Net wor k Wor ki ng Group R Braden
Request for Comments: 1644]
Cat egory: Experi nental July 1994

T/ TCP -- TCP Extensions for Transactions
Functi onal Specification

Status of this Meno
This meno describes an Experinental Protocol for the Internet
community, and requests discussion and suggestions for inprovenents.
It does not specify an Internet Standard. Distribution is unlinited.
Abstract
This meno specifies T/TCP, an experinental TCP extension for
efficient transaction-oriented (request/response) service. This
backwar ds- conpati bl e extension could fill the gap between the current
connection-oriented TCP and the datagram based UDP.

This work was supported in part by the National Science Foundation
under Grant Nunber NCR-8922231.

Tabl e of Contents

1. INTRODUCTI ON .ot e e e e e e e e e e 2
2. OVERVI EW . .o 3
2.1 Bypassing the Three-Way Handshake 4
2.2 Transaction SEQUENCES v ittt e 6
2.3 Protocol CorreCtness 8
2.4 Truncating TIME-VWAIT State 12
2.5 Transition to Standard TCP Qperation 14
3. FUNCTIONAL SPECIFI CATI ON . .ottt e 17
3.1 Data StrUCtUIresS e e e 17
3.2 NeW TCP OPtiONS .. v it e e e e e e e e 17
3.3 Connection States i 19
3.4 T/TCP Processing Rules i 25
3.5 User Interface i 28
4., I MPLEMENTATI ON | SSUESot e e e e 30
4.1 RFC 1323 EXtENSI ONS . ..ottt e e 30
4.2 Mninmal Packet SeqUENCE 31
4.3 RTT Measur emBNt e e e e e e 31
4.4 Cache Inplementation i, 32
4.5 CPU Performance e 32
4.6 Pre-SYN QUeEUE ... 33
6. ACKNOWLEDGVENTS . .. e e e e e 34
7. REFERENCES e e 34
APPENDI X A, ALGORI THM SUMMARY e e e e e e 35

Br aden [Page 1]

RFC 1644 Transacti on/ TCP July 1994

Security Considerati ONS e 38
AUt hor’ s AdAr €SS e 38

1. | NTRODUCTI ON

TCP was designed to around the virtual circuit nodel, to support
stream ng of data. Another conmon node of comunication is a
client-server interaction, a request nessage followed by a response
nmessage. The request/response paradigmis used by application-Iayer
protocol s that inplenent transaction processing or renote procedure
calls, as well as by a nunber of network control and managenent
protocols (e.g., DNS and SNWP). Currently, nmany |Internet user
prograns that need request/response conmmuni cati on use UDP, and when
they require transport protocol functions such as reliable delivery
they must effectively build their own private transport protocol at
the application | ayer.

Request/response, or "transaction-oriented", conmunication has the
foll owi ng features:

(a) The fundanmental interaction is a request followed by a response.
(b) An explicit open or close phase may inmpose excessive over head.

(c) At-nopbst-once senmantics is required; that is, a transaction nust
not be "replayed" as the result of a duplicate request packet.

(d) The minimumtransaction |latency for a client should be RTT +
SPT, where RTT is the round-trip tine and SPT is the server
processing tine.

(e) In favorable circunstances, a reliable request/response
handshake shoul d be achievable with exactly one packet in each
direction.

This meno concerns T/ TCP, an backwards-conpati ble extension of TCP to
provide efficient transaction-oriented service in addition to
virtual-circuit service. T/TCP provides all the features |isted
above, except for (e); the m ni mum exchange for T/TCP is three
segment s.

In this neno, we use the term"transaction" for an el enentary
request/response packet sequence. This is not intended to inply any
of the senmantics often associated with application-layer transaction
processing, |like 3-phase conmits. It is expected that T/ TCP can be
used as the transport |ayer underlying such an application-|ayer
service, but the semantics of T/TCP is limted to transport-1|ayer
services such as reliable, ordered delivery and at-nopst-once

Br aden [Page 2]

RFC 1644 Transacti on/ TCP July 1994

operation.

