Stream: Internet Research Task Force (IRTF)

RFC: 9380
Category: Informational
Published: August 2023
ISSN: 2070-1721
Authors: A.Faz-Hernandez S. Scott N. Sullivan R. S. Wahby
Cloudfiare, Inc. Oso Security, Inc. Cloudflare, Inc. Stanford University
C. A. Wood

Cloudfiare, Inc.

RFC 9380
Hashing to Elliptic Curves

Abstract

This document specifies a number of algorithms for encoding or hashing an arbitrary string to a
point on an elliptic curve. This document is a product of the Crypto Forum Research Group
(CFRQG) in the IRTFE.

Status of This Memo

This document is not an Internet Standards Track specification; it is published for informational
purposes.

This document is a product of the Internet Research Task Force (IRTF). The IRTF publishes the
results of Internet-related research and development activities. These results might not be
suitable for deployment. This RFC represents the consensus of the Crypto Forum Research Group
of the Internet Research Task Force (IRTF). Documents approved for publication by the IRSG are
not candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9380.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document.

Faz-Hernandez, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc9380
https://www.rfc-editor.org/info/rfc9380
https://trustee.ietf.org/license-info

RFC 9380 Hashing to Elliptic Curves August 2023

Table of Contents

1. Introduction 7
1.1. Requirements Notation 7

2. Background 8
2.1. Elliptic Curves 8
2.2. Terminology 9
2.2.1. Mappings 9
2.2.2. Encodings 9
2.2.3. Random Oracle Encodings 10
2.2.4. Serialization 10
2.2.5. Domain Separation 10

3. Encoding Byte Strings to Elliptic Curves 11
3.1. Domain Separation Requirements 13

4. Utility Functions 14
4.1. The sgn0 Function 15

5. Hashing to a Finite Field 16
5.1. Efficiency Considerations in Extension Fields 17
5.2. hash_to_field Implementation 18
5.3. expand_message 19
5.3.1. expand_message_xmd 19
5.3.2. expand_message_xof 20
5.3.3. Using DSTs Longer than 255 Bytes 21
5.3.4. Defining Other expand_message Variants 22

6. Deterministic Mappings 22
6.1. Choosing a Mapping Function 22
6.2. Interface 23
6.3. Notation 23
6.4. Sign of the Resulting Point 23

Faz-Hernandez, et al. Informational Page 2

RFC 9380 Hashing to Elliptic Curves August 2023

6.5. Exceptional Cases 24
6.6. Mappings for Weierstrass Curves 24
6.6.1. Shallue-van de Woestijne Method 24
6.6.2. Simplified Shallue-van de Woestijne-Ulas Method 25
6.6.3. Simplified SWU for AB == 26

6.7. Mappings for Montgomery Curves 27
6.7.1. Elligator 2 Method 27

6.8. Mappings for Twisted Edwards Curves 28
6.8.1. Rational Maps from Montgomery to Twisted Edwards Curves 28
6.8.2. Elligator 2 Method 29

7. Clearing the Cofactor 29
8. Suites for Hashing 30
8.1. Implementing a Hash-to-Curve Suite 32
8.2. Suites for NIST P-256 32
8.3. Suites for NIST P-384 33
8.4. Suites for NIST P-521 33
8.5. Suites for curve25519 and edwards25519 34
8.6. Suites for curve448 and edwards448 35
8.7. Suites for secp256k1 36
8.8. Suites for BLS12-381 37
8.8.1. BLS12-381 G1 37
8.8.2. BLS12-381 G2 37

8.9. Defining a New Hash-to-Curve Suite 38
8.10. Suite ID Naming Conventions 39

9. IANA Considerations 40
10. Security Considerations 40
10.1. Properties of Encodings 40
10.2. Hashing Passwords 41
10.3. Constant-Time Requirements 41
10.4. encode_to_curve: Output Distribution and Indifferentiability 41

Faz-Hernandez, et al. Informational Page 3

RFC 9380 Hashing to Elliptic Curves August 2023

10.5. hash_to_field Security 42
10.6. expand_message_xmd Security 42
10.7. Domain Separation for expand_message Variants 43
10.8. Target Security Levels 45
11. References 46
11.1. Normative References 46
11.2. Informative References 46
Appendix A. Related Work 53
Appendix B. Hashing to ristretto255 54
Appendix C. Hashing to decaf448 55
Appendix D. Rational Maps 56
D.1. Generic Mapping from Montgomery to Twisted Edwards 57
D.2. Mapping from Weierstrass to Montgomery 58
Appendix E. Isogeny Maps for Suites 59
E.1. 3-Isogeny Map for secp256k1 39
E.2. 11-Isogeny Map for BLS12-381 G1 60
E.3. 3-Isogeny Map for BLS12-381 G2 63
Appendix F. Straight-Line Implementations of Deterministic Mappings 64
F.1. Shallue-van de Woestijne Method 64
F.2. Simplified SWU Method 65
F.2.1. sqrt_ratio Subroutine 66

E.3. Elligator 2 Method 69
Appendix G. Curve-Specific Optimized Sample Code 70
G.1. Interface and Projective Coordinate Systems 70
G.2. Elligator 2 71
G.2.1. curve25519 (d =5 (mod 8), K=1) 71
G.2.2. edwards25519 72
G.2.3. curve448 (=3 (mod 4),K=1) 73
G.2.4. edwards448 74
G.2.5. Montgomery Curves with g = 3 (mod 4) 75

Faz-Hernandez, et al. Informational Page 4

RFC 9380 Hashing to Elliptic Curves August 2023

G.2.6. Montgomery Curves with g =5 (mod 8) 76

G.3. Cofactor Clearing for BLS12-381 G2 78
Appendix H. Scripts for Parameter Generation 79
H.1. Finding Z for the Shallue-van de Woestijne Map 79
H.2. Finding Z for Simplified SWU 80
H.3. Finding Z for Elligator 2 81
Appendix I. sqrt and is_square Functions 81
I.1. sqrt for g = 3 (mod 4) 81
1.2. sqrt for g =5 (mod 8) 82
1.3. sqrt for g = 9 (mod 16) 82
I.4. Constant-Time Tonelli-Shanks Algorithm 83
L.5. is_square for F = GF(p"2) 83
Appendix J. Suite Test Vectors 84
J.1. NIST P-256 84
J.1.1. P256_XMD:SHA-256_SSWU_RO_ 84
J.1.2. P256_XMD:SHA-256_SSWU_NU_ 86

J.2. NIST P-384 87
J.2.1. P384_XMD:SHA-384_SSWU_RO_ 87
J.2.2. P384_XMD:SHA-384 SSWU_NU_ 89

J.3. NIST P-521 91
J.3.1. P521_XMD:SHA-512_SSWU_RO_ 91
J.3.2. P521_XMD:SHA-512_SSWU_NU_ 93

]J.4. curve25519 95
J.4.1. curve25519 XMD:SHA-512_ELL2_RO_ 95
J.4.2. curve25519_XMD:SHA-512_ELL2_NU_ 97

J.5. edwards25519 98
J.5.1. edwards25519_XMD:SHA-512_ELL2_RO_ 98
]J.5.2. edwards25519_XMD:SHA-512_ELL2 _NU_ 100

Faz-Hernandez, et al. Informational Page 5

RFC 9380 Hashing to Elliptic Curves August 2023

]J.6. curve448 101
J.6.1. curve448 XOF:SHAKE256_ELL2_RO_ 101
]J.6.2. curve448_XOF:SHAKE256_ELL2_NU_ 104

]J.7. edwards448 106
J.7.1. edwards448_XOF:SHAKE256_ELL2_RO_ 106
J.7.2. edwards448 XOF:SHAKE256_ELL2_NU_ 108

].8. secp256k1 110
]J.8.1. secp256k1l_XMD:SHA-256_SSWU_RO_ 110
J.8.2. secp256k1_XMD:SHA-256_SSWU_NU_ 112

J.9. BLS12-381 G1 113
J.9.1. BLS12381G1_XMD:SHA-256_SSWU_RO_ 113
J.9.2. BLS12381G1_XMD:SHA-256_SSWU_NU_ 115

J.10. BLS12-381 G2 117
J.10.1. BLS12381G2_XMD:SHA-256_SSWU_RO_ 117
J.10.2. BLS12381G2_XMD:SHA-256_SSWU_NU_ 120

Appendix K. Expand Test Vectors 122

K.1. expand_message_xmd(SHA-256) 122

K.2. expand_message_xmd(SHA-256) (Long DST) 126

K.3. expand_message_xmd(SHA-512) 130

K.4. expand_message_xof(SHAKE128) 134

K.5. expand_message_xof(SHAKE128) (Long DST) 137

K.6. expand_message_xof(SHAKE256) 140

Acknowledgements 143
Contributors 144
Authors' Addresses 144

Faz-Hernandez, et al. Informational Page 6

RFC 9380 Hashing to Elliptic Curves August 2023

1. Introduction

Many cryptographic protocols require a procedure that encodes an arbitrary input, e.g., a
password, to a point on an elliptic curve. This procedure is known as hashing to an elliptic curve,
where the hashing procedure provides collision resistance and does not reveal the discrete
logarithm of the output point. Prominent examples of cryptosystems that hash to elliptic curves
include password-authenticated key exchanges [BM92] [J96] [BMP00] [p1363.2], Identity-Based
Encryption [BF01], Boneh-Lynn-Shacham signatures [BLS01] [BLS-SIG], Verifiable Random
Functions [MRV99] [VRF], and Oblivious Pseudorandom Functions [NR97] [OPRFs].

Unfortunately for implementors, the precise hash function that is suitable for a given protocol
implemented using a given elliptic curve is often unclear from the protocol's description.
Meanwhile, an incorrect choice of hash function can have disastrous consequences for security.

This document aims to bridge this gap by providing a comprehensive set of recommended
algorithms for a range of curve types. Each algorithm conforms to a common interface: it takes
as input an arbitrary-length byte string and produces as output a point on an elliptic curve. We
provide implementation details for each algorithm, describe the security rationale behind each
recommendation, and give guidance for elliptic curves that are not explicitly covered. We also
present optimized implementations for internal functions used by these algorithms.

Readers wishing to quickly specify or implement a conforming hash function should consult
Section 8, which lists recommended hash-to-curve suites and describes both how to implement
an existing suite and how to specify a new one.

This document does not specify probabilistic rejection sampling methods, sometimes referred to
as "try-and-increment” or "hunt-and-peck,” because the goal is to specify algorithms that can
plausibly be computed in constant time. Use of these probabilistic rejection methods is NOT
RECOMMENDED, because they have been a perennial cause of side-channel vulnerabilities. See
Dragonblood [VR20] as one example of this problem in practice, and see Appendix A for an
informal description of rejection sampling methods and the timing side-channels they introduce.

This document represents the consensus of the Crypto Forum Research Group (CFRG).

1.1. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

Faz-Hernandez, et al. Informational Page 7

RFC 9380 Hashing to Elliptic Curves August 2023

2. Background

2.1. Elliptic Curves

The following is a brief definition of elliptic curves, with an emphasis on important parameters
and their relation to hashing to curves. For further reference on elliptic curves, consult
[CFADLNVO0S5] or [WO08].

Let F be the finite field GF(q) of prime characteristic p > 3. (This document does not consider
elliptic curves over fields of characteristic 2 or 3.) In most cases, F is a prime field, so g = p.
Otherwise, F is an extension field, so q = pAm for an integer m > 1. This document writes
elements of extension fields in a primitive element or polynomial basis, i.e., as a vector of m
elements of GF(p) written in ascending order by degree. The entries of this vector are indexed in
ascending order starting from 1, i.e., x = (x_1, X_2, ..., x_m). For example, if q = p~2 and the
primitive element basis is (1, I), then x = (a, b) corresponds to the elementa + b * I, wherex_1=a
and x_2 = b. (Note that all choices of basis are isomorphic, but certain choices may result in a
more efficient implementation; this document does not make any particular assumptions about
choice of basis.)

An elliptic curve E is specified by an equation in two variables and a finite field F. An elliptic
curve equation takes one of several standard forms, including (but not limited to) Weierstrass,
Montgomery, and Edwards.

