Network Working Group V. Jacobsén
Request for Comments: 1144 LBL
February 1990

Compressing TCP/IP Headers
for Low-Speed Serial Links

Status of this Memo

This RFC is a proposed elective protocol for the Internet community and requests discus-
sion and suggestions for improvement. It describes a method for compressing the headers
of TCP/IP datagrams to improve performance over low speed serial links. The motiva-
tion, implementation and performance of the method are described. C code for a sample
implementation is given for reference. Distribution of this memo is unlimited.

T This work was supported in part by the U.S. Department of Energy under Contract Number DE-ACO03-
76SF00098.

Contents

1

2

Introduction
The problem

The compression algorithm

3.1 Thebasicidea

3.2 Theuglydetails.
3.21 Overview
3.2.2 Compressed packet format .
3.2.3 Compressor processing . . .
3.2.4 Decompressor processing. .

Error handling
4.1 Errordetection
4.2 Errorrecovery.

Configurable parameters and tuning
5.1 Compression configuration.

5.2 Choosing a maximum transmissionunit

5.3 Interaction with data compressian. .
Performance measurements
Acknowlegements

Sample Implementation

A.1 Definitions and State Data
A2 Compression
A.3 Decompression.
A.4 Initializationo
A.5 Berkeley Unix dependencies.

Compatibility with past mistakes
B.1 Living without a framing ‘type’ byte .
B.2 Backwards compatible SLIP servers

More aggressive compression
Security Considerations

Author’s address

© N o O b

12

15
15
16

19
19
20
21

25

26

28
29
31
36
39
39

41
41
41

42

43

43

RFC 1144 Compressing TCP/IP Headers February 1990

1 Introduction

As increasingly powerful computers find their way into people’s homes, there is growing
interest in extending Internet connectivity to those computers. Unfortunately, this exten-
sion exposes some complex problems in link-level framing, address assignment, routing,
authentication and performance. As of this writing there is active work in all these areas.
This memo describes a method that has been used to improve TCP/IP performance over
low speed (300 to 19,200 bps) serial links.

The compression proposed here is similar in spirit tolthi@wire-11 protocol described
in [5]. However, this protocol compresses more effectively (the average compressed header
is 3 bytes compared to 13 in Thinwire-Il) and is both efficient and simple to implement
(the Unix implementation is 250 lines of C and requires, on the averages 90170
instructions) for a 20MHz MC68020 to compress or decompress a packet).

This compression is specific to TCP/IP datagrdmdhe author investigated com-
pressing UDP/IP datagrams but found that they were too infrequent to be worth the bother
and either there was insufficient datagram-to-datagram coherence for good compression
(e.g., name server queries) or the higher level protocol headers overwhelmed the cost of
the UDP/IP header (e.g., Sun’'s RPC/NFS). Separately compressing the IP and the TCP
portions of the datagram was also investigated but rejected since it increased the average
compressed header size by 50% and doubled the compression and decompression code
size.

2 The problem

Internet services one might wish to access over a serial IP link from home range from
interactive “terminal” type connections (e.g., telnet, rlogin, xterm) to bulk data transfer
(e.g., ftp, smtp, nntp). Header compression is motivated by the need for good interactive
response. l.e., thine efficiencyof a protocol is the ratio of the data to header+data in a
datagram. If efficient bulk data transfer is the only objective, it is always possible to make
the datagram large enough to approach an efficiency of 100%.

Human-factors studies[15] have found that interactive response is perceived as “bad”
when low-level feedback (character echo) takes longerthan 100 to 200 ms. Protocol headers
interact with this threshold three ways:

(1) If the line is too slow, it may be impaossible to fit both the headers and data into a 200
ms window: One typed character results in a 41 byte TCP/IP packet being sent and
a 41 byte echo being received. The line speed must be at least 4000 bps to handle
these 82 bytes in 200 ms.

1The tie to TCP is deeper than might be obvious. In addition to the compression “knowing” the format of
TCP and IP headers, certain features of TCP have been used to simplify the compression protocol. In particular,
TCP’s reliable delivery and the byte-stream conversation model have been used to eliminate the need for any
kind of error correction dialog in the protocol (see sec. 4).