An earlier nemo [RFC-1379] presented the concepts involved in T/ TCP
However, the real-world useful ness of these ideas depends upon
practical issues like inplenentation conplexity and performance. To
hel p expl ore these issues, this nmeno presents a functiona
specification for a particular enbodi nent of the ideas presented in
RFC-1379. However, the specific algorithms in this neno represent a
| ater evolution than RFC-1379. |n particular, Appendix A in RFC 1379
explained the difficulties in truncating TIME-WAIT state. However,
experience with an inplenentation of the RFC-1379 algorithns in a
wor kstation |ater showed that accunmulation of TCB's in TIME-WAI T
state is an intolerable problen this necessity led to a sinple
solution for truncating TIME-WAIT state, described in this neno.

Section 2 introduces the T/ TCP extensions, and section 3 contains the
compl ete specification of T/TCP. Section 4 discusses sone

i mpl enent ati on i ssues, and Appendi x A contains an algorithnic
summary. This docunent assunes fanmiliarity with the standard TCP
speci fication [STD-007].

2. OVERVI EW

The TCP protocol is highly symmetric between the two ends of a
connection. This symmetry is not lost in T/TCP;, for exanple, T/ TCP
supports TCP's synmetric sinultaneous open from both sides (Section
2.3 below). However, transaction sequences use T/TCP in a highly
unsymetrical manner. It is convenient to use the terns "client
host" and "server host" for the host that initiates a connection and
the host that responds, respectively.

The goal of T/TCP is to allow each transaction, i.e., each
request/response sequence, to be efficiently performed as a single

i ncarnation of a TCP connection. Standard TCP inposes two
performance problens for transaction-oriented comunication. First,
a TCP connection is opened with a "3-way handshake", which nust
conpl ete successfully before data can be transferred. The 3-way
handshake adds an extra RTT (round trip tinme) to the latency of a
transacti on.

The second performance problemis that closing a TCP connecti on

| eaves one or both ends in TIME-WAIT state for a tine 2*MSL, where
ML is the maxi mum segnent lifetinme (defined to be 120 seconds).
TIME-WAIT state severely linits the rate of successive transactions
bet ween the sane (host,port) pair, since a new incarnation of the
connection cannot be opened until the TIME-WAIT del ay expires. RFC
1379 expl ained why the alternative approach, using a different user
port for each transaction between a pair of hosts, also linmts the

Br aden [Page 3]

RFC 1644 Transacti on/ TCP July 1994

transaction rate: (1) the 16-bit port space limts the rate to
2**16/ 240 transacti ons per second, and (2) nore practically, an
excessi ve amount of kernel space would be occupied by TCP state
bl ocks in TIME-WAIT state [RFC- 1379].

T/ TCP sol ves these two performance problens for transactions, by (1)
bypassi ng the 3-way handshake (3WHS) and (2) shortening the delay in
TIME-VWAI T state.

2.1 Bypassing the Three-Way Handshake

T/ TCP introduces a 32-bit incarnation nunmber, called a "connection
count" (CC), that is carried in a TCP option in each segnent. A
distinct CC value is assigned to each direction of an open
connection. A T/TCP inplenentati on assigns nonotonically

i ncreasing CC values to successive connections that it opens
actively or passively.

T/ TCP uses the nonotonic property of CC values in initial <SYN>
segrments to bypass the 3WHS, using a nmechanismthat we call TCP
Accel erated Open (TAO . Under the TAO nmechani sm a host caches a
smal | amount of state per renote host. Specifically, a T/ TCP host
that is acting as a server keeps a cache containing the last valid
CC value that it has received fromeach different client host. |If
an initial <SYN> segnent (i.e., a segnent containing a SYN bit but
no ACK bit) froma particular client host carries a CC val ue

| arger than the correspondi ng cached val ue, the nonotonic property
of CC s ensures that the <SYN> segnment nust be new and can
therefore be accepted i mediately. Oherw se, the server host
does not know whet her the <SYN> segnent is an old duplicate or was
sinmply delivered out of order; it therefore executes a normal 3WHS
to validate the <SYN>. Thus, the TAO mechani sm provi des an
optimzation, with the normal TCP nmechani smas a fall back

The CC value carried in non-<SYN> segnents is used to protect
agai nst old duplicate segnents fromearlier incarnations of the
same connection (we call such segnents ’'antique duplicates’ for
short). In the case of short connections (e.g., transactions),
these CC values allow TIME-WAIT state delay to be safely discuss
in Section 2.3.