The curve E induces an algebraic group of order n, meaning that the group has n distinct
elements. (This document uses additive notation for the elliptic curve group operation.) Elements
of an elliptic curve group are points with affine coordinates (x, y) satisfying the curve equation,
where x and y are elements of F. In addition, all elliptic curve groups have a distinguished
element, the identity point, which acts as the identity element for the group operation. On certain
curves (including Weierstrass and Montgomery curves), the identity point cannot be represented
as an (¥, y) coordinate pair.

For security reasons, cryptographic applications of elliptic curves generally require using a
(sub)group of prime order. Let G be such a subgroup of the curve of prime order r, wheren=h *
r. In this equation, h is an integer called the cofactor. An algorithm that takes as input an
arbitrary point on the curve E and produces as output a point in the subgroup G of E is said to
"clear the cofactor." Such algorithms are discussed in Section 7.

Certain hash-to-curve algorithms restrict the form of the curve equation, the characteristic of the
field, or the parameters of the curve. For each algorithm presented, this document lists the
relevant restrictions.

The table below summarizes quantities relevant to hashing to curves:

Faz-Hernandez, et al. Informational Page 8

RFC 9380 Hashing to Elliptic Curves August 2023

Symbol Meaning Relevance

EFq,p A finite field F of characteristic pand For prime fields, q = p; otherwise,

#F = q = p~m. q =p~m and m>1.
E Elliptic curve. E is specified by an equation and a field F.
n Number of points on the elliptic n =h *r, for h and r defined below.
curve E.
G A prime-order subgroup of the points G is a destination group to which byte
onkE. strings are encoded.
r Order of G. r is a prime factor of n (usually, the

largest such factor).

h Cofactor, h >=1. h is an integer satisfyingn =h *r.

Table 1: Summary of Symbols and Their Definitions

2.2. Terminology

In this section, we define important terms used throughout the document.

2.2.1. Mappings

A mapping is a deterministic function from an element of the field F to a point on an elliptic
curve E defined over F.

In general, the set of all points that a mapping can produce over all possible inputs may be only a
subset of the points on an elliptic curve (i.e., the mapping may not be surjective). In addition, a
mapping may output the same point for two or more distinct inputs (i.e., the mapping may not be
injective). For example, consider a mapping from F to an elliptic curve having n points: if the
number of elements of F is not equal to n, then this mapping cannot be bijective (i.e., both
injective and surjective), since the mapping is defined to be deterministic.

Mappings may also be invertible, meaning that there is an efficient algorithm that, for any point
P output by the mapping, outputs an x in F such that applying the mapping to x outputs P. Some
of the mappings given in Section 6 are invertible, but this document does not discuss inversion
algorithms.

2.2.2. Encodings

Encodings are closely related to mappings. Like a mapping, an encoding is a function that
outputs a point on an elliptic curve. In contrast to a mapping, however, the input to an encoding
is an arbitrary-length byte string.

This document constructs deterministic encodings by composing a hash function Hf with a
deterministic mapping. In particular, Hf takes as input an arbitrary string and outputs an
element of F. The deterministic mapping takes that element as input and outputs a point on an

Faz-Hernandez, et al. Informational Page 9

RFC 9380 Hashing to Elliptic Curves August 2023

elliptic curve E defined over F. Since Hf takes arbitrary-length byte strings as inputs, it cannot be
injective: the set of inputs is larger than the set of outputs, so there must be distinct inputs that
give the same output (i.e., there must be collisions). Thus, any encoding built from Hf is also not
injective.

Like mappings, encodings may be invertible, meaning that there is an efficient algorithm that, for
any point P output by the encoding, outputs a string s such that applying the encoding to s
outputs P. However, the instantiation of Hf used by all encodings specified in this document
(Section 5) is not invertible; thus, those encodings are also not invertible.

In some applications of hashing to elliptic curves, it is important that encodings do not leak
information through side channels. [VR20] is one example of this type of leakage leading to a
security vulnerability. See Section 10.3 for further discussion.

2.2.3. Random Oracle Encodings

A random-oracle encoding satisfies a strong property: it can be proved indifferentiable from a
random oracle [MRHO04] under a suitable assumption.

Both constructions described in Section 3 are indifferentiable from random oracles [MRH04]
when instantiated following the guidelines in this document. The constructions differ in their
output distributions: one gives a uniformly random point on the curve, the other gives a point
sampled from a nonuniform distribution.

A random-oracle encoding with a uniform output distribution is suitable for use in many
cryptographic protocols proven secure in the random-oracle model. See Section 10.1 for further
discussion.

2.2.4. Serialization

A procedure related to encoding is the conversion of an elliptic curve point to a bit string. This is
called serialization, and it is typically used for compactly storing or transmitting points. The
inverse operation, deserialization, converts a bit string to an elliptic curve point. For example,
[SEC1] and [p1363a] give standard methods for serialization and deserialization.

Deserialization is different from encoding in that only certain strings (namely, those output by
the serialization procedure) can be deserialized. In contrast, this document is concerned with
encodings from arbitrary strings to elliptic curve points. This document does not cover
serialization or deserialization.

2.2.5. Domain Separation

Cryptographic protocols proven secure in the random-oracle model are often analyzed under the
assumption that the random oracle only answers queries associated with that protocol (including
queries made by adversaries) [BR93]. In practice, this assumption does not hold if two protocols
use the same function to instantiate the random oracle. Concretely, consider protocols P1 and P2
that query a random-oracle RO: if P1 and P2 both query RO on the same value X, the security
analysis of one or both protocols may be invalidated.

Faz-Hernandez, et al. Informational Page 10

RFC 9380 Hashing to Elliptic Curves August 2023

A common way of addressing this issue is called domain separation, which allows a single
random oracle to simulate multiple, independent oracles. This is effected by ensuring that each
simulated oracle sees queries that are distinct from those seen by all other simulated oracles. For
example, to simulate two oracles RO1 and RO2 given a single oracle RO, one might define

RO1(x)
RO2(x)

RO("ROT" || x)
RO("RO2" || x)

where | | is the concatenation operator. In this example, "RO1" and "RO2" are called domain
separation tags (DSTs); they ensure that queries to RO1 and RO2 cannot result in identical queries
to RO, meaning that it is safe to treat RO1 and RO2 as independent oracles.

In general, domain separation requires defining a distinct injective encoding for each oracle
being simulated. In the above example, "RO1" and "RO2" have the same length and thus satisfy
this requirement when used as prefixes. The algorithms specified in this document take a
different approach to ensuring injectivity; see Sections 5.3 and 10.7 for more details.

3. Encoding Byte Strings to Elliptic Curves

This section presents a general framework and interface for encoding byte strings to points on an
elliptic curve. The constructions in this section rely on three basic functions:

* The function hash_to_field hashes arbitrary-length byte strings to a list of one or more
elements of a finite field F; its implementation is defined in Section 5.
hash_to_field(msg, count)
Input:
- msg, a byte string containing the message to hash.

- count, the number of elements of F to output.

Output:
- (u_@, ..., u_(count - 1)), a list of field elements.

Steps: defined in Section 5.

* The function map_to_curve calculates a point on the elliptic curve E from an element of the
finite field F over which E is defined. Section 6 describes mappings for a range of curve
families.

map_to_curve(u)
Input: u, an element of field F.

Output: Q, a point on the elliptic curve E.
Steps: defined in Section 6.

Faz-Hernandez, et al. Informational Page 11

RFC 9380 Hashing to Elliptic Curves August 2023

* The function clear_cofactor sends any point on the curve E to the subgroup G of E. Section 7
describes methods to perform this operation.

clear_cofactor(Q)

Input: Q, a point on the elliptic curve E.
Output: P, a point in G.
Steps: defined in Section 7.

The two encodings (Section 2.2.2) defined in this section have the same interface and are both
random-oracle encodings (Section 2.2.3). Both are implemented as a composition of the three

basic functions above. The difference between the two is that their outputs are sampled from
different distributions:

* encode_to_curve is a nonuniform encoding from byte strings to points in G. That is, the
distribution of its output is not uniformly random in G: the set of possible outputs of
encode_to_curve is only a fraction of the points in G, and some points in this set are more
likely to be output than others. Section 10.4 gives a more precise definition of
encode_to_curve's output distribution.

encode_to_curve(msg)

Input: msg, an arbitrary-length byte string.
Output: P, a point in G.

Steps:

1. u = hash_to_field(msg, 1)
2. Q = map_to_curve(u[0])

3. P = clear_cofactor(Q)

4. return P

* hash_to_curve is a uniform encoding from byte strings to points in G. That is, the distribution
of its output is statistically close to uniform in G.

This function is suitable for most applications requiring a random oracle returning points in
G, when instantiated with any of the map_to_curve functions described in Section 6. See
Section 10.1 for further discussion.

hash_to_curve(msg)

Input: msg, an arbitrary-length byte string.
Output: P, a point in G.

Steps:

1. u = hash_to_field(msg, 2)

2. Q0 = map_to_curve(u[0])

3. Q1 = map_to_curve(u[1])

4. R = Q0 + Q1 # Point addition
5. P = clear_cofactor(R)

6. return P

Faz-Hernandez, et al. Informational Page 12

RFC 9380 Hashing to Elliptic Curves August 2023

Each hash-to-curve suite in Section 8 instantiates one of these encoding functions for a specific
elliptic curve.

3.1. Domain Separation Requirements

All uses of the encoding functions defined in this document MUST include domain separation
(Section 2.2.5) to avoid interfering with other uses of similar functionality.

Applications that instantiate multiple, independent instances of either hash_to_curve or
encode_to_curve MUST enforce domain separation between those instances. This requirement
applies in both the case of multiple instances targeting the same curve and the case of multiple
instances targeting different curves. (This is because the internal hash_to_field primitive (Section
5) requires domain separation to guarantee independent outputs.)

Domain separation is enforced with a domain separation tag (DST), which is a byte string
constructed according to the following requirements:

1. Tags MUST be supplied as the DST parameter to hash_to_field, as described in Section 5.

2. Tags MUST have nonzero length. A minimum length of 16 bytes is RECOMMENDED to reduce
the chance of collisions with other applications.

3. Tags SHOULD begin with a fixed identification string that is unique to the application.
4. Tags SHOULD include a version number.

5. For applications that define multiple ciphersuites, each ciphersuite's tag MUST be different.
For this purpose, it is RECOMMENDED to include a ciphersuite identifier in each tag.

6. For applications that use multiple encodings, to either the same curve or different curves,
each encoding MUST use a different tag. For this purpose, it is RECOMMENDED to include the
encoding's Suite ID (Section 8) in the domain separation tag. For independent encodings
based on the same suite, each tag SHOULD also include a distinct identifier, e.g., "ENC1" and
"ENC2".

As an example, consider a fictional application named Quux that defines several different
ciphersuites, each for a different curve. A reasonable choice of tag is "QUUX-V<xx>-CS<yy>-
<suiteID>", where <xx> and <yy> are two-digit numbers indicating the version and ciphersuite,
respectively, and <suiteID> is the Suite ID of the encoding used in ciphersuite <yy>.

As another example, consider a fictional application named Baz that requires two independent
random oracles to the same curve. Reasonable choices of tags for these oracles are "BAZ-V<xx>-
CS<yy>-<suiteID>-ENC1" and "BAZ-V<xx>-CS<yy>-<suiteID>-ENC2", respectively, where <xx>,
<yy>, and <suiteID> are as described above.

The example tags given above are assumed to be ASCII-encoded byte strings without null
termination, which is the RECOMMENDED format. Other encodings can be used, but in all cases
the encoding as a sequence of bytes MUST be specified unambiguously.

Faz-Hernandez, et al. Informational Page 13

RFC 9380 Hashing to Elliptic Curves August 2023

4. Utility Functions

Algorithms in this document use the utility functions described below, plus standard arithmetic
operations (addition, multiplication, modular reduction, etc.) and elliptic curve point operations
(point addition and scalar multiplication).