Jacobson [Page 1]

RFC 1144 Compressing TCP/IP Headers February 1990

(2) Even with a line fast enough to handle packetized typing echo (4800 bps or above),
there may be an undesirable interaction between bulk data and interactive traffic: For
reasonable line efficiency the bulk data packet size needs to be 10 to 20 times the
header size. |.e., the limaaximum transmission urat MTU should be 500 to 1000
bytes for 40 byte TCP/IP headers. Even with type-of-service queuing to give priority
to interactive traffic, a telnet packet has to wait for any in-progress bulk data packet
to finish. Assuming data transfer in only one direction, that wait averages half the
MTU or 500 ms for a 1024 byte MTU at 9600 bps.

(3) Any communication medium has a maximum signalling rate, the Shannon limit.
Based on an AT&T study[2], the Shannon limit for a typical dialup phone line is
around 22,000 bps. Since a full duplex, 9600 bps modem already runs at 80% of
the limit, modem manufacturers are starting to offer asymmetric allocation schemes
to increase effective bandwidth: Since a line rarely has equivalent amounts of data
flowing both directions simultaneously, it is possible to give one end of the line
more than 11,000 bps by either time-division multiplexing a half-duplex line (e.g.,
the Telebit Trailblazer) or offering a low-speed “reverse channel” (e.g., the USR
Courier HST)? In either case, the modem dynamically tries to guess which end of
the conversation needs high bandwidth by assuming one end of the conversation is
a human (i.e., demand is limited t0300 bps by typing speed). The factor-of-forty
bandwidth multiplication due to protocol headers will fool this allocation heuristic
and cause these modems to “thrash”.

From the above, it’s clear that one design goal of the compression should be to limit the
bandwidth demand of typing and ack traffic to at most 300 bps. A typical maximum typing
speed is around five characters per seéombiich leaves a budget 305 = 25 characters
for headers or five bytes of header per character typEile byte headers solve problems
(1) and (3) directly and, indirectly, problem (2): A packet size of 100-200 bytes will easily
amortize the cost of a five byte header and offer a user 95-98% of the line bandwidth for

2See the excellent discussion of two-wire dialup line capacity in [1], chap. 11. In particular, there is
widespread misunderstanding of the capabilities of ‘echo-cancelling’ modems (such as those conforming to
CCITT V.32): Echo-cancellation can offer each side of a two-wire line the fullbiaedwidthbut, since the
far talker’s signal adds to the local ‘noise’, nbie full line capacity The 22Kbps Shannon limit is a hard-limit
on data rate through a two-wire telephone connection.

3See [13]. Typing bursts or multiple character keystrokes such as cursor keys can exceed this average
rate by factors of two to four. However the bandwidth demand stays approximately constant since the TCP
Nagle algorithm[8] aggregates traffic with<a200ms interarrival time and the improved header-to-data ratio
compensates for the increased data.

4A similar analysis leads to essentially the same header size limit for bulk data transfer ack packets. As-
suming that the MTU has been selected for “unobtrusive” background file transfers (i.e., chosen so the packet
time is 200—400 ms — see sec. 5), there can be at most 5 data packets per second in the “high bandwidth”
direction. A reasonable TCP implementation will ack at most every other data packet so at 5 bytes per ack the
reverse channel bandwidth is52< 5 = 12.5 bytes/sec.

Jacobson [Page 2]

RFC 1144 Compressing TCP/IP Headers February 1990

®—
o—@—

Figure 1:A topology that gives incomplete information at gateways

data. These short packets mean little interference between interactive and bulk data traffic
(see sec. 5.2).

Another design goal is that the compression protocol be based solely on information
guaranteed to be known to both ends of a single serial link. Consider the topology shown in
fig. 1 where communicating hosts A and B are on separate local area nets (the heavy black
lines) and the nets are connected by two serial links (the open lines between gateways C-D
and E-F)? One compression possibility would be to convert each TCP/IP conversation
into a semantically equivalent conversation in a protocol with smaller headers, e.g., to an
X.25 call. But, because of routing transients or multipathing, it's entirely possible that
some of the A-B traffic will follow the A-C-D-B path and some will follow the A-E-F-B
path. Similarly, it's possible that A B traffic will flow A-C-D-B and B— A traffic will
flow B-F-E-A. None of the gateways can count on seeing all the packets in a particular TCP
conversation and a compression algorithm that works for such a topology cannot be tied to
the TCP connection syntax.