T/ TCP defines three new TCP options, each of which carries one
32-bit CC value. These options are naned CC, CC. NEW and CC. ECHO.
The CC option is normally used; CC. NEWand CC. ECHO have speci al
functions, as foll ows.

Br aden [Page 4]

RFC 16

Br aden

44 Transacti on/ TCP July 1994

(a) CC NEW

Correctness of the TAO nechanismrequires that clients
generate nonotonically increasing CC values for successive
connection initiations. These values can be generated using
a sinple global counter. There are certain circunstances
(discussed below in Section 2.2) when the client knows that
nmonotonicity may be violated; in this case, it sends a CC NEW
rather than a CC option in the initial <SYN> segnent.

Recei ving a CC. NEW causes the server to invalidate its cache
entry and do a 3VHS

(b) CC. ECHO

When a server host sends a <SYN, ACK> segnent, it echoes the
connection count fromthe initial <SYN> in a CC ECHO option
which is used by the client host to validate the <SYN, ACK>
segnment .

Figure 1 illustrates the TAO nechani sm bypassing a 3WHS. The
cached CC val ues, denoted by cache. CJ host], are shown on each
side. The server host conpares the new CC value x in segment #1
agai nst x0, its cached value for client host A, this conparison is
called the "TAO test". Since x > x0, the <SYN> nust be new and
can be accepted inmediately; the data in the segnent can therefore
be delivered to the user process B, and the cached value is
updated. If the TAOtest failed (x <= x0), the server host would
do a normal three-way handshake to validate the <SYN> segnent, but
the cache woul d not be updat ed.

[Page 5]

RFC 16

2.2

Br aden

44 Transacti on/ TCP July 1994

TCP A (dient) TCP B (Server)
cache. CC A]
Y
[x0]
#1 --> <SYN, datal, CC=x> --> (TAOtest K (x > x0) =>

dat al- >user B and
cache. CC Al = x;)

[x]
#2 <-- <SYN, ACK(datal), data2, CC=y, CC. ECHO=x> <--
(dat a2- >user_A;)

Figure 1. TAO Three-Way Handshake i s Bypassed

The CC value x is echoed in a CC. ECHO option in the <SYN, ACK>
segnment (#2); the client side uses this option to validate the
segnment. Since segnent #2 is valid, its data2 is delivered to the
client user process. Segnent #2 also carries B's CC value; this
is used by Ato validate non-SYN segnents from B, as explained in
Section 2.4.

| mpl enenting the T/ TCP extensions expands the connection control
bl ock (TCB) to include the two CC values for the connection; call
t hese vari abl es TCB. CCsend and TCB. CCrecv (or CCsend, CCrecv for
short). For exanple, the sequence shown in Figure 1 sets

TCB. CCsend = x and TCB.CCrecv = y at host A and vice versa at
host B. Any segnment that is received with a CC option contai ni ng
a value SEG CC different from TCB. CCsend will be rejected as an
antique duplicate.

Transacti on Sequences

T/ TCP applies the TAO nechani sm described in the previous section
to performa transacti on sequence. Figure 2 shows a nini nmal
transacti on, when the request and response data can each fit into
a single segnent. This requires three segnents and conpletes in
one round-trip time (RTT). |If the TAO test had failed on segnent
#1, B woul d have queued datal and the FIN for |ater processing,
and then it would have returned a <SYN, ACK> segnment to A to
perform a normal 3WHS.

[Page 6]

RFC 1644 Transacti on/ TCP July 1994

#1

#2
(

#3

Br aden

TCP A (dient) TCP B (Server)
CLOSED LI STEN
SYN- SENT* --> <SYN, dat al, FI N, CC=x> --> CLOSE- WAI T*

(TAO test OK)
(dat al- >user_B)

<-- LAST- ACK*
TIME-WAIT <-- <SYN, ACK(FIN), dat a2, FI N, CC=y, CC. ECHO=x>
dat a2- >user_A)

TIME-VWAI T --> <ACK(FIN), CC=x> --> CLOSED

(timeout)
CLCSED

Figure 2: Mnimal T/ TCP Transaction Sequence

T/ TCP extensions require additional connection states, e.g., the
SYN- SENT*, CLOSE-WAI T*, and LAST- ACK* states shown in Figure 2.
Section 3.3 describes these new connection states.