For security, implementations of these functions SHOULD be constant time: in brief, this means
that execution time and memory access patterns SHOULD NOT depend on the values of secret
inputs, intermediate values, or outputs. For such constant-time implementations, all arithmetic,
comparisons, and assignments MUST also be implemented in constant time. Section 10.3 briefly
discusses constant-time security issues.

Guidance on implementing low-level operations (in constant time or otherwise) is beyond the
scope of this document; readers should consult standard reference material [MOV96]
[CFADLNVO5].

* CMOV(a, b, ¢): If c is False, CMOV returns a; otherwise, it returns b. For constant-time
implementations, this operation must run in a time that is independent of the value of c.

* AND, OR, NOT, and XOR are standard bitwise logical operators. For constant-time
implementations, short-circuit operators MUST be avoided.

* is_square(x): This function returns True whenever the value x is a square in the field F. By
Euler's criterion, this function can be calculated in constant time as

is_square(x) := { True, if x*((q - 1) / 2) is @ or 1 in F;
{ False, otherwise.

In certain extension fields, is_square can be computed in constant time more quickly than by
the above exponentiation. [AR13] and [S85] describe optimized methods for extension fields.
Appendix I.5 gives an optimized straight-line method for GF(p/2).

* sqrt(x): The sqrt operation is a multi-valued function, i.e., there exist two roots of x in the
field F whenever x is square (except when x = 0). To maintain compatibility across
implementations while allowing implementors leeway for optimizations, this document does
not require sqrt() to return a particular value. Instead, as explained in Section 6.4, any
function that calls sqrt also specifies how to determine the correct root.

The preferred way of computing square roots is to fix a deterministic algorithm particular to
F. We give several algorithms in Appendix I.

¢ sgn0(x): This function returns either 0 or 1 indicating the "sign" of x, where sgn0(x) == 1 just
when x is "negative". (In other words, this function always considers 0 to be positive.) Section
4.1 defines this function and discusses its implementation.

¢ inv0(x): This function returns the multiplicative inverse of x in F, extended to all of F by
fixing inv0(0) == 0. A straightforward way to implement inv0 in constant time is to compute

Faz-Hernandez, et al. Informational Page 14

RFC 9380 Hashing to Elliptic Curves August 2023

inv@(x) := x*(q - 2).

Notice that on input 0, the output is 0 as required. Certain fields may allow faster inversion
methods; detailed discussion of such methods is beyond the scope of this document.

* I20SP and OS2IP: These functions are used to convert a byte string to and from a non-
negative integer as described in [RFC8017]. (Note that these functions operate on byte strings
in big-endian byte order.)

*a | | b: denotes the concatenation of byte strings a and b. For example, "ABC" | | "DEF" ==
"ABCDEF".

* substr(str, sbegin, slen): For a byte string str, this function returns the slen-byte substring
starting at position shegin; positions are zero indexed. For example, substr("ABCDEFG", 2, 3)

=="CDE".
* len(str): For a byte string str, this function returns the length of str in bytes. For example,
len("ABC") == 3.

o strxor(strl, str2): For byte strings strl and str2, strxor(strl, str2) returns the bitwise XOR of
the two strings. For example, strxor("abc", "XYZ") == "9;9" (the strings in this example are
ASCII literals, but strxor is defined for arbitrary byte strings). In this document, strxor is only
applied to inputs of equal length.

4.1. The sgn0 Function

This section defines a generic sgn0 implementation that applies to any field F = GF(p~m). It also
gives simplified implementations for the cases F = GF(p) and F = GF(p/2).

The definition of the sgn0 function for extension fields relies on the polynomial basis or vector
representation of field elements, and iterates over the entire vector representation of the input
element. As a result, sgn0 depends on the primitive polynomial used to define the polynomial
basis; see Section 8 for more information about this basis, and see Section 2.1 for a discussion of
representing elements of extension fields as vectors.

Faz-Hernandez, et al. Informational Page 15

RFC 9380 Hashing to Elliptic Curves August 2023

sgne(x)

Parameters:

- F, a finite field of characteristic p and order q = p”m.

- p, the characteristic of F (see immediately above).

- m, the extension degree of F, m >= 1 (see immediately above).

Input: x, an element of F.
Output: 0 or 1.

w
—+
@
o
()

(1, 2, ..., m):

= X_1 mod 2

= x_1==0

sign = sign OR (zero AND sign_i) # Avoid short-circuit logic ops
zero zero AND zero_i

return sign

nminmrEmkFE3 =0

oONO PR WN =
N
D
=
(@]

When m == 1, sgn0 can be significantly simplified:

sgn@_m_eq_1(x)

Input: x, an element of GF(p).
Output: @ or 1.

Steps:
1. return x mod 2

The case m == 2 is only slightly more complicated:

sgn@_m_eq_2(x)

Input: x, an element of GF(p”*2).
Output: 0 or 1.

Steps:
. sign_0® = x_0 mod 2
2. zero_® = x_0 == 0
3. sign_1 = x_1 mod 2
4. s = sign_B OR (zero_© AND sign_1) # Avoid short-circuit logic ops
5. return s

5. Hashing to a Finite Field

The hash_to_field function hashes a byte string msg of arbitrary length into one or more
elements of a field F. This function works in two steps: it first hashes the input byte string to
produce a uniformly random byte string, and then interprets this byte string as one or more
elements of F.

Faz-Hernandez, et al. Informational Page 16

RFC 9380 Hashing to Elliptic Curves August 2023

For the first step, hash_to_field calls an auxiliary function expand_message. This document
defines two variants of expand_message: one appropriate for hash functions like SHA-2
[FIPS180-4] or SHA-3 [FIPS202], and another appropriate for extendable-output functions such as
SHAKE128 [FIPS202]. Security considerations for each expand_message variant are discussed
below (Sections 5.3.1 and 5.3.2).

Implementors MUST NOT use rejection sampling to generate a uniformly random element of F, to
ensure that the hash_to_field function is amenable to constant-time implementation. The reason
is that rejection sampling procedures are difficult to implement in constant time, and later well-
meaning "optimizations" may silently render an implementation non-constant-time. This means
that any hash_to_field function based on rejection sampling would be incompatible with
constant-time implementation.

The hash_to_field function is also suitable for securely hashing to scalars. For example, when
hashing to the scalar field for an elliptic curve (sub)group with prime order r, it suffices to
instantiate hash_to_field with target field GF(r).

The hash_to_field function is designed to be indifferentiable from a random oracle [MRHO04]
when expand_message (Section 5.3) is modeled as a random oracle (see Section 10.5 for details
about its indifferentiability). Ensuring indifferentiability requires care; to see why, consider a
prime p that is close to 3/4 * 2/256. Reducing a random 256-bit integer modulo this p yields a
value that is in the range [0, p / 3] with probability roughly 1/2, meaning that this value is
statistically far from uniform in [0, p - 1].

To control bias, hash_to_field instead uses random integers whose length is at least ceil(log2(p)) +
k bits, where k is the target security level for the suite in bits. Reducing such integers mod p gives
bias at most 2A-k for any p; this bias is appropriate when targeting k-bit security. For each such
integer, hash_to_field uses expand_message to obtain L uniform bytes, where

L = ceil((ceil(log2(p)) + k) / 8)
These uniform bytes are then interpreted as an integer via OS2IP. For example, for a 255-bit
prime p, and k = 128-bit security, L = ceil((255 + 128) / 8) = 48 bytes.
Note that k is an upper bound on the security level for the corresponding curve. See Section 10.8

for more details and Section 8.9 for guidelines on choosing k for a given curve.

5.1. Efficiency Considerations in Extension Fields

The hash_to_field function described in this section is inefficient for certain extension fields.
Specifically, when hashing to an element of the extension field GF(p~m), hash_to_field requires
expanding msg into m * L bytes (for L as defined above). For extension fields where log2(p) is
significantly smaller than the security level k, this approach is inefficient: it requires

Faz-Hernandez, et al. Informational Page 17

RFC 9380 Hashing to Elliptic Curves August 2023

expand_message to output roughly m * log2(p) + m * k bits, whereas m * log2(p) + k bytes suffices
to generate an element of GF(p~Am) with bias at most 2/-k. In such cases, applications MAY use an
alternative hash_to_field function, provided it meets the following security requirements:

* The function MUST output one or more field elements that are uniformly random except
with bias at most 2A-k.

* The function MUST NOT use rejection sampling.
* The function SHOULD be amenable to straight-line implementations.

For example, Pornin [P20] describes a method for hashing to GF(9767/19) that meets these
requirements while using fewer output bits from expand_message than hash_to_field would for
that field.

5.2. hash_to_field Implementation

The following procedure implements hash_to_field.

The expand_message parameter to this function MUST conform to the requirements given in
Section 5.3. Section 3.1 discusses the REQUIRED method for constructing DST, the domain
separation tag. Note that hash_to_field may fail (ABORT) if expand_message fails.

hash_to_field(msg, count)

Parameters:

- DST, a domain separation tag (see Section 3.1).

- F, a finite field of characteristic p and order q = p”m.

- p, the characteristic of F (see immediately above).

- m, the extension degree of F, m >= 1 (see immediately above).

- L = ceil((ceil(log2(p)) + k) / 8), where k is the security
parameter of the suite (e.g., k = 128).

- expand_message, a function that expands a byte string and
domain separation tag into a uniformly random byte string
(see Section 5.3).

Input:
- msg, a byte string containing the message to hash.
- count, the number of elements of F to output.

Output:

- (u_@, ..., u_(count - 1)), a list of field elements.
Steps:

1. len_in_bytes = count * m * L

2. uniform_bytes = expand_message(msg, DST, len_in_bytes)
3. for i in (@, ..., count - 1):

4. for j in (0, ..., m - 1):

5. elm_offset = L * (j + i * m)

6. tv = substr(uniform_bytes, elm_offset, L)

7. e_j = 0S2IP(tv) mod p

8. u_i = (e_@, ..., e_(m- 1))

9. return (u_@, ..., u_(count - 1))

Faz-Hernandez, et al. Informational Page 18

RFC 9380 Hashing to Elliptic Curves August 2023

5.3. expand_message

expand_message is a function that generates a uniformly random byte string. It takes three
arguments:

1. msg, a byte string containing the message to hash,
2. DST, a byte string that acts as a domain separation tag, and
3. len_in_bytes, the number of bytes to be generated.

This document defines the following two variants of expand_message:

 expand_message_xmd (Section 5.3.1) is appropriate for use with a wide range of hash
functions, including SHA-2 [FIPS180-4], SHA-3 [FIPS202], BLAKE2 [RFC7693], and others.

* expand_message_xof (Section 5.3.2) is appropriate for use with extendable-output functions
(XOFs), including functions in the SHAKE [FIPS202] or BLAKE2X [BLAKE2X] families.

These variants should suffice for the vast majority of use cases, but other variants are possible;
Section 5.3.4 discusses requirements.

5.3.1. expand_message_xmd

The expand_message_xmd function produces a uniformly random byte string using a
cryptographic hash function H that outputs b bits. For security, H MUST meet the following
requirements:

* The number of bits output by H MUST be b >= 2 * k, where Kk is the target security level in bits,
and b MUST be divisible by 8. The first requirement ensures k-bit collision resistance; the
second ensures uniformity of expand_message_xmd's output.

* H MAY be a Merkle-Damgaard hash function like SHA-2. In this case, security holds when the
underlying compression function is modeled as a random oracle [CDMPO5]. (See Section 10.6
for discussion.)

* H MAY be a sponge-based hash function like SHA-3 or BLAKE2. In this case, security holds
when the inner function is modeled as a random transformation or as a random
permutation [BDPV08].

* Otherwise, H MUST be a hash function that has been proved indifferentiable from a random
oracle [MRHO04] under a reasonable cryptographic assumption.

SHA-2 [FIPS180-4] and SHA-3 [FIPS202] are typical and RECOMMENDED choices. As an example,
for the 128-bit security level, b >= 256 bits and either SHA-256 or SHA3-256 would be an
appropriate choice.

The hash function H is assumed to work by repeatedly ingesting fixed-length blocks of data. The
length in bits of these blocks is called the input block size (s). As examples, s = 1024 for SHA-512
[FIPS180-4] and s = 576 for SHA3-512 [FIPS202]. For correctness, H requires b <=s.

