I nt ernet Engi neering Task Force (I ETF) D. Bl ack

Request for Comments: 5663 S. Fridella
Cat egory: Standards Track EMC Cor poration
| SSN: 2070-1721 J. d asgow