To obtain the nmininml 3-segnent sequence shown in Figure 2, the
server host nust del ay acknow edgi ng segnent #1 so the response
may be pi ggy-backed on segnent #2. |If the application takes

| onger than this delay to conpute the response, the normal TCP
retransm ssion nechanismin TCP B will send an acknow edgnent to
forestall a retransnmission fromTCP A. Figure 3 shows an exanpl e
of a slow server application. Although the sequence in Figure 3
does contain a 3-way handshake, the TAO nechani sm has al |l owed the
request data to be accepted i mediately, so that the client stil
sees the mnimum | at ency.

[Page 7]

RFC 1644 Transacti on/ TCP July 1994

TCP A (dient) TCP B (Server)
CLOSED LI STEN
#1 SYN- SENT* --> <SYN, dat al, FI N, CC=x> --> CLOSE- WAI T*

(TAO test OK =>
dat al- >user_B)

(timeout)
#2 FINWAIT-1 <-- <SYN ACK(FI N, CC=y, CC. ECHO=x> <-- CLOSE- WAl T*
#3 FINWAIT-1 --> <ACK(SYN), FI N, CC=x> --> CLOSE-WAI' T
#4 TIME-WAIT <-- <ACK(FIN), data2, FIN, CC=y> <-- LAST- ACK
(dat a2- >user _A)
#5 TIMEWAIT --> <ACK(FI N, CC=x> --> CLOSED
(timeout)
CLOSED

Fi gure 3: Acknow edgnent Timeout in Server

2.3 Protocol Correctness

This section fills in nore details of the TAO nechani sm and
provi des an informal sketch of why the T/ TCP protocol works.

CC values are 32-bit integers. The TAO test requires the sane
kind of modular arithmetic that is used to conpare two TCP
sequence nunbers. W assune that the boundary between y < z and z
<y for two CC values y and z occurs when they differ by 2**31
i.e., by half the total CC space.

The essential requirenent for correctness of T/TCP is this:

CC val ues nust advance at a rate slower than 2**31 [R1]
counts per 2*MSL

where MSL denotes the maxi num segnent lifetime in the Internet.
The requirenent [R1] is easily met with a 32-bit CC. For exanpl e,
it wll allow 10**6 transactions per second with the very libera
ML of 1000 seconds [RFC-1379]. This is well in excess of the

Br aden [Page 8]

RFC 1644 Transacti on/ TCP July 1994

transaction rates achievable with current operating systenms and
network | atency.

Assume for the present that successive connections fromclient A
to server B contain only nmonotonically increasing CC values. That
is, if x(i) and x(i+1) are CC values carried in tw successive
initial <SYN> segnents fromthe same host, then x(i+1) > x(i).
Assumi ng the requirenment [R1l], the CC space cannot wap within the
range of segnents that can be outstanding at one tine. Therefore,
t hose successive <SYN> segnents from a given host that have not
exceeded their MSL nust contain an ordered set of CC val ues:

X(1) < x(2) <x(3) ... <x(n),

where the nodul ar conpari sons have been repl aced by sinple
arithmetic conparisons. Here x(n) is the npost recent acceptable
<SYN>, which is cached by the server. |If the server host receives
a <SYN> segnent containing a CC option with value y where y >
x(n), that <SYN> nmust be newer; an antique duplicate SYNwith CC
val ue greater than x(n) nust have exceeded its MSL and vani shed
Hence, nonotoni c CC val ues and the TAO test prevent erroneous
replay of antique <SYN>s.

There are two possible reasons for a client to generate non-
nmonot oni ¢ CC val ues: (a) the client nay have crashed and
restarted, causing the generated CC val ues to junp backwards; or
(b) the generated CC val ues nay have w apped around the finite
space. Waparound may occur because CC generation is global to
all connections. Suppose that host A sends a transaction to B
then sends nore than 2**31 transactions to other hosts, and
finally sends another transaction to B. FromB's viewpoint, CC
wi Il have junped backward relative to its cached val ue.