The following procedure implements expand_message_xmd.

Faz-Hernandez, et al. Informational Page 19

RFC 9380 Hashing to Elliptic Curves August 2023

expand_message_xmd(msg, DST, len_in_bytes)

Parameters:

- H, a hash function (see requirements above).

- b_in_bytes, b / 8 for b the output size of H in bits.
For example, for b = 256, b_in_bytes = 32.

- s_in_bytes, the input block size of H, measured in bytes (see
discussion above). For example, for SHA-256, s_in_bytes = 64.

Input:

- msg, a byte string.

- DST, a byte string of at most 255 bytes.
See below for information on using longer DSTs.

- len_in_bytes, the length of the requested output in bytes,
not greater than the lesser of (255 * b_in_bytes) or 2216-1.

Output:

- uniform_bytes, a byte string.

Steps:

1. ell = ceil(len_in_bytes / b_in_bytes)

2. ABORT if ell > 255 or len_in_bytes > 65535 or len(DST) > 255
3. DST_prime = DST || I20SP(len(DST), 1)

4. Z_pad = I20SP(@, s_in_bytes)

5. 1_i_b_str = I20SP(len_in_bytes, 2)

6. msg_prime = Z_pad || msg || 1l_i_b_str || I20SP(®, 1) || DST_prime
7. b_0 = H(msg_prime)

8. b_1 = H(b_@ || I20SP(1, 1) || DST_prime)

9. for i in (2, ..., ell):

10. b_i = H(strxor(b_08, b_(i - 1)) || I20SP(i, 1) || DST_prime)
11. uniform_bytes = b_1 || ... || b_ell

12. return substr(uniform_bytes, @, len_in_bytes)

Note that the string Z_pad (step 6) is prefixed to msg before computing b_0 (step 7). This is
necessary for security when H is a Merkle-Damgaard hash, e.g., SHA-2 (see Section 10.6). Hashing
this additional data means that the cost of computing b_0 is higher than the cost of simply
computing H(msg). In most settings, this overhead is negligible, because the cost of evaluating H
is much less than the other costs involved in hashing to a curve.

It is possible, however, to entirely avoid this overhead by taking advantage of the fact that Z_pad
depends only on H, and not on the arguments to expand_message_xmd. To do so, first
precompute and save the internal state of H after ingesting Z_pad. Then, when computing b_0,
initialize H using the saved state. Further details are implementation dependent and are beyond
the scope of this document.

5.3.2. expand_message_xof

The expand_message_xof function produces a uniformly random byte string using an
extendable-output function (XOF) H. For security, H MUST meet the following criteria:

* The collision resistance of H MUST be at least k bits.

Faz-Hernandez, et al. Informational Page 20

RFC 9380 Hashing to Elliptic Curves August 2023

* H MUST be an XOF that has been proved indifferentiable from a random oracle under a
reasonable cryptographic assumption.

The SHAKE XOF family [FIPS202] is a typical and RECOMMENDED choice. As an example, for 128-
bit security, SHAKE128 would be an appropriate choice.

The following procedure implements expand_message_xof.

expand_message_xof(msg, DST, len_in_bytes)

Parameters:
- H(m, d), an extendable-output function that processes
input message m and returns d bytes.

Input:
- msg, a byte string.
- DST, a byte string of at most 255 bytes.
See below for information on using longer DSTs.
- len_in_bytes, the length of the requested output in bytes.

Output:
- uniform_bytes, a byte string.

Steps:

1. ABORT if len_in_bytes > 65535 or 1len(DST) > 255

2. DST_prime = DST || I20SP(len(DST), 1)

3. msg_prime = msg || I20SP(len_in_bytes, 2) || DST_prime
4. uniform_bytes = H(msg_prime, len_in_bytes)

5. return uniform_bytes

5.3.3. Using DSTs Longer than 255 Bytes

The expand_message variants defined in this section accept domain separation tags of at most
255 bytes. If applications require a domain separation tag longer than 255 bytes, e.g., because of
requirements imposed by an invoking protocol, implementors MUST compute a short domain
separation tag by hashing, as follows:

* For expand_message_xmd using hash function H, DST is computed as

DST = H("H2C-OVERSIZE-DST-" || a_very_long_DST)

* For expand_message_xof using extendable-output function H, DST is computed as

DST = H("H2C-OVERSIZE-DST-" || a_very_long_DST, ceil(2 * k / 8))

Here, a_very_long_DST is the DST whose length is greater than 255 bytes, "H2C-OVERSIZE-DST-" is
a 17-byte ASCII string literal, and k is the target security level in bits.

Faz-Hernandez, et al. Informational Page 21

RFC 9380 Hashing to Elliptic Curves August 2023

5.3.4. Defining Other expand_message Variants

When defining a new expand_message variant, the most important consideration is that
hash_to_field models expand_message as a random oracle. Thus, implementors SHOULD prove
indifferentiability from a random oracle under an appropriate assumption about the underlying
cryptographic primitives; see Section 10.5 for more information.

In addition, expand_message variants:

* MUST give collision resistance commensurate with the security level of the target elliptic
curve.

* MUST be built on primitives designed for use in applications requiring cryptographic
randomness. As examples, a secure stream cipher is an appropriate primitive, whereas a
Mersenne twister pseudorandom number generator [MT98] is not.

* MUST NOT use rejection sampling.

* MUST give independent values for distinct (msg, DST, length) inputs. Meeting this
requirement is subtle. As a simplified example, hashing msg | | DST does not work, because
in this case distinct (msg, DST) pairs whose concatenations are equal will return the same
output (e.g., ("AB", "CDEF") and ("ABC", "DEF")). The variants defined in this document use a
suffix-free encoding of DST to avoid this issue.

* MUST use the domain separation tag DST to ensure that invocations of cryptographic
primitives inside of expand_message are domain-separated from invocations outside of
expand_message. For example, if the expand_message variant uses a hash function H, an
encoding of DST MUST be added either as a prefix or a suffix of the input to each invocation
of H. Adding DST as a suffix is the RECOMMENDED approach.

* SHOULD read msg exactly once, for efficiency when msg is long.

In addition, each expand_message variant MUST specify a unique EXP_TAG that identifies that
variant in a Suite ID. See Section 8.10 for more information.

6. Deterministic Mappings

The mappings in this section are suitable for implementing either nonuniform or uniform
encodings using the constructions in Section 3. Certain mappings restrict the form of the curve or
its parameters. For each mapping presented, this document lists the relevant restrictions.

Note that mappings in this section are not interchangeable: different mappings will almost
certainly output different points when evaluated on the same input.

6.1. Choosing a Mapping Function

This section gives brief guidelines on choosing a mapping function for a given elliptic curve. Note
that the suites given in Section 8 are recommended mappings for the respective curves.

Faz-Hernandez, et al. Informational Page 22

RFC 9380 Hashing to Elliptic Curves August 2023

If the target elliptic curve is a Montgomery curve (Section 6.7), the Elligator 2 method (Section
6.7.1) is recommended. Similarly, if the target elliptic curve is a twisted Edwards curve (Section
6.8), the twisted Edwards Elligator 2 method (Section 6.8.2) is recommended.

The remaining cases are Weierstrass curves. For curves supported by the Simplified Shallue-van
de Woestijne-Ulas (SWU) method (Section 6.6.2), that mapping is the recommended one.
Otherwise, the Simplified SWU method for AB == 0 (Section 6.6.3) is recommended if the goal is
best performance, while the Shallue-van de Woestijne method (Section 6.6.1) is recommended if
the goal is simplicity of implementation. (The reason for this distinction is that the Simplified
SWU method for AB == 0 requires implementing an isogeny map in addition to the mapping
function, while the Shallue-van de Woestijne method does not.)

The Shallue-van de Woestijne method (Section 6.6.1) works with any curve and may be used in
cases where a generic mapping is required. Note, however, that this mapping is almost always
more computationally expensive than the curve-specific recommendations above.

6.2. Interface

The generic interface shared by all mappings in this section is as follows:
(x, y) = map_to_curve(u)

The input u and outputs x and y are elements of the field F. The affine coordinates (¥, y) specify a
point on an elliptic curve defined over F. Note, however, that the point (%, y) is not a uniformly
random point.

6.3. Notation

As a rough guide, the following conventions are used in pseudocode:

* All arithmetic operations are performed over a field F, unless explicitly stated otherwise.

 u: the input to the mapping function. This is an element of F produced by the hash_to_field
function.

* (X,), (s, 1), (v, w): the affine coordinates of the point output by the mapping. Indexed
variables (e.g., X1, y2, ...) are used for candidate values.

* tvl, tv2, ...: reusable temporary variables.
* c1, c2, ...: constant values, which can be computed in advance.

6.4. Sign of the Resulting Point

In general, elliptic curves have equations of the form y~2 = g(x). The mappings in this section first
identify an x such that g(x) is square, then take a square root to find y. Since there are two square
roots when g(x) != 0, this may result in an ambiguity regarding the sign of y.

Faz-Hernandez, et al. Informational Page 23

RFC 9380 Hashing to Elliptic Curves August 2023

When necessary, the mappings in this section resolve this ambiguity by specifying the sign of the
y-coordinate in terms of the input to the mapping function. Two main reasons support this
approach: first, this covers elliptic curves over any field in a uniform way, and second, it gives
implementors leeway in optimizing square-root implementations.

6.5. Exceptional Cases

Mappings may have exceptional cases, i.e., inputs u on which the mapping is undefined. These
cases must be handled carefully, especially for constant-time implementations.

For each mapping in this section, we discuss the exceptional cases and show how to handle them
in constant time. Note that all implementations SHOULD use invO0 (Section 4) to compute
multiplicative inverses, to avoid exceptional cases that result from attempting to compute the
inverse of 0.

6.6. Mappings for Weierstrass Curves

The mappings in this section apply to a target curve E defined by the equation
yr2 = g(x) = x"3 + A * x + B

where 4 * AA3 + 27 * BA2 1= 0.

6.6.1. Shallue-van de Woestijne Method

Shallue and van de Woestijne [SW06] describe a mapping that applies to essentially any elliptic
curve. (Note, however, that this mapping is more expensive to evaluate than the other mappings
in this document.)

The parameterization given below is for Weierstrass curves; its derivation is detailed in [W19].
This parameterization also works for Montgomery curves (Section 6.7) and twisted Edwards
curves (Section 6.8) via the rational maps given in Appendix D: first, evaluate the Shallue-van de
Woestijne mapping to an equivalent Weierstrass curve, then map that point to the target
Montgomery or twisted Edwards curve using the corresponding rational map.

Preconditions: A Weierstrass curve yA2 =xA3 + A*x + B.
Constants:

* A and B, the parameter of the Weierstrass curve.
* 7, anon-zero element of F meeting the below criteria. Appendix H.1 gives a Sage script
[SAGE] that outputs the RECOMMENDED Z.
1.g(Z)!'=0inF.
2.-B*Zr2+4*A)/(4*g(Z)!=0inE
3.-3*Zr2+4*A)/(4*g(Z)issquare inF.
4. At least one of g(Z) and g(-Z / 2) is square in F.

Faz-Hernandez, et al. Informational Page 24

RFC 9380 Hashing to Elliptic Curves August 2023

Sign of y: Inputs u and -u give the same x-coordinate for many values of u. Thus, we set sgn0(y)
==sgn0(u).

Exceptions: The exceptional cases for u occur when (1 + ur2 * g(Z)) * (1 - ur2 * g(Z)) == 0. The
restrictions on Z given above ensure that implementations that use inv0 to invert this product
are exception free.