A physical link treated as two, independent, simplex links (one each direction) imposes
the minimum requirements on topology, routing and pipelining. The ends of each simplex
link only have to agree on the most recent packet(s) sent on that link. Thus, although any
compression scheme involves shared state, this state is spatially and temporally local and
adheres to Dave Clark’s principle tdte sharing4]: The two ends can only disagree on
the state if the link connecting them is inoperable, in which case the disagreement doesn’t
matter.

SNote that although the TCP endpoints are A and B, in this example compression/decompression must be
done at the gateway serial links, i.e., between C and D and between E and F. Since A and B are using IP, they
cannot know that their communication path includes a low speed serial link. It is clearly a requirement that
compression not break the IP model, i.e., that compression function between intermediate systems and not just
between end systems.

Jacobson [Page 3]

RFC 1144 Compressing TCP/IP Headers February 1990

Byte ol [[Q[T Jel [TT[{ T e [TTITT d [TT[1]
Protocol Header Type of
0 Version | Length Service Total Length
DM
4 Packet ID ElFE Fragment Offset
8 Time to Live Protocol Header Checksum
12 Source Address
16 Destination Address
20 Source Port Destination Port
24 Sequence Number
28 Acknowledgment Number
Data ™
32 Offset 2lg 'é @ % £ Window
36 Checksum Urgent Pointer
.......................... S
H }
40 i DataBytel i DataByte 2 Data Byte 3
H 4
4

Figure 2: The header of a TCP/IP datagram

3 The compression algorithm

3.1 The basic idea

Figure 2 shows a typical (and minimum length) TCP/IP datagram héat@ike header size

is 40 bytes: 20 bytes of IP and 20 of TCP. Unfortunately, since the TCP and IP protocols
were not designed by a committee, all these header fields serve some useful purpose and
it's not possible to simply omit some in the name of efficiency.

However, TCP establishes connections and, typically, tens or hundreds of packets are
exchanged on each connection. How much of the per-packet information is likely to stay
constant over the life of a connection? Half—the shaded fieldsin fig. 3. So, if the sender and
receiver keep track of active connectidrand the receiver keeps a copy of the header from
the last packet it saw from each connection, the sender gets a factor-of-two compression by
sending only a small«{ 8 bit) connection identifietogether with the 20 bytes that change
and letting the receiver fill in the 20 fixed bytes from the saved header.

One can scavenge a few more bytes by noting that any reasonable link-level framing

5The TCP and IP protocols and protocol headers are described in [10] and [11].
"The 96-bit tuple(src address, dst address, src port, dst pariquely identifies a TCP connection.

Jacobson [Page 4]

RFC 1144 Compressing TCP/IP Headers February 1990

Byte ol [[Q[[[Jel [TT[{ T e [TTTTTl [TT[1]
Protocol Header Type of
0 Version [Length Service Total Length
DM
4 Packet ID ElE Fragment Offset
8 Time to Live Protocol Header Checksum
12 Source Address
16 Destination Address
20 Source Port Destination Port
24 Sequence Number
28 Acknowledgment Number
Data |
32 Offset 2ls 'é @ % £ Window
36 Checksum Urgent Pointer
.......................... s S
: i
40 ! DataByte 1 { DataByte 2 Data Byte 3
H i
i

Figure 3:Fields that change during a TCP connection

protocol will tell the receiver the length of a received messag®t length (bytes 2

and 3) is redundant. But then tieeader checksurtbytes 10 and 11), which protects
individual hops from processing a corrupted IP header, is essentially the only part of the
IP header being sent. It seems rather silly to protect the transmission of information that
isn't being transmitted. So, the receiver can check the header checksum when the header is
actually sent (i.e., in an uncompressed datagram) but, for compressed datagrams, regenerate
it locally at the same time the rest of the IP header is being regenétated.