In either of these two cases, the server may see the CC val ue junp
backwards only after an interval of at |east MSL since the |ast

<SYN> segnent fromthe sane client host. |In case (a), client host
restart, this is because T/ TCP retains TCP's explicit "Quiet Tinme"
of an MSL interval [STD-007]. In case (b). wap around, [R1]

ensures that a tine of at |east MSL nust have passed before the CC
space waps around. Hence, there is no possibility that a TAO
test will succeed erroneously due to either cause of non-
nonotonicity; i.e., there is no chance of replays due to TAQO

However, although CC val ues junpi ng backwards will not cause an
error, it may cause a performance degradati on due to unnecessary
3WHS's. This results fromthe generated CC val ues junping
backwards t hrough approximately half their range, so that all
succeeding TAOtests fail until the generated CC val ues catch up

Br aden [Page 9]

RFC 16

Br aden

44 Transacti on/ TCP July 1994

to the cached value. To avoid this degradation, a client host
sends a CC. NEWoption instead of a CC option in the case of either
systemrestart or CC waparound. Receiving CC.NEWforces a 3WHS
but when this 3WHS conpl etes successfully the server cache is
updated to the new CC value. To detect CC w aparound, the client
nmust cache the last CC value it sent to each server. |t therefore
mai ntai ns cache. CCsent[B] for each server B. |If this cached val ue
is undefined or if it is larger than the next CC val ue generated
at the client, then the client sends a CC. NEWinstead of a CC
option in the next SYN segment.

This is illustrated in Figure 4, which shows the scenario for the
first transaction fromA to B after the client host A has crashed
and recovered. A simlar sequence occurs if x is not greater than
cache. CCsent[B], i.e., if there is a waparound of the generated
CC val ues. Because segnment #1 contains a CC. NEWoption, the
server host invalidates the cache entry and does a 3VWHS; however,
it still sets B's TCB.CCrecv for this connection to x. TCP B uses
this CCrecv value to validate the <ACK> segnment (#3) that

conpl etes the 3WHS. Receipt of this segnent updates cache. CJ A],
since the cache entry was previously undefined. (If a 3WHS al ways
updat ed the cache, then out-of-order SYN segnents could cause the
cached value to junp backwards, possibly allow ng replays).
Finally, the CC ECHO option in the <SYN, ACK> segnent #2 defi nes
A's cache. CCsent entry.

This al gorithm del ays updating cache. CCsent[] until the <SYN> has
been ACK d. This allows the undefined cache. CCsent value to used
as a a "first-time switch" to reliable resynchronization of the
cached value at the server after a crash or w aparound.

When we use the term "cache", we inply that the value can be
di scarded at any tinme wi thout introducing erroneous behavior
al though it may degrade perfornance.

(a) |If a server host receives an initial <SYN> fromclient A but
has no cached val ue cache. CqQ A], the server sinply forces a
3VWHS to validate the <SYN> segnent.

(b) If a client host has no cached val ue cache. CCsent[B] when it
needs to send an initial <SYN> segnment, the client sinply
sends a CC. NEWoption in the segnent. This forces a 3VWHS at
the server.

[Page 10]

RFC 1644 Transacti on/ TCP July 1994

TCP A (dient) TCP B (Server)
cache. CCsent [B] cache. CC A]
Y Y
(Crash and restart)
[2?2] [xO0]
#1 --> <SYN, datal, CC. NEWEX> --> (inval i date cache;

queue dat al;
3-way handshake)

[2?2] [2?2]
#2 <-- <SYN, ACK(datal), CC=y, CC. ECHO=x> <--
(cache. CCsent [B] = x;)

[x] [2?2]

#3 --> <ACK(SYN), CC=x> --> dat al->user _B;
cache. CC Al = x;

[x] [x]

Figure 4. dCient Host Restarting

So far, we have considered only correctness of the TAO mechani sm
for bypassing the 3WHS. W nust al so protect a connection agai nst
antique duplicate non-SYN segnents. |In standard TCP, such
protection is one of the functions of the TIME-WAIT state del ay.
(The other function is the TCP full-duplex close semantics, which
we need to preserve; that is discussed belowin Section 2.5). In
order to achieve a high rate of transaction processing, it nust be
possible to truncate this TIME-WAIT state delay wi thout exposure
to antique duplicate segnents [RFC-1379].

For short connections (e.g., transactions), the CC val ues assi gned
to each direction of the connection can be used to protect against
antique duplicate non-SYN segnents. Here we define "short" as a
duration |l ess than MSL. Suppose that there is a connection that
uses the CC val ues TCB.CCsend = x and TCB.CCrecv = y. By the
requirenent [R1], neither x nor y can be reused for a new
connection fromthe sane renote host for a time at |east 2*MSL.