Operations:
1. tvl = ur2 * g(2)
2. tv2 = 1 + tvl
3. tvl =1 - tvl
4. tv3 = invl(tvl * tv2)
5. tv4d = sqrt(-g(Z) * (3 * Z*2 + 4 * A)) # can be precomputed
6. If sgnB(tv4) == 1, set tv4d = -tv4 # sgn@(tv4) MUST equal ©
7. tvh = u * tvl *¥ tv3 * tv4
8. tve = -4 * g(Z) / (3 * Z*2 + 4 * A) # can be precomputed
9. x1 =-Z/ 2 - tvs
10. x2 = -Z / 2 + tv5
11. X3 = Z + tve * (tv2r2 * tv3)A2

12. If is_square(g(x1)), set x = x1 and y = sqrt(g(x1))

13. Else If is_square(g(x2)), set x = x2 and y = sqrt(g(x2))
14. Else set x = x3 and y = sqrt(g(x3))

15. If sgn@(u) != sgnB(y), set y = -y

16. return (x, y)

Appendix F.1 gives an example straight-line implementation of this mapping.

6.6.2. Simplified Shallue-van de Woestijne-Ulas Method

The function map_to_curve_simple_swu(u) implements a simplification of the Shallue-van de
Woestijne-Ulas mapping [U07] described by Brier et al. [BCIMRT10], which they call the
"simplified SWU" map. Wahby and Boneh [WB19] generalize and optimize this mapping.

Preconditions: A Weierstrass curve yA2 =xA3 + A*x + Bwhere A!=0and B !=0.
Constants:

* A and B, the parameters of the Weierstrass curve.

* Z, an element of F meeting the below criteria. Appendix H.2 gives a Sage script [SAGE] that
outputs the RECOMMENDED Z. The criteria are as follows:

1. Z is non-square in F,

2.Z!=-1inF,

3. the polynomial g(x) - Z is irreducible over F, and
4.g(B/(Z*A))issquareinF.

Sign of y: Inputs u and -u give the same x-coordinate. Thus, we set sgn0(y) == sgn0(u).

Faz-Hernandez, et al. Informational Page 25

RFC 9380 Hashing to Elliptic Curves August 2023

Exceptions: The exceptional cases are values of u such that ZA2 * ur4 + Z * uAr2 == 0. This includes
u == 0 and may include other values that depend on Z. Implementations must detect this case
and set x1 =B/ (Z* A), which guarantees that g(x1) is square by the condition on Z given above.

Operations:
1. tvl = inv@(Z*2 * ur + Z * ur2)
2. x1 = (-B / A) * (1 + tvl)
3. If tvl == 0, set x1 =B / (Z * A)
4. gx1 = x1*3 + A * x1 + B
5. X2 =27 * u*2 * X1
6. gx2 = x2"3 + A * x2 + B
7. If is_square(gx1), set x = x1 and y = sqrt(gx1)
8. Else set x = x2 and y = sqrt(gx2)
9. If sgn@(u) != sgnB(y), sety = -y
10. return (x, y)

Appendix F.2 gives a general and optimized straight-line implementation of this mapping. For
more information on optimizing this mapping, see Section 4 of [WB19] or the example code
found at [hash2curve-repo].

6.6.3. Simplified SWU for AB ==

Wahby and Boneh [WB19] show how to adapt the Simplified SWU mapping to Weierstrass curves
having A == 0 or B == 0, which the mapping of Section 6.6.2 does not support. (The case A == B ==
0 is excluded because y~2 = xA3 is not an elliptic curve.)

This method applies to curves like secp256k1 [SEC2] and to pairing-friendly curves in the
Barreto-Lynn-Scott family [BLS03], Barreto-Naehrig family [BN05], and other families.

This method requires finding another elliptic curve E' given by the equation
y'A2 = g'(x') = x""3 +A" *x' + B

that is isogenous to E and has A’ != 0 and B' != 0. (See [WB19], Appendix A, for one way of finding
E' using [SAGE].) This isogeny defines a map iso_map(x', y') given by a pair of rational functions.
iso_map takes as input a point on E' and produces as output a point on E.

Once E' and iso_map are identified, this mapping works as follows: on input u, first apply the
Simplified SWU mapping to get a point on E', then apply the isogeny map to that point to get a
point on E.

Note that iso_map is a group homomorphism, meaning that point addition commutes with
iso_map. Thus, when using this mapping in the hash_to_curve construction discussed in Section
3, one can effect a small optimization by first mapping u0 and ul to E', adding the resulting
points on E', and then applying iso_map to the sum. This gives the same result while requiring
only one evaluation of iso_map.

Faz-Hernandez, et al. Informational Page 26

RFC 9380 Hashing to Elliptic Curves August 2023

Preconditions: An elliptic curve E' with A’ I= 0 and B' != 0 that is isogenous to the target curve E
with isogeny map iso_map from E' to E.

Helper functions:

* map_to_curve_simple_swu is the mapping of Section 6.6.2 to E'
* iso_map is the isogeny map from E' to E

Sign of y: For this map, the sign is determined by map_to_curve_simple_swu. No further sign
adjustments are necessary.

Exceptions: map_to_curve_simple_swu handles its exceptional cases. Exceptional cases of
iso_map are inputs that cause the denominator of either rational function to evaluate to zero;
such cases MUST return the identity point on E.

Operations:
1. (x', y') = map_to_curve_simple_swu(u) # (x', y') is on E'
2. (x, y) = iso_map(x', y') # (x, y) is on E

3. return (x, y)

See [hash2curve-repo] or Section 4.3 of [WB19] for details on implementing the isogeny map.

6.7. Mappings for Montgomery Curves

The mapping defined in this section applies to a target curve M defined by the equation
K* t*2 = s?*3 +J * s*2 + s

6.7.1. Elligator 2 Method

Bernstein, Hamburg, Krasnova, and Lange give a mapping that applies to any curve with a point
of order 2 [BHKL13], which they call Elligator 2.

Preconditions: A Montgomery curve K * tA2 = sA3 +] *sA2 + swhere J 1= 0,K =0, and (JA2-4) /
KA2 is non-zero and non-square in F.

Constants:

*] and K, the parameters of the elliptic curve.

* Z, anon-square element of F. Appendix H.3 gives a Sage script [SAGE] that outputs the
RECOMMENDED 7.

Sign of t: This mapping fixes the sign of t as specified in [BHKL13]. No additional adjustment is
required.

Exceptions: The exceptional case is Z * ur2 ==-1,1i.e., 1 + Z * ur2 == 0. Implementations must
detect this case and set x1 = -(J / K). Note that this can only happen when q = 3 (mod 4).

Faz-Hernandez, et al. Informational Page 27

RFC 9380 Hashing to Elliptic Curves August 2023

Operations:

1. x1 = -(J / K) * inve(1 + Z * u*2)

2. If x1 ==20, set x1 = -(J / K)

3. gx1 = x1*3 + (J / K) * x1*2 + x1 / K*2

4. x2 = -x1 - (J / K)

5. gx2 = x223 + (J / K) * x22 + x2 / KA2

6. If is_square(gx1), set x = x1, y = sqrt(gx1) with sgn@(y) == 1.
7. Else set x = x2, y = sqrt(gx2) with sgn@(y) == 0.

8. s =x *K

9. t=y *K

]

0. return (s, t)

Appendix F.3 gives an example straight-line implementation of this mapping. Appendix G.2 gives
optimized straight-line procedures that apply to specific classes of curves and base fields.

6.8. Mappings for Twisted Edwards Curves

Twisted Edwards curves (a class of curves that includes Edwards curves) are given by the
equation

a*vr2 + wh2 =1 +d * vr2 * wh2

witha!=0,d!=0,and a != d [BBJLPO0S].

These curves are closely related to Montgomery curves (Section 6.7): every twisted Edwards
curve is birationally equivalent to a Montgomery curve ([BBJLP08], Theorem 3.2). This
equivalence yields an efficient way of hashing to a twisted Edwards curve: first, hash to an
equivalent Montgomery curve, then transform the result into a point on the twisted Edwards
curve via a rational map. This method of hashing to a twisted Edwards curve thus requires
identifying a corresponding Montgomery curve and rational map. We describe how to identify
such a curve and map immediately below.

6.8.1. Rational Maps from Montgomery to Twisted Edwards Curves

There are two ways to select a Montgomery curve and rational map for use when hashing to a
given twisted Edwards curve. The selected Montgomery curve and rational map MUST be
specified as part of the hash-to-curve suite for a given twisted Edwards curve; see Section 8.

1. When hashing to a standardized twisted Edwards curve for which a corresponding
Montgomery form and rational map are also standardized, the standard Montgomery form
and rational map SHOULD be used to ensure compatibility with existing software.

In certain cases, e.g., edwards25519 [RFC7748], the sign of the rational map from the twisted
Edwards curve to its corresponding Montgomery curve is not given explicitly. In this case,
the sign MUST be fixed such that applying the rational map to the twisted Edwards curve's
base point yields the Montgomery curve's base point with correct sign. (For edwards25519,
see [RFC7748] and [Err4730].)

Faz-Hernandez, et al. Informational Page 28

RFC 9380 Hashing to Elliptic Curves August 2023

When defining new twisted Edwards curves, a Montgomery equivalent and rational map
SHOULD also be specified, and the sign of the rational map SHOULD be stated explicitly.

2. When hashing to a twisted Edwards curve that does not have a standardized Montgomery
form or rational map, the map given in Appendix D SHOULD be used.
6.8.2. Elligator 2 Method
Preconditions: A twisted Edwards curve E and an equivalent Montgomery curve M meeting the
requirements in Section 6.8.1.

Helper functions:

* map_to_curve_elligator2 is the mapping of Section 6.7.1 to the curve M.

e rational_map is a function that takes a point (s, t) on M and returns a point (v, w) on E. This
rational map should be chosen as defined in Section 6.8.1.

Sign of t (and v): For this map, the sign is determined by map_to_curve_elligator2. No further sign
adjustments are required.

Exceptions: The exceptions for the Elligator 2 mapping are as given in Section 6.7.1. The
exceptions for the rational map are as given in Section 6.8.1. No other exceptions are possible.

The following procedure implements the Elligator 2 mapping for a twisted Edwards curve. (Note
that the output point is denoted (v, w) because it is a point on the target twisted Edwards curve.)

map_to_curve_elligator2_edwards(u)

Input: u, an element of F.
Output: (v, w), a point on E.

1. (s, t) = map_to_curve_elligator2(u) #
2. (v, w) rational_map(s, t) #
3. return (v, w)

s, t) is on M
Vl

w) is on E

(
(

7. Clearing the Cofactor

The mappings of Section 6 always output a point on the elliptic curve, i.e., a point in a group of
order h * r (Section 2.1). Obtaining a point in G may require a final operation commonly called
"clearing the cofactor,” which takes as input any point on the curve and produces as output a
point in the prime-order (sub)group G (Section 2.1).

The cofactor can always be cleared via scalar multiplication by h. For elliptic curves where h =1,
i.e., the curves with a prime number of points, no operation is required. This applies, for
example, to the NIST curves P-256, P-384, and P-521 [FIPS186-4].

Faz-Hernandez, et al. Informational Page 29

RFC 9380 Hashing to Elliptic Curves August 2023

In some cases, it is possible to clear the cofactor via a faster method than scalar multiplication by
h. These methods are equivalent to (but usually faster than) multiplication by some scalar h_eff
whose value is determined by the method and the curve. Examples of fast cofactor clearing
methods include the following:

* For certain pairing-friendly curves having subgroup G2 over an extension field, Scott et
al. [SBCDKO09] describe a method for fast cofactor clearing that exploits an efficiently
computable endomorphism. Fuentes-Castafieda et al. [FKR11] propose an alternative method
that is sometimes more efficient. Budroni and Pintore [BP17] give concrete instantiations of
these methods for Barreto-Lynn-Scott pairing-friendly curves [BLS03]. This method is
described for the specific case of BLS12-381 in Appendix G.3.

* Wahby and Boneh ([WB19], Section 5) describe a trick due to Scott for fast cofactor clearing
on any elliptic curve for which the prime factorization of h and the structure of the elliptic
curve group meet certain conditions.

The clear_cofactor function is parameterized by a scalar h_eff. Specifically,
clear_cofactor(P) := h_eff * P

where * represents scalar multiplication. When a curve does not support a fast cofactor clearing
method, h_eff = h and the cofactor MUST be cleared via scalar multiplication.