Thisleaves 16 bytes of header information to send. All of these bytes are likely to change
over the life of the conversation but they do not all change at the same time. For example,
during an FTP data transfer only tipacket 1D sequence numbemnd checksunthange
in the senderreceiver direction and only thgacket 10 ack checksumand, possibly,
window; change in the receiver sender direction. With a copy of the last packet sent for
each connection, the sender can figure out what fields change in the current packet then

8The IP header checksumristan end-to-end checksum in the sense of [14]: The time-to-live update forces
the IP checksum to be recomputed at each hop. The author has had unpleasant personal experience with the
consequences of violating tlead-to-end argumeti [14] and this protocol is careful to pass the end-to-end
TCP checksum through unmodified. See sec. 4.

Jacobson [Page 5]

RFC 1144 Compressing TCP/IP Headers February 1990

send a bitmask indicating what changed followed by the changing flelds.

If the sender only sends fields that differ, the above scheme gets the average header size
down to around ten bytes. However, it's worthwhile looking at how the fields change: The
packet ID typically comes from a counter that is incremented by one for each packet sent.
l.e., the difference between the current and previous packet IDs should be a small, positive
integer, usually 256 (one byte) and frequently 1. For packets from the sender side of
a data transfer, the sequence number in the current packet will be the sequence number in
the previous packet plus the amount of data in the previous packet (assuming the packets
are arriving in order). Since IP packets can be at most 64K, the sequence number change
must be< 2%° (two bytes). So, if thelifferencesn the changing fields are sent rather than
the fields themselves, another three or four bytes per packet can be saved.

That gets us to the five-byte header target. Recognizing a couple of special cases will
get us three byte headers for the two most common cases—interactive typing traffic and
bulk data transfer—but the basic compression scheme is the differential coding developed
above. Given that this intellectual exercise suggests it is possible to get five byte headers,
it seems reasonable to flesh out the missing details and actually implement something.

3.2 The ugly details
3.2.1 Overview

Figure 4 shows a block diagram of the compression software. The networking system
calls a SLIP output driver with an IP packet to be sent over the serial line. The packet
goes through a compressor which checks if the protocol is TCP. Non-TCP packets and
“uncompressible” TCP packets (described below) are just markedres 1P and passed

to a framer. Compressible TCP packets are looked up in an array of packet headers. If
a matching connection is found, the incoming packet is compressed, the (uncompressed)
packet header is copied into the array, and a packet ofdgpeRESSED _TCP is sent to the
framer. If no match is found, the oldest entry in the array is discarded, the packet header is
copied into that slot, and a packet of typRCOMPRESSED _TCP is sent to the framer. (An
UNCOMPRESSED _ TCcP packet is identical to the original IP packet except the IP protocol field

is replaced with a&onnection numberan index into the array of saved, per-connection
packet headers. This is how the sender (re-)synchronizes the receiver and “seeds” it with
the first, uncompressed packet of a compressed packet sequence.)

The framer is responsible for communicating the packet data, type and boundary (so
the decompressor can learn how many bytes came out of the compressor). Since the

9This is approximatelyThinwire-I from [5]. A slight modification is to do a “delta encoding” where
the sender subtracts the previous packet from the current packet (treating each packet as an array of 16 bit
integers), then sends a 20-bit mask indicating the non-zero differences followed by those differences. If distinct
conversations are separated, this is a fairly effective compression scheme (e.qg., typically 12-16 byte headers)
that doesn’t involve the compressor knowing any details of the packet structure. Variations on this theme have
been used, successfully, for a number of years (e.g., the Proteon router’s serial link protocol[3]).