If the connection has been in existence for a tine |less than MSL,
then its CC values will not be reused for a period that exceeds
M5L, and therefore all antique duplicates with that CC val ue nust
vani sh before it is reused. Thus, for "short" connections we can

Br aden [Page 11]

RFC 1644 Transacti on/ TCP July 1994

guard agai nst anti que non- SYN segnents by sinply checking the CC
val ue in the segnment againsts TCB.CCrecv. Note that this check
does not use the nonotonic property of the CC values, only that
they not cycle in less than 2*MSL. Again, the quiet tinme at
systemrestart protects against errors due to crash with | oss of
state.

If the connection duration exceeds MSL, safety fromold duplicates
still requires a TIME-WAIT delay of 2*MSL. Thus, truncation of
TIME-VWAIT state is only possible for short connections. (This
probl em has al so been noticed by Shankar and Lee [ShankarLee93]).
This difference in behavior for long and for short connections
does create a slightly conpl ex service nodel for applications
using T/TCP. An application has two different strategies for
mul ti pl e connections. For "short" connections, it should use a
fixed port pair and use the T/ TCP mechanismto get rapid and
efficient transaction processing. For connections whose durations
are of the order of MSL or longer, it should use a different user
port for each successive connection, as is the current practice
with unnodified TCP. The latter strategy will cause excessive
overhead (due to TCB's in TIME-WAIT state) if it is applied to

hi gh-frequency short connections. [|f an application nmakes the
wrong choice, its attenpt to open a new connection nmay fail with a
"busy" error. |If connection durations nmay range between | ong and

short, an application nay have to be able to switch strategies
when one fails.

2.4 Truncating TIME-WAIT State

Truncation of TIME-WAIT state is necessary to achieve high
transaction rates. As Figure 2 illustrates, a standard
transaction | eaves the client end of the connection in TIME-VWAIT
state. This section explains the protocol inplications of
truncating TIME-WAIT state, when it is allowed (i.e., when the
connection has been in existence for less than M5L). In this
case, the client host should be able to interrupt TIME-WAIT state
toinitiate a new incarnation of the same connection (i.e., using
the sane host and ports). This will send an initial <SYN>
segment .

It is possible for the new <SYN> to arrive at the server before
the retransm ssion state fromthe previous incarnation is gone, as
shown in Figure 5. Here the final <ACK> (segnent #3) fromthe
previous incarnation is lost, leaving retransnission state at B
However, the client received segnment #2 and thinks the transaction
conpl eted successfully, so it can initiate a new transaction by
sendi ng <SYN> segnent #4. \Wen this <SYN> arrives at the server
host, it nmust inplicitly acknow edge segnment #2, signalling

Br aden [Page 12]

RFC 1644 Transacti on/ TCP July 1994

success to the server application, deleting the old TCB, and
creating a new TCB, as shown in Figure 5. Still assumng that the
new <SYN> is known to be valid, the server host marks the new
connection hal f-synchroni zed and delivers data3 to the server
application. (The details of howthis is acconplished are
presented in Section 3.3.)

The earlier discussion of the TAO nechani sm assuned that the
previous incarnation was closed before a new <SYN> arrived at the
server. However, TAO cannot be used to validate the <SYN> if

there is still state fromthe previous incarnation, as shown in
Figure 5; in this case, it would be exceedingly awkward to perform
a 3WHS if the TAO test should fail. Fortunately, a nodified
version of the TAO test can still be perfornmed, using the state in

the earlier TCB rather than the cached state.

(A) If the <SYN> segnment contains a CC or CC. NEWoption, the
value SEG CC fromthis option is conpared with TCB. CCrecyv,
the CC value in the still-existing state bl ock of the
previous incarnation. |If SEG CC > TCB.CCrecv, the new <SYN>
segment rnust be valid.

(B) Oherwise, the <SYN>is an old duplicate and is sinply
di scar ded

Truncating TIME-WAIT state nay be | ooked upon as conposi ng an

ext ended state machine that joins the state machines of the two

i ncarnations, old and new. It may be described by introduci ng new
internedi ate states (which we call I-states), with transitions
that join the two diagrans and share sone state fromeach. |-
states are detailed in Section 3.3.