When a curve admits a fast cofactor clearing method, clear_cofactor MAY be evaluated either via
that method or via scalar multiplication by the equivalent h_eff; these two methods give the
same result. Note that in this case scalar multiplication by the cofactor h does not generally give
the same result as the fast method and MUST NOT be used.

8. Suites for Hashing

This section lists recommended suites for hashing to standard elliptic curves.

A hash-to-curve suite fully specifies the procedure for hashing byte strings to points on a specific
elliptic curve group. Section 8.1 describes how to implement a suite. Applications that require
hashing to an elliptic curve should use either an existing suite or a new suite specified as
described in Section 8.9.

All applications using a hash-to-curve suite MUST choose a domain separation tag (DST) in
accordance with the guidelines in Section 3.1. In addition, applications whose security requires a
random oracle that returns uniformly random points on the target curve MUST use a suite whose
encoding type is hash_to_curve; see Section 3 and immediately below for more information.

A hash-to-curve suite comprises the following parameters:

* Suite ID, a short name used to refer to a given suite. Section 8.10 discusses the naming
conventions for Suite IDs.

Faz-Hernandez, et al. Informational Page 30

RFC 9380 Hashing to Elliptic Curves August 2023

* encoding type, either uniform (hash_to_curve) or nonuniform (encode_to_curve). See Section
3 for definitions of these encoding types.

o E, the target elliptic curve over a field F.
* p, the characteristic of the field F.

* m, the extension degree of the field F. If m > 1, the suite MUST also specify the polynomial
basis used to represent extension field elements.

* k, the target security level of the suite in bits. (See Section 10.8 for discussion.)

¢ L, the length parameter for hash_to_field (Section 5).

* expand_message, one of the variants specified in Section 5.3 plus any parameters required
for the specified variant (for example, H, the underlying hash function).

* f, a mapping function from Section 6.

o h_eff, the scalar parameter for clear_cofactor (Section 7).

In addition to the above parameters, the mapping f may require additional parameters Z, M,
rational_map, E', or iso_map. When applicable, these MUST be specified.

The table below lists suites RECOMMENDED for some elliptic curves. The corresponding
parameters are given in the following subsections. Applications instantiating cryptographic
protocols whose security analysis relies on a random oracle that outputs points with a uniform
distribution MUST NOT use a nonuniform encoding. Moreover, applications that use a
nonuniform encoding SHOULD carefully analyze the security implications of nonuniformity.
When the required encoding is not clear, applications SHOULD use a uniform encoding for
security.

E Suites Section
NIST P-256 P256_XMD:SHA-256_SSWU_RO_ P256_XMD:SHA-256_SSWU_NU_ 8.2
NIST P-384 P384_XMD:SHA-384_SSWU_RO_ P384_XMD:SHA-384_SSWU_NU_ 8.3
NIST P-521 P521_XMD:SHA-512_SSWU_RO_ P521_XMD:SHA-512_SSWU_NU_ 8.4
curve25519 curve25519_XMD:SHA-512_ELL2_RO_ 8.5

curve25519_XMD:SHA-512_ELL2 NU_

edwards25519 edwards25519_XMD:SHA-512_ELL2_RO_ 8.5
edwards25519 XMD:SHA-512_ELL2 NU_

curve448 curve448 XOF:SHAKE256 _ELL2_RO_ 8.6
curve448 XOF:SHAKE256_ELL2 NU_

edwards448 edwards448 XOF:SHAKE256_ELL2 RO_ 8.6
edwards448 XOF:SHAKE256_ELL2 NU_

secp256k1 secp256k1_XMD:SHA-256_SSWU_RO_ 8.7
secp256k1_XMD:SHA-256_SSWU_NU_

Faz-Hernandez, et al. Informational Page 31

RFC 9380 Hashing to Elliptic Curves August 2023

E Suites Section

BLS12-381 G1 BLS12381G1_XMD:SHA-256_SSWU_RO_ 8.8
BLS12381G1_XMD:SHA-256_SSWU_NU_

BLS12-381 G2 BLS12381G2_XMD:SHA-256_SSWU_RO_ 8.8
BLS12381G2_XMD:SHA-256_SSWU_NU_

Table 2: Suites for hashing to elliptic curves.

8.1. Implementing a Hash-to-Curve Suite

A hash-to-curve suite requires the following functions. Note that some of these require utility
functions from Section 4.

1. Base field arithmetic operations for the target elliptic curve, e.g., addition, multiplication,
and square root.

2. Elliptic curve point operations for the target curve, e.g., point addition and scalar
multiplication.

3. The hash_to_field function; see Section 5. This includes the expand_message variant (Section
5.3) and any constituent hash function or XOF.

4. The suite-specified mapping function; see the corresponding subsection of Section 6.

5. A cofactor clearing function; see Section 7. This may be implemented as scalar multiplication
by h_eff or as a faster equivalent method.

6. The desired encoding function; see Section 3. This is either hash_to_curve or
encode_to_curve.

8.2. Suites for NIST P-256
This section defines ciphersuites for the NIST P-256 elliptic curve [FIPS186-4].

P256_XMD:SHA-256_SSWU _RO is defined as follows:

* encoding type: hash_to_curve (Section 3)
o E: yA2 =xA3 + A*x + B, where
°A=-3
° B = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b

* p: 2A256 - 24224 + 27192 + 2796 - 1

em:1

*k:128

* expand_message: expand_message_xmd (Section 5.3.1)
* H: SHA-256

*1:48

» {2 Simplified SWU method (Section 6.6.2)

Faz-Hernandez, et al. Informational Page 32

RFC 9380 Hashing to Elliptic Curves August 2023

«7:-10
eh eff: 1

P256_XMD:SHA-256_SSWU_NU_ is identical to P256_XMD:SHA-256_SSWU_RO_, except that the
encoding type is encode_to_curve (Section 3).

An optimized example implementation of the Simplified SWU mapping to P-256 is given in
Appendix F.2.

8.3. Suites for NIST P-384
This section defines ciphersuites for the NIST P-384 elliptic curve [FIPS186-4].

P384 XMD:SHA-384 SSWU RO _ is defined as follows:

» encoding type: hash_to_curve (Section 3)
*E: y"2 =xA3 + A*x + B, where
°A=-3
> B = 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8
a2ed19d2a85c8edd3ec2aef

*p: 22384 - 2128 - 2796 + 2732 - 1

em:1

* k: 192

* expand_message: expand_message_xmd (Section 5.3.1)
* H: SHA-384

¢ L:72

o f: Simplified SWU method (Section 6.6.2)

°Z:-12

eh eff:1

P384_XMD:SHA-384_SSWU_NU_ is identical to P384_XMD:SHA-384_SSWU_RO_, except that the
encoding type is encode_to_curve (Section 3).

An optimized example implementation of the Simplified SWU mapping to P-384 is given in
Appendix F.2.

8.4. Suites for NIST P-521
This section defines ciphersuites for the NIST P-521 elliptic curve [FIPS186-4].

P521_XMD:SHA-512_SSWU RO _ is defined as follows:

* encoding type: hash_to_curve (Section 3)
o E: y"2 =xA3 + A*x + B, where

oA =-3

Faz-Hernandez, et al. Informational Page 33

RFC 9380 Hashing to Elliptic Curves August 2023

> B = 0x51953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e15619395
1lec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00

°p:2A521-1

em:1

e k: 256

* expand_message: expand_message_xmd (Section 5.3.1)
* H: SHA-512

*L:98

o f: Simplified SWU method (Section 6.6.2)

°Z:-4

eh eff: 1

P521_XMD:SHA-512_SSWU_NU_ is identical to P521_XMD:SHA-512_SSWU_RO_, except that the
encoding type is encode_to_curve (Section 3).

An optimized example implementation of the Simplified SWU mapping to P-521 is given in
Appendix F.2.

8.5. Suites for curve25519 and edwards25519

This section defines ciphersuites for curve25519 and edwards25519 [RFC7748]. Note that these
ciphersuites MUST NOT be used when hashing to ristretto255 [ristretto255-decaf448]. See
Appendix B for information on how to hash to that group.

curve25519 XMD:SHA-512_ELL2 RO_ is defined as follows:

* encoding type: hash_to_curve (Section 3)
o E: K*tA2 =573 +]*sA2 +s, where

o] =486662
°K=1
°p:27255-19
em:1
«k: 128
» expand_message: expand_message_xmd (Section 5.3.1)
* H: SHA-512
°[.:48
o f: Elligator 2 method (Section 6.7.1)
°7:2
*h_eff: 8

Faz-Hernandez, et al. Informational Page 34

RFC 9380 Hashing to Elliptic Curves August 2023

edwards25519_XMD:SHA-512_ELL2_RO_ is identical to curve25519_XMD:SHA-512_ELL2_RO_,
except for the following parameters:

eE:a*vA2+wA2=1+d*vA2*wWA2, where
o a = _1
o d =0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dcal35978a3

o f: Twisted Edwards Elligator 2 method (Section 6.8.2)
* M: curve25519, defined in [RFC7748], Section 4.1
e rational_map: the birational maps defined in [RFC7748], Section 4.1

curve25519_XMD:SHA-512_ELL2_NU_ is identical to curve25519_XMD:SHA-512_ELL2_RO_, except
that the encoding type is encode_to_curve (Section 3).

edwards25519 XMD:SHA-512_ELL2_NU_ is identical to edwards25519_XMD:SHA-512_ELL2_RO ,
except that the encoding type is encode_to_curve (Section 3).

Optimized example implementations of the above mappings are given in Appendix G.2.1 and
Appendix G.2.2.

8.6. Suites for curve448 and edwards448

This section defines ciphersuites for curve448 and edwards448 [RFC7748]. Note that these
ciphersuites MUST NOT be used when hashing to decaf448 [ristretto255-decaf448]. See Appendix
C for information on how to hash to that group.

curve448 XOF:SHAKE256 ELL2 RO _is defined as follows:

* encoding type: hash_to_curve (Section 3)
o E: K*tA2=38A3 +] *sA2 + s, where

o] =156326

cK=1

o p: 27448 - 27224 - 1

em:1

e k: 224

* expand_message: expand_message_xof (Section 5.3.2)
* H: SHAKE256

*[:84

o f: Elligator 2 method (Section 6.7.1)

°Z:-1

e h eff:4

Faz-Hernandez, et al. Informational Page 35

https://rfc-editor.org/rfc/rfc7748#section-4.1
https://rfc-editor.org/rfc/rfc7748#section-4.1

RFC 9380 Hashing to Elliptic Curves August 2023

edwards448_XOF:SHAKE256_ELL2_RO_ is identical to curve448 XOF:SHAKE256_ELL2_RO_,
except for the following parameters:

eE:a*vA2+wA2=1+d*vA2*wWA2, where
ca=1
od=-39081

o f: Twisted Edwards Elligator 2 method (Section 6.8.2)
* M: curve448, defined in [RFC7748], Section 4.2
* rational_map: the 4-isogeny map defined in [RFC7748], Section 4.2

curve448_XOF:SHAKE256_ELL2_NU_ is identical to curve448 XOF:SHAKE256_ELL2_RO_, except
that the encoding type is encode_to_curve (Section 3).

edwards448 XOF:SHAKE256_ELL2 NU_ is identical to edwards448 XOF:SHAKE256_ELL2_RO ,
except that the encoding type is encode_to_curve (Section 3).

Optimized example implementations of the above mappings are given in Appendix G.2.3 and
Appendix G.2.4.

8.7. Suites for secp256k1
This section defines ciphersuites for the secp256k1 elliptic curve [SEC2].

secp256k1_XMD:SHA-256_SSWU_RO_ is defined as follows:

* encoding type: hash_to_curve (Section 3)

cE:yr2=xA3+7

o P: 2A256 - 2A32 - 279 - 2A8 - 277 - 276 - 274 - 1

em:1

*k:128

* expand_message: expand_message_xmd (Section 5.3.1)

» H: SHA-256

°L:48

o f: Simplified SWU for AB == 0 (Section 6.6.3)

°Z:-11

oEmy'A2=x'"3+A *x'+B', where
° A': 0x3f8731abdd661adca08a5558f0f5d272e953d363ch6f0e5d405447c01a444533
° B 1771

¢ iso_map: the 3-isogeny map from E' to E given in Appendix E.1
eh eff: 1

secp256k1_XMD:SHA-256_SSWU_NU_ is identical to secp256k1_XMD:SHA-256_SSWU_RO_, except
that the encoding type is encode_to_curve (Section 3).