Jacobson [Page 6]

RFC 1144 Compressing TCP/IP Headers February 1990

Simplex serial link
(1/2 of real, full
duplex link)

! SLIP Output ! SLIP Input

framing framing
Tg(f,k/leli Compressor and error and error Decompressor TCFZ”?
p H detection detection packe
saved packet headers saved packet headers

for n connections H H for n connections

00

Figure 4:Compression/decompression model

compression is a differential coding, the framer must not re-order packets (this is rarely
a concern over a single serial link). It must also proviped error detection and, if
connection numbers are compressed, must provide an error indication to the decompressor
(see sec. 43°

The decompressor does a ‘switch’ on the type of incoming packets: T _IP,
the packet is simply passed through. ESNCOMPRESSED _TCP, the connection number
is extracted from the IP protocol field amePROTO_TCP is restored, then the connection
number is used as an index into the receiver’s array of saved TCP/IP headers and the
header of the incoming packet is copied into the indexed slotCBRPRESSED_TCP, the
connection number is used as an array index to get the TCP/IP header of the last packet
from that connection, the info in the compressed packet is used to update that header, then
a new packetis constructed containing the now-current header from the array concatenated
with the data from the compressed packet.

Note that the communication @mplex—no information flows in the decompressor-
to-compressor direction. In particular, this implies that the decompressor is relying on TCP
retransmissions to correct the saved state in the event of line errors (see sec. 4).

3.2.2 Compressed packet format

Figure 5 shows the format of a compressed TCP/IP packet. Therehiarme maskhat
identifies which of the fields expected to change per-packet actually changmahection
numberso the receiver can locate the saved copy of the last packet for this TCP connection,

©Link level framing is outside the scope of this document. Any framing that provides the facilities listed
in this paragraph should be adequate for the compression protocol. However, the author encourages potential
implementors to see [9] for a proposed, standard, SLIP framing.

Jacobson [Page 7]

RFC 1144 Compressing TCP/IP Headers February 1990

Byte 0 ClI'|P|IS|A|W|U
1. connection number (C)
2
TCP checksum
3
4 urgent pointer (U)
T T T T T T e s e s m s m e ——mm——————— - 1
A window (W)
____________________________________ i
A ack (A) |

AIPID (1) ;
3sn<16 | data :

Figure 5:The header of a compressed TCP/IP datagram

the unmodified TCP checksum so the end-to-end data integrity check will still be valid,
then for each bit set in the change mask, the amount the associated field changed. (Optional
fields, controlled by the mask, are enclosed in dashed lines in the figure.) In all cases, the
bit is set if the associated field is present and clear if the field is aBsent.

Since the delta’s in the sequence number, etc., are usually small, particularly if the
tuning guidelines in section 5 are followed, all the numbers are encoded in a variable length
scheme that, in practice, handles most traffic with eight bits: A change of one through 255
is represented in one byte. Zero is improbable (a change of zero is never sent) so a byte
of zero signals an extension: The next two bytes are the MSB and LSB, respectively, of a
16 bit value. Numbers larger than 16 bits force an uncompressed packet to be sent. For
example, decimal 15 is encoded as Béx 255 adf , 65534 a90 fffe ,and zeroad0
00 00. This scheme packs and decodes fairly efficiently: The usual case for both encode
and decode executes three instructions on a MC680x0.

The numbers sent for TCP sequence number and ack are the différeeteeen the
current value and the value in the previous packet (an uncompressed packet is sent if the
difference is negative or more than 64K). The number sent for the window is also the

1The bit ‘P’ in the figure is different from the others: It is a copy of the “PUSH” bit from the TCP header.
“PUSH” is a curious anachronism considered indispensable by certain members of the Internet community.
Since PUSH can (and does) change in any datagram, an information preserving compression scheme must pass
it explicitly.

L2l differences are computed using two’s complement arithmetic.

Jacobson [Page 8]

RFC 1144 Compressing TCP/IP Headers February 1990

difference between the current and previous values. However, either positive or negative
changes are allowed since the window is a 16 bit field. The packet’s urgent pointer is sent
if URG is set (an uncompressed packet is sent if the urgent pointer changes but URG is
not set). Fopacket 10 the number sent is the difference between the current and previous
values. However, unlike the rest of the compressed fields, the assumed chandeisvhen
clear is one, not zero.

There are two important special cases:

(1) The sequence number and ack both change by the amount of data in the last packet;
no window change or URG.

(2) The sequence number changes by the amount of data in the last packet, no ack or
window change or URG.