Notice al so segment #2' in Figure 5. TCP' s nechanismto recover
from hal f - open connections (see Figure 10 of [STD-007]) cause TCP
A to send a RST when 2° arrives, which would incorrectly make B
think that the previous transaction did not conplete successfully.
The hal f-open recovery nechani sm nust be defeated in this case, by
A ignoring segnment #2'.

Br aden [Page 13]

RFC 1644 Transacti on/ TCP July 1994

TCP A (dient) TCP B (Server)
CLOSED LI STEN
#1 --> <...,FIN CC=x> --> LAST- ACK*
#2 <-- <...ACK(FIN,data2, FI N, CC=y, CC. ECHO=x> <--- LAST- ACK*
TIVE-VWAI T

(dat a2- >user _A)

#3 TIME-WAIT --> <ACK(FIN), CC=x> --> X (DROP)
(New Active Open) (New Passi ve Qpen)
#4 SYN- SENT* --> <SYN, data3, CC=z> ...
LI STEN- LA
#2' (discard) <-- <...ACK(FIN),data2, FIN, CC=y> <--- (retransnit)
#4 SYN- SENT* ... <SYN data3, CC=z> --> ESTABLI| SHED*
SYN OK (see text) =>
{Ack seg #2;

Del ete ol d TCB;
Create new TCB;
data3 -> user_B;
cache.CJ Al = z;}

Figure 5: Truncating TIME-WAIT State: SYN as Inplicit ACK

2.5 Transition to Standard TCP Operation

T/TCP includes all normal TCP semantics, and it will continue to
operate exactly like TCP when the particular assunptions for
transactions do not hold. There is no limt on the size of an

i ndi vidual transaction, and behavior of T/TCP shoul d nerge

seam essly from pure transaction operation as shown in Figure 2,
to pure stream ng node for sending large files. Al the sequences
shown in [STD-007] are still valid, and the inherent symmetry of
TCP i s preserved.

Fi gure 6 shows a possi bl e sequence when the request and response
messages each require two segnments. Segnment #2 is a non- SYN
segnment that contains a TCP option. To avoid conpatibility
problens with existing TCP i nplenentations, the client side should

Br aden [Page 14]

RFC 1644 Transacti on/ TCP July 1994

send segnent #2 only if cache.CCsent[B] is defined, i.e., only if
host A knows that host B plays the new gane.

TCP A (dient) TCP B (Server)
CLOSED LI STEN
#1 SYN- SENT* --> <SYN, dat al, CC=x> --> ESTABLI| SHED*

(TAO test OK =>
dat al-> user)

#2 SYN- SENT* --> <data2, FIN, CC=x> --> CLOSE- WAl T*
(dat a2-> user)

CLCSE- WAl T*
#3 FINWAIT-2 <-- <SYN, ACK(FI N), dat a3, CC=y, CC. ECHO=x> <- -
(dat a3- >user)

#4 TIME_WAIT <-- <ACK(FIN), data4, FIN, CC=y> <-- LAST- ACK*
(dat a4- >user)

#5 TIME-VWAIT --> <ACK(FIN), CC=x> --> CLOSED

Figure 6. Miulti-Packet Request/Response Sequence
Figure 7 shows a nore conpl ex exanpl e, one possible sequence with

TAO conbi ned with sinultaneous open and close. This nay be
conpared with Figure 8 of [STD-007].

Br aden [Page 15]

RFC 1644

#1

#2

#3

#1’

#4

#5

#3’

#6

#5’

Br aden

TCP A

Transacti on/ TCP

CLOSED

SYN- SENT*

CLOSI NG

July 1994

TCP B

--> <SYN, dat al, FI N, CC=x> ...

<-- <SYN, dat a2, FI N, CC=y> <--

(TAOtest OK =>
dat a2- >user _A

CLCSI NG

TIME-VWAI T

TIME-VWAI T

TIME-VWAI T
TIME-VWAI T

(tineout)
CLCSED

--> <FI N, ACK(FI N), CC=x, CC. ECHO=y> ...

<SYN, dat a1, FI N, CC=x> -->

CLOSED

SYN- SENT*

CLOSI NG

(TAOtest OK =>
dat al- >user _B)

<-- <FIN, ACK(FI N), CC=y, CC. ECHO=x> <- -
--> <ACK(FIN), CC=x> ...
<FI N, ACK(FI N) , CC=x, CC. ECHO=y> - - >
<-- <ACK(FIN), CC=y> <---

<ACK(FIN), CC=x> -->

Figure 7: Sinultaneous Open and d ose

CLCSI NG

TIME-VWAI T
TIME-VWAI T
TIME-VWAI T

(tineout)
CLCSED

[Page 16]

RFC 1644 Transacti on/ TCP July 1994

3. FUNCTI ONAL SPECI FI CATI ON
3.1 Data Structures

A connection count is an unsigned 32-bit integer, with the val ue
zero excluded. Zero is used to denote an undefined val ue.

A host maintains a global connection count variable CCgen, and
each connection control block (TCB) contains two new connection
count variables, TCB.CCsend and TCB. CCrecv. \Whenever a TCB is
created for the active or passive end of a new connection, CCgen
is incremented by 1 and placed in TCB. CCsend of the TCB; however,
if the previous CCgen value was Oxffffffff (-1), then the next

val ue should be 1. TCB.CCrecv is initialized to zero (undefined).

T/ TCP adds a per-host cache to TCP. An entry in this cache for
foreign host fh includes two CC val ues, cache.C(fh] and

cache. CCsent[fh]. It may include other values, as discussed in
Sections 4.3 and 4.4. According to [STD-007], a TCP is not
permitted to send a segnent |arger than the default size 536,
unless it has received a larger value in an MSS (Maxi mum Segnent
Si ze) option. This could constrain the client to use the default
M5S of 536 bytes for every request. To avoid this constraint, a
T/ TCP nay cache the MSS option val ues received fromrenote hosts,
and we allow a TCP to use a cached MsS option value for the
initial SYN segnent.

Wien the client sends an initial <SYN> segnent containing data, it
does not have a send wi ndow for the server host. This is not a
great difficulty; we sinply define a default initial w ndow, our
current suggestion is 4K. Such a non-zero default should be be
condi ti oned upon the existence of a cached connection count for
the foreign host, so that data may be included on an initial SYN
segrment only if cache.C(foreign host] is non-zero.

In TCP, the window is dynanmically adjusted to provide congestion

control /avoi dance [Jacobson88]. It is possible that a particul ar
path night not be able to absorb an initial burst of 4096 bytes
wi t hout congestive losses. |If this turns out to be a problem it

shoul d be possible to cache the congestion threshold for the path
and use this value to determ ne the maxi num size of the initial
packet burst created by a request.

3.2 New TCP Options
Three new TCP options are defined: CC, CC.NEW and CC ECHO Each

carries a connection count SEG CC. The conplete rules for sending
and processing these options are given in Section 3.4 bel ow.

Br aden [Page 17]

RFC 1644 Transacti on/ TCP July 1994
CC Option
Kind: 11
Length: 6
oo oo oo oo oo oo +
| 00001011 00000110| Connection Count: SEG CC
oo - oo - oo - oo - oo - oo - +

Br aden

Ki nd=11 Length=6

This option may be sent in an initial SYN segnent, and it may
be sent in other segnents if a CC or CC. NEWoption has been
received for this incarnation of the connection. Its SEG CC
val ue is the TCB. CCsend val ue fromthe sender’s TCB

. NEW Opt i on

Kind: 12

Length: 6
Fom e e e - Fom e e e - Fom e e e - Fom e e e - Fom e e e - Fom e e e - +
| 00001100| 00000110| Connection Count: SEG CC
. . . S S S +

Ki nd=12 Lengt h=6

This option may be sent instead of a CC option in an initia
<SYN> segnent (i.e., SYN but not ACK bit), to indicate that the
SEG CC val ue may not be larger than the previous value. |Its
SEG CC value is the TCB. CCsend val ue fromthe sender’s TCB

. ECHO Opti on
Kind: 13
Length: 6
oo oo oo oo oo oo +
| 00001101 00000110| Connection Count: SEG CC
Fom e e e - Fom e e e - Fom e e e - Fom e e e - Fom e e e - Fom e e e - +

Ki nd=13 Lengt h=6

This option nmust be sent (in addition to a CC option) in a
segment containing both a SYN and an ACK bit, if the initial
SYN segnent contained a CC or CC.NEWoption. Its SEG CC val ue
is the SEG CC value fromthe initial SYN

[Page 18]

RFC 1644 Transacti on/ TCP July 1994

A CC. ECHO option should be sent only in a <SYN,