Faz-Hernandez, et al. Informational Page 36

https://rfc-editor.org/rfc/rfc7748#section-4.2
https://rfc-editor.org/rfc/rfc7748#section-4.2

RFC 9380 Hashing to Elliptic Curves August 2023

An optimized example implementation of the Simplified SWU mapping to the curve E' isogenous
to secp256k1 is given in Appendix F.2.

8.8. Suites for BLS12-381

This section defines ciphersuites for groups G1 and G2 of the BLS12-381 elliptic curve
[BLS12-381].

8.8.1. BLS12-381 G1
BLS12381G1_XMD:SHA-256_SSWU_RO_ is defined as follows:

* encoding type: hash_to_curve (Section 3)
cE:yr2=x"3+4
* p: 0x1a011lea397fe69a4b1ba7b6434bacd764774b84138512bf6730d2a0f6b0f6241eabfffeb153f
fith9fefffffffaaab
em:1
*k:128
* expand_message: expand_message_xmd (Section 5.3.1)
* H: SHA-256
*L:64
o f: Simplified SWU for AB == 0 (Section 6.6.3)
°Z:11
*E:y'A2=x'"3+A *x'+B', where
> A' = 0x144698a3b8e9433d693a02c96d4982b0ea985383ee66a8d8e8981aefd881ac9893618da0
e0f97f5cf428082d584c1d

°B'=0x12e2908d11688030018b12e8753eee3b2016c1f0f24f4070a0b9c14fcef35ef55a23215a31
6ceaa5dlcc48e98e172be0

* iso_map: the 11-isogeny map from E' to E given in Appendix E.2
* h_eff: 0xd201000000010001

BLS12381G1_XMD:SHA-256_SSWU_NU_ is identical to BLS12381G1_XMD:SHA-256_SSWU_RO_,
except that the encoding type is encode_to_curve (Section 3).

Note that the h_eff values for these suites are chosen for compatibility with the fast cofactor
clearing method described by Scott ((WB19], Section 5).

An optimized example implementation of the Simplified SWU mapping to the curve E' isogenous
to BLS12-381 G1 is given in Appendix F.2.

8.8.2. BLS12-381 G2
BLS12381G2_XMD:SHA-256_SSWU_RO _is defined as follows:

* encoding type: hash_to_curve (Section 3)

Faz-Hernandez, et al. Informational Page 37

RFC 9380 Hashing to Elliptic Curves August 2023

cE:yr2=xA3+4*(1+1])
* base field F is GF(p~m), where
o p: 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84£38512bf6730d2a0f6b0f6241eabfffeb15
3ffffthofeffffffffaaab
om: 2
° (1, 1) is the basis for F, whereI"2+1==0inF

«k: 128
* expand_message: expand_message_xmd (Section 5.3.1)
* H: SHA-256
°1:64
o {2 Simplified SWU for AB == 0 (Section 6.6.3)
o Z:-2+1)
EtyA2=x'"3+A *X'+B', where
o A'=240*1
°oB'=1012* (1 + 1)

¢ iso_map: the isogeny map from E' to E given in Appendix E.3
* h_eff: 0xbc69f08f2ee75b3584c6a0ea91b352888e2a8e9145ad7689986ff031508ffe1329c2f17873

1db956d82bf015d1212b02ecOec69d7477clae954cbc06689f6a359894c0adebbf6b4e8020005aaa
95551

BLS12381G2_XMD:SHA-256_SSWU_NU_ is identical to BLS12381G2_XMD:SHA-256_SSWU_RO_,
except that the encoding type is encode_to_curve (Section 3).

Note that the h_eff values for these suites are chosen for compatibility with the fast cofactor
clearing method described by Budroni and Pintore ([BP17], Section 4.1) and are summarized in
Appendix G.3.

An optimized example implementation of the Simplified SWU mapping to the curve E' isogenous
to BLS12-381 G2 is given in Appendix F.2.

8.9. Defining a New Hash-to-Curve Suite

For elliptic curves not listed elsewhere in Section 8, a new hash-to-curve suite can be defined by
the following:

1. E, F, p, and m are determined by the elliptic curve and its base field.

2. kis an upper bound on the target security level of the suite (Section 10.8). A reasonable
choice of k is ceil(log2(r) / 2), where r is the order of the subgroup G of the curve E (Section
2.1).

3. Choose encoding type, either hash_to_curve or encode_to_curve (Section 3).
4. Compute L as described in Section 5.

Faz-Hernandez, et al. Informational Page 38

RFC 9380 Hashing to Elliptic Curves August 2023

5. Choose an expand_message variant from Section 5.3 plus any underlying cryptographic
primitives (e.g., a hash function H).

6. Choose a mapping following the guidelines in Section 6.1, and select any required
parameters for that mapping.

7. Choose h_eff to be either the cofactor of E or, if a fast cofactor clearing method is to be used,
a value appropriate to that method as discussed in Section 7.

8. Construct a Suite ID following the guidelines in Section 8.10.

8.10. Suite ID Naming Conventions

Suite IDs MUST be constructed as follows:

CURVE_ID || || HASH_ID || || MAP_ID || || ENC_VAR ||

The fields CURVE_ID, HASH_ID, MAP_ID, and ENC_VAR are ASCII-encoded strings of at most 64
characters each. Fields MUST contain only ASCII characters between 0x21 and 0x7E (inclusive),
except that underscore (i.e., 0X5F) is not allowed.

As indicated above, each field (including the last) is followed by an underscore ("_", ASCII 0x5F).
This helps to ensure that Suite IDs are prefix free. Suite IDs MUST include the final underscore
and MUST NOT include any characters after the final underscore.

Suite ID fields MUST be chosen as follows:

* CURVE_ID: a human-readable representation of the target elliptic curve.

* HASH_ID: a human-readable representation of the expand_message function and any
underlying hash primitives used in hash_to_field (Section 5). This field MUST be constructed
as follows:

EXP_TAG || ":" || HASH_NAME

EXP_TAG indicates the expand_message variant:

o "XMD" for expand_message_xmd (Section 5.3.1).
o "XOF" for expand_message_xof (Section 5.3.2).

HASH_NAME is a human-readable name for the underlying hash primitive. As examples:

1. For expand_message_xof (Section 5.3.2) with SHAKE128, HASH_ID is "XOF:SHAKE128".
2. For expand_message_xmd (Section 5.3.1) with SHA3-256, HASH_ID is "XMD:SHA3-256".

Suites that use an alternative hash_to_field function that meets the requirements in Section
5.1 MUST indicate this by appending a tag identifying that function to the HASH_ID field,
separated by a colon (":", ASCII 0x3A).

Faz-Hernandez, et al. Informational Page 39

RFC 9380 Hashing to Elliptic Curves August 2023

* MAP_ID: a human-readable representation of the map_to_curve function as defined in
Section 6. These are defined as follows:

o "SVDW" for Shallue and van de Woestijne (Section 6.6.1).
 "SSWU" for Simplified SWU (Sections 6.6.2 and 6.6.3).
o "ELL2" for Elligator 2 (Sections 6.7.1 and 6.8.2).

* ENC_VAR: a string indicating the encoding type and other information. The first two
characters of this string indicate whether the suite represents a hash_to_curve or an
encode_to_curve operation (Section 3), as follows:

o If ENC_VAR begins with "RO", the suite uses hash_to_curve.
o If ENC_VAR begins with "NU", the suite uses encode_to_curve.
> ENC_VAR MUST NOT begin with any other string.

ENC_VAR MAY also be used to encode other information used to identify variants, for
example, a version number. The RECOMMENDED way to do so is to add one or more subfields
separated by colons. For example, "RO:V02" is an appropriate ENC_VAR value for the second
version of a uniform encoding suite, while "RO:V02:FOO01:BAR17" might be used to indicate
a variant of that suite.

9. IANA Considerations

This document has no IANA actions.

10. Security Considerations

This section contains additional security considerations about the hash-to-curve mechanisms
described in this document.

10.1. Properties of Encodings

Each encoding type (Section 3) accepts an arbitrary byte string and maps it to a point on the
curve sampled from a distribution that depends on the encoding type. It is important to note that
using a nonuniform encoding or directly evaluating one of the mappings of Section 6 produces
an output that is easily distinguished from a uniformly random point. Applications that use a
nonuniform encoding SHOULD carefully analyze the security implications of nonuniformity.
When the required encoding is not clear, applications SHOULD use a uniform encoding.

Both encodings given in Section 3 can output the identity element of the group G. The probability
that either encoding function outputs the identity element is roughly 1/r for a random input,
which is negligible for cryptographically useful elliptic curves. Further, it is computationally
infeasible to find an input to either encoding function whose corresponding output is the identity
element. (Both of these properties hold when the encoding functions are instantiated with a
hash_to_field function that follows all guidelines in Section 5.) Protocols that use these encoding
functions SHOULD NOT add a special case to detect and "fix" the identity element.

Faz-Hernandez, et al. Informational Page 40

RFC 9380 Hashing to Elliptic Curves August 2023

When the hash_to_curve function (Section 3) is instantiated with a hash_to_field function that is
indifferentiable from a random oracle (Section 5), the resulting function is indifferentiable from
a random oracle ((MRHO04] [BCIMRT10] [FFSTV13] [LBB19] [H20]). In many cases, such a function
can be safely used in cryptographic protocols whose security analysis assumes a random oracle
that outputs uniformly random points on an elliptic curve. As Ristenpart et al. discuss in [RSS11],
however, not all security proofs that rely on random oracles continue to hold when those oracles
are replaced by indifferentiable functionalities. This limitation should be considered when
analyzing the security of protocols relying on the hash_to_curve function.

10.2. Hashing Passwords

When hashing passwords using any function described in this document, an adversary who
learns the output of the hash function (or potentially any intermediate value, e.g., the output of
hash_to_field) may be able to carry out a dictionary attack. To mitigate such attacks, it is
recommended to first execute a more costly key derivation function (e.g., PBKDF2 [RFC8018],
scrypt [REC7914], or Argon2 [RFC9106]) on the password, then hash the output of that function to
the target elliptic curve. For collision resistance, the hash underlying the key derivation function
should be chosen according to the guidelines listed in Section 5.3.1.

10.3. Constant-Time Requirements

Constant-time implementations of all functions in this document are STRONGLY RECOMMENDED
for all uses, to avoid leaking information via side channels. It is especially important to use a
constant-time implementation when inputs to an encoding are secret values; in such cases,
constant-time implementations are REQUIRED for security against timing attacks (e.g., [VR20]).
When constant-time implementations are required, all basic operations and utility functions
must be implemented in constant time, as discussed in Section 4. In some applications (e.g.,
embedded systems), leakage through other side channels (e.g., power or electromagnetic side
channels) may be pertinent. Defending against such leakage is outside the scope of this
document, because the nature of the leakage and the appropriate defense depend on the
application.

10.4. encode_to_curve: Output Distribution and Indifferentiability

The encode_to_curve function (Section 3) returns points sampled from a distribution that is
statistically far from uniform. This distribution is bounded roughly as follows: first, it includes at
least one eighth of the points in G, and second, the probability of points in the distribution varies
by at most a factor of four. These bounds hold when encode_to_curve is instantiated with any of
the map_to_curve functions in Section 6.

The bounds above are derived from several works in the literature. Specifically:

* Shallue and van de Woestijne [SW06] and Fouque and Tibouchi [FT12] derive bounds on the
Shallue-van de Woestijne mapping (Section 6.6.1).

* Fouque and Tibouchi [FT10] and Tibouchi [T14] derive bounds for the Simplified SWU
mapping (Sections 6.6.2 and 6.6.3).

* Bernstein et al. [BHKL13] derive bounds for the Elligator 2 mapping (Sections 6.7.1 and 6.8.2).

Faz-Hernandez, et al. Informational Page 41

RFC 9380 Hashing to Elliptic Curves August 2023

Indifferentiability of encode_to_curve follows from an argument similar to the one given by
Brier et al. [BCIMRT10]; we briefly sketch this argument as follows. Consider an ideal random
oracle Hc() that samples from the distribution induced by the map_to_curve function called by
encode_to_curve, and assume for simplicity that the target elliptic curve has cofactor 1 (a similar
argument applies for non-unity cofactors). Indifferentiability holds just if it is possible to
efficiently simulate the "inner" random oracle in encode_to_curve, namely, hash_to_field. The
simulator works as follows: on a fresh query msg, the simulator queries Hc(msg) and receives a
point P in the image of map_to_curve (if msg is the same as a prior query, the simulator just
returns the value it gave in response to that query). The simulator then computes the possible
preimages of P under map_to_curve, i.e., elements u of F such that map_to_curve(u) ==

(Tibouchi [T14] shows that this can be done efficiently for the Shallue-van de Woestijne and
Simplified SWU maps, and Bernstein et al. show the same for Elligator 2). The simulator selects
one such preimage at random and returns this value as the simulated output of the "inner"
random oracle. By hypothesis, Hc() samples from the distribution induced by map_to_curve on a
uniformly random input element of F, so this value is uniformly random and induces the correct
point P when passed through map_to_curve.

10.5. hash_to_field Security

The hash_to_field function, defined in Section 5, is indifferentiable from a random oracle
[MRHO04] when expand_message (Section 5.3) is modeled as a random oracle. Since
indifferentiability proofs are composable, this also holds when expand_message is proved
indifferentiable from a random oracle relative to an underlying primitive that is modeled as a
random oracle. When following the guidelines in Section 5.3, both variants of expand_message
defined in that section meet this requirement (see also Section 10.6).

We very briefly sketch the indifferentiability argument for hash_to_field. Notice that each integer
mod p that hash_to_field returns (i.e., each element of the vector representation of F) is a
member of an equivalence class of roughly 2/k integers of length log2(p) + k hits, all of which are
equal modulo p. For each integer mod p that hash_to_field returns, the simulator samples one
member of this equivalence class at random and outputs the byte string returned by I20SP.
(Notice that this is essentially the inverse of the hash_to_field procedure.)

10.6. expand_message_xmd Security

The expand_message_xmd function, defined in Section 5.3.1, is indifferentiable from a random
oracle [MRHO04] when one of the following holds:

1. H is indifferentiable from a random oracle,

2. His a sponge-based hash function whose inner function is modeled as a random
transformation or random permutation [BDPV08], or

3. His a Merkle-Damgaard hash function whose compression function is modeled as a random
oracle [CDMPO5].

For cases (1) and (2), the indifferentiability of expand_message_xmd follows directly from the
indifferentiability of H.

Faz-Hernandez, et al. Informational Page 42

RFC 9380 Hashing to Elliptic Curves August 2023

For case (3), i.e., where H is a Merkle-Damgaard hash function, indifferentiability follows from
[CDMPO5], Theorem 5. In particular, expand_message_xmd computes b_0 by prefixing the
message with one block of zeros plus auxiliary information (length, counter, and DST). Then,
each of the output blocks b_i, i >= 1 in expand_message_xmd is the result of invoking H on a
unique, prefix-free encoding of b_0. This is true, first because the length of the input to all such
invocations is equal and fixed by the choice of H and DST, and second because each such input
has a unique suffix (because of the inclusion of the counter byte I20SP(, 1)).

The essential difference between the construction discussed in [CDMPO05] and
expand_message_xmd is that the latter hashes a counter appended to strxor(b_0, b_(i- 1))
({#hashtofield-expand-xmd}, step 10) rather than to b_0. This approach increases the Hamming
distance between inputs to different invocations of H, which reduces the likelihood that
nonidealities in H affect the distribution of the b_i values.

We note that expand_message_xmd can be used to instantiate a general-purpose indifferentiable
functionality with variable-length output based on any hash function meeting one of the above
criteria. Applications that use expand_message_xmd outside of hash_to_field should ensure
domain separation by picking a distinct value for DST.

10.7. Domain Separation for expand_message Variants

As discussed in Section 2.2.5, the purpose of domain separation is to ensure that security
analyses of cryptographic protocols that query multiple independent random oracles remain
valid even if all of these random oracles are instantiated based on one underlying function H.

The expand_message variants in this document (Section 5.3) ensure domain separation by
appending a suffix-free-encoded domain separation tag DST_prime to all strings hashed by H, an
underlying hash or extendable-output function. (Other expand_message variants that follow the
guidelines in Section 5.3.4 are expected to behave similarly, but these should be analyzed on a
case-by-case basis.) For security, applications that use the same function H outside of
expand_message should enforce domain separation between those uses of H and
expand_message, and they should separate all of these from uses of H in other applications.

This section suggests four methods for enforcing domain separation from expand_message
variants, explains how each method achieves domain separation, and lists the situations in
which each is appropriate. These methods share a high-level structure: the application designer
fixes a tag DST_ext distinct from DST_prime and augments calls to H with DST_ext. Each method
augments calls to H differently, and each may impose additional requirements on DST_ext.

These methods can be used to instantiate multiple domain-separated functions (e.g., H1 and H2)
by selecting distinct DST_ext values for each (e.g., DST_ext1, DST_ext2).

1. (Suffix-only domain separation.) This method is useful when domain-separating invocations
of H from expand_message_xmd or expand_message_xof. It is not appropriate for domain-
separating expand_message from HMAC-H [RFC2104]; for that purpose, see method 4.

To instantiate a suffix-only domain-separated function Hso, compute

Faz-Hernandez, et al. Informational Page 43

RFC 9380 Hashing to Elliptic Curves August 2023

Hso(msg) = H(msg || DST_ext)

DST_ext should be suffix-free encoded (e.g., by appending one byte encoding the length of
DST_ext) to make it infeasible to find distinct (msg, DST_ext) pairs that hash to the same
value.

This method ensures domain separation because all distinct invocations of H have distinct
suffixes, since DST_ext is distinct from DST_prime.

2. (Prefix-suffix domain separation.) This method can be used in the same cases as the suffix-
only method.

To instantiate a prefix-suffix domain-separated function Hps, compute

Hps(msg) = H(DST_ext || msg || I20SP(@, 1))

DST_ext should be prefix-free encoded (e.g., by adding a one-byte prefix that encodes the
length of DST_ext) to make it infeasible to find distinct (msg, DST_ext) pairs that hash to the
same value.

This method ensures domain separation because appending the byte I20SP(0, 1) ensures that
inputs to H inside Hps are distinct from those inside expand_message. Specifically, the final
byte of DST_prime encodes the length of DST, which is required to be nonzero (Section 3.1,
requirement 2), and DST_prime is always appended to invocations of H inside
expand_message.

3. (Prefix-only domain separation.) This method is only useful for domain-separating
invocations of H from expand_message_xmd. It does not give domain separation for
expand_message_xof or HMAC-H.

To instantiate a prefix-only domain-separated function Hpo, compute

Hpo(msg) = H(DST_ext || msg)

In order for this method to give domain separation, DST_ext should be at least b bits long,
where b is the number of bits output by the hash function H. In addition, at least one of the
first b bits must be nonzero. Finally, DST_ext should be prefix-free encoded (e.g., by adding a
one-byte prefix that encodes the length of DST_ext) to make it infeasible to find distinct (msg,
DST_ext) pairs that hash to the same value.

This method ensures domain separation as follows. First, since DST_ext contains at least one
nonzero bit among its first b bits, it is guaranteed to be distinct from the value Z_pad (Section
5.3.1, step 4), which ensures that all inputs to H are distinct from the input used to generate
b_0 in expand_message_xmd. Second, since DST_ext is at least b bits long, it is almost
certainly distinct from the values b_0 and strxor(b_0, b_(i - 1)), and therefore all inputs to H
are distinct from the inputs used to generate b_i, i >= 1, with high probability.

Faz-Hernandez, et al. Informational Page 44

RFC 9380 Hashing to Elliptic Curves August 2023

4. (XMD-HMAC domain separation.) This method is useful for domain-separating invocations of
H inside HMAC-H (i.e., HMAC [RFC2104] instantiated with hash function H) from
expand_message_xmd. It also applies to HKDF-H (i.e., HKDF [RFC5869] instantiated with hash
function H), as discussed below.

Specifically, this method applies when HMAC-H is used with a non-secret key to instantiate a
random oracle based on a hash function H (note that expand_message_xmd can also be used
for this purpose; see Section 10.6). When using HMAC-H with a high-entropy secret key,
domain separation is not necessary; see discussion below.

To choose a non-secret HMAC key DST_key that ensures domain separation from
expand_message_xmd, compute

DST_key_preimage = "DERIVE-HMAC-KEY-" || DST_ext || I20SP(@, 1)
DST_key = H(DST_key_preimage)

Then, to instantiate the random oracle Hro using HMAC-H, compute
Hro(msg) = HMAC-H(DST_key, msg)

The trailing zero byte in DST_key_preimage ensures that this value is distinct from inputs to
H inside expand_message_xmd (because all such inputs have suffix DST_prime, which
cannot end with a zero byte as discussed above). This ensures domain separation because,
with overwhelming probability, all inputs to H inside of HMAC-H using key DST_key have
prefixes that are distinct from the values Z_pad, b_0, and strxor(b_0, b_(i - 1)) inside of
expand_message_xmd.

For uses of HMAC-H that instantiate a private random oracle by fixing a high-entropy secret
key, domain separation from expand_message_xmd is not necessary. This is because,
similarly to the case above, all inputs to H inside HMAC-H using this secret key almost
certainly have distinct prefixes from all inputs to H inside expand_message_xmd.

Finally, this method can be used with HKDF-H [RFC5869] by fixing the salt input to HKDF-
Extract to DST_key, computed as above. This ensures domain separation for HKDF-Extract by
the same argument as for HMAC-H using DST_key. Moreover, assuming that the input keying
material (IKM) supplied to HKDF-Extract has sufficiently high entropy (say, commensurate
with the security parameter), the HKDF-Expand step is domain-separated by the same
argument as for HMAC-H with a high-entropy secret key (since a pseudorandom key is
exactly that).

10.8. Target Security Levels

Each ciphersuite specifies a target security level (in bits) for the underlying curve. This
parameter ensures the corresponding hash_to_field instantiation is conservative and correct. We
stress that this parameter is only an upper bound on the security level of the curve and is neither
a guarantee nor endorsement of its suitability for a given application. Mathematical and
cryptographic advancements may reduce the effective security level for any curve.

Faz-Hernandez, et al. Informational Page 45

RFC 9380

Hashing to Elliptic Curves August 2023

11. References

11.1. Normative References

[Err4730]

[RFC2119]

[RFC7748]

[RFC8017]

[RFC8174]

RFC Errata, "Erratum ID 4730", RFC 7748, July 2016, <https://www.rfc-editor.org/
errata/eid4730>.

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14,
RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves for Security", RFC 7748,
DOI 10.17487/RFC7748, January 2016, <https://www.rfc-editor.org/info/rfc7748>.

Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch, "PKCS #1: RSA
Cryptography Specifications Version 2.2", RFC 8017, DOI 10.17487/RFC8017,
November 2016, <https://www.rfc-editor.org/info/rfc8017>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP
14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/
rfc8174>.

11.2. Informative References

[AFQTZ14]

[AR13]

[BBJLP08]

[BCIMRT10]

Aranha, D. F, Fouque, P.-A., Qian, C., Tibouchi, M., and J. C. Zapalowicz, "Binary
Elligator Squared", In Selected Areas in Cryptography - SAC 2014, pages 20-37,
DOI 10.1007/978-3-319-13051-4_2, November 2014, <https://doi.org/
10.1007/978-3-319-13051-4_2>.

Adj, G. and F. Rodriguez-Henriquez, "Square Root Computation over Even
Extension Fields", In IEEE Transactions on Computers. vol 63 issue 11, pages
2829-2841, DOI 10.1109/TC.201