(1) is the case for echoed terminal traffic. (2) is the sender side of non-echoed terminal
traffic or a unidirectional data transfer. Certain combinations of the S, A, W and U bits
of the change mask are used to signal these special cases. ‘U’ (urgent data) is rare so two
unlikely combinations are S W U (used for case 1) and S AW U (used for case 2). To avoid
ambiguity, an uncompressed packet is sent if the actual changes in a packet are S * W U.
Since the ‘active’ connection changes rarely (e.g., a user will type for several minutes
in a telnet window before changing to a different window), the C bit allows the connection
number to be elided. If C is clear, the connection is assumed to be the same as for the
last compressed or uncompressed packet. If C is set, the connection number is in the byte
immediately following the change masg.
From the above, it's probably obvious that compressed terminal traffic usually looks
like (in hex): 0B c c d , where thédB indicates case (1§, cis the two byte TCP checksum
andd is the character typed. Commandsvicor emacs or packets in the data transfer
direction of an FTP ‘put’ or ‘get’ look likeOF c c d ..., and acks for that FTP look like
04 c c a wherea is the amount of data being ackét.

3.2.3 Compressor processing

The compressor is called with the IP packet to be processed and the compression state
structure for the outgoing serial line. It returns a packet ready for final framing and the link
level ‘type’ of that packet.

3The connection number is limited to one byte, i.e., 256 simultaneously active TCP connections. In al-
most two years of operation, the author has never seen a case where more than sixteen connection states
would be useful (even in one case where the SLIP link was used as a gateway behind a very busy, 64-port
terminal multiplexor). Thus this does not seem to be a significant restriction and allows the protocol field in
UNCOMPRESSED _ TCP packets to be used for the connection number, simplifying the processing of those packets.

“t's also obvious that the change mask changes infrequently and could often be elided. In fact, one can do
slightly better by saving the last compressed packet (it can be at most 16 bytes so this isn’'t much additional
state) and checking to see if any of it (except the TCP checksum) has changed. If not, send a packet type that
means “compressed TCP, same as last time” and a packet containing only the checksum and data. But, since
the improvement is at most 25%, the added complexity and state doesn’t seem justified. See appendix C.

Jacobson [Page 9]

RFC 1144 Compressing TCP/IP Headers February 1990

As the last section noted, the compressor converts every input packet into either a
TYPE_IP, UNCOMPRESSED _TCP OF COMPRESSED _ TCP packet. ATYPE_IP packet is an un-
modified copy® of the input packet and processing it doesn’t change the compressor’s state
in any way.

An UNCOMPRESSED_ TCP packet is identical to the input packet except ifRgrotocol
field (byte 9) is changed from ‘6’ (protocol TCP) tocannection number In addition,
the state slot associated with the connection number is updated with a copy of the input
packet’s IP and TCP headers and the connection number is recordedas tteenection
senton this serial line (for the C compression described below).

A COMPRESSED_TCP packet contains the data, if any, from the original packet but
the IP and TCP headers are completely replaced with a new, compressed header. The
connection state slot aalst connection serare updated by the input packet exactly as for
anUNCOMPRESSED _ TCP packet.

The compressor’s decision procedure is:

¢ If the packet is not protocol TCP, send it®sPE_IP.

¢ Ifthe packetis an IP fragment (i.e., either fnegment offsetield is non-zero or the
more fragmentsit is set), send it asype_Ip.10

¢ If any of the TCP control bitSYN, FINor RSTare set or if theACK bit is clear,
consider the packet uncompressible and sendivas_ip.1’

If a packet makes it through the above checks, it will be sent as eiN@MPRESSED _TCP
Or COMPRESSED _TCP;

¢ If no connection state can be found that matches the packet’s source and destination
IP addresses and TCP ports, some state is reclaimed (which should probably be the
least recently used) and amCOMPRESSED _TCP packet is sent.

151t is not necessary (or desirable) to actually duplicate the input packet for any of the three output types.
Note that the compressor cannot increase the size of a datagram. As the code in appendix A shows, the protocol
can be implemented so all header modifications are made ‘in place’.

80nly the first fragment contains the TCP header so the fragment offset check is necessary. The first
fragment might contain a complete TCP header and, thus, could be compressed. However the check for a
complete TCP header adds quite a lot of code and, given the arguments in [6], it seems reasonable to send all
IP fragments uncompressed.

