selection of which key should be used in the
evaluation of a security block received by a security verifier or a security acceptor.

The failure to provide effective key management techniques appropriate for the operational
networking environment can result in the compromise of those unmanaged keys and the loss of
security services in the network.

6.2. Key Handling
Once generated, keys should be handled as follows.

o [t is strongly RECOMMENDED that implementations protect keys both when they are stored
and when they are transmitted.

* In the event that a key is compromised, any security operations using a security context
associated with that key SHOULD also be considered compromised. This means that the BIB-
HMAC-SHAZ2 security context SHOULD NOT be treated as providing integrity when used with a
compromised key, and BCB-AES-GCM SHOULD NOT be treated as providing confidentiality
when used with a compromised key.

» The same key, whether a KEK or a wrapped key, MUST NOT be used for different algorithms as
doing so might leak information about the key.

* A KEK MUST NOT be used to encrypt keys for different security contexts. Any KEK used by a
security context defined in this document MUST only be used to wrap keys associated with
security operations using that security context. This means that a compliant security source
would not use the same KEK to wrap keys for both the BIB-HMAC-SHA2 and BCB-AES-GCM
security contexts. Similarly, any compliant security verifier or security acceptor would not
use the same KEK to unwrap keys for different security contexts.

6.3. AES GCM

There are a significant number of considerations related to the use of the GCM mode of AES to
provide a confidentiality service. These considerations are provided in Section 4.6 as part of the
documentation of the BCB-AES-GCM security context.

The length of the ciphertext produced by the GCM mode of AES will be equal to the length of the
plaintext input to the cipher suite. The authentication tag also produced by this cipher suite is
separate from the ciphertext. However, it should be noted that implementations of the AES-GCM
cipher suite might not separate the concept of ciphertext and authentication tag in their
Application Programming Interface (API).

Implementations of the BCB-AES-GCM security context can either keep the length of the target
block unchanged by holding the authentication tag in a BCB security result or alter the length of
the target block by including the authentication tag with the ciphertext replacing the block-type-
specific data field of the target block. Implementations MAY use the authentication tag security
result in cases where keeping target block length unchanged is an important processing concern.
In all cases, the ciphertext and authentication tag MUST be processed in accordance with the API
of the AES-GCM cipher suites at the security source and security acceptor.

Birrane, III, et al. Standards Track Page 26

RFC9173 BPSec Default Security Contexts January 2022

6.4. AES Key Wrap

The AES-KW algorithm used by the security contexts in this document does not use a per-
invocation initialization vector and does not require any key padding. Key padding is not needed
because wrapped key