"The ACK test is redundant since a standard conforming implementation must set ACK in all packets except
for the initial SYN packet. However, the test costs nothing and avoids turning a bogus packet into a valid one.
SYN packets are not compressed because only half of them contain a valid ACK field and they usually
contain a TCP option (the max. segment size) which the following packets don’t. Thus the next packet would
be sent uncompressed because the TCP header length changed and sending theN80M REESSED_ TCP
instead ofryPe_IP would buy nothing.

The decision to not compress FIN packets is questionable. Discounting the trick in appendix B.1, there is a
free bit in the header that could be used to communicate the FIN flag. However, since connections tend to last
for many packets, it seemed unreasonable to dedicate an entire bit to a flag that would only appear once in the
lifetime of the connection.

Jacobson [Page 10]

RFC 1144 Compressing TCP/IP Headers February 1990

¢ If a connection state is found, the packet header it contains is checked against the
current packet to make sure there were no unexpected changes. (E.g., that all the
shadedfieldsinfig. 3 are the same). The IP protocol, fragment offset, more fragments,
SYN, FIN and RST fields were checked above and the source and destination address
and ports were checked as part of locating the state. So the remaining fields to check
are protocol version, header length, type of service, don't fragment, time-to-live,
data offsetIP options (if any) and TCP options (if any). If any of these fields differ
between the two headers, BRCOMPRESSED_ TCP packet is sent.

If all the “unchanging” fields match, an attempt is made to compress the current packet:

¢ If the URG flag is set, theurgent datafield is encoded (note that it may be zero)
and the U bit is set in the change mask. Unfortunately, if URG is clear, the ur-
gent data field must be checked against the previous packet and, if it changes, an
UNCOMPRESSED _ TCP packet is sent. (‘Urgent data’ shouldn’t change when URG is
clear but [11] doesn'’t require this.)

e The difference between the current and previous packaétdowfield is computed
and, if non-zero, is encoded and the W bit is set in the change mask.

¢ The difference betweeackfields is computed. If the resultis less than zero or greater
than 2% — 1, anuNcomMPRESSED _TCP packet is sent® Otherwise, if the result is
non-zero, it is encoded and the A bit is set in the change mask.

¢ The difference betweesequence numbéelds is computed. If the result is less than
zero or greater than'2—1, anUNCOMPRESSED _ TCP packet is sent? Otherwise, if
the result is non-zero, it is encoded and the S bit is set in the change mask.

Once the U, W, A and S changes have been determined, the special-case encodings can be
checked:

e If U, SandW are set, the changes match one of the special-case encodings. Send an
UNCOMPRESSED _TCP packet.

¢ Ifonly Sis set, check if the change equals the amount of user data in the last packet.
l.e., subtract the TCP and IP header lengths from the last pattttidengthfield
and compare the result to the S change. If they're the same, set the change mask to
SAWU (the special case for “unidirectional data transfer”) and discard the encoded
sequence number change (the decompressor can reconstruct it since it knows the last
packet’s total length and header length).

18The two tests can be combined into a single test of the most significant 16 bits of the difference being
non-zero.

19A negative sequence number change probably indicates a retransmission. Since this may be due to the
decompressor having dropped a packet, an uncompressed packet is sent to re-sync the decompressor (see sec. 4).

Jacobson [Page 11]

RFC 1144 Compressing TCP/IP Headers February 1990

e If only SandA are set, check if they both changed by the same amount and that
amount is the amount of user data in the last packet. If so, set the change mask
to SWU (the special case for “echoed interactive” traffic) and discard the encoded
changes.

¢ If nothing changed, check if this packet has no user data (in which case it is probably
a duplicate ack or window probe) or if the previous packet contained user data (which
means this packet is a retransmission on a connection with no pipelining). In either
of these cases, send BNCOMPRESSED _ TCP packet.

Finally, the TCP/IP header on the outgoing packet is replaced with a compressed header:

¢ The change in thpacket IDis computed and, if not or#, the difference is encoded
(note that it may be zero or negative) and the | bit is set in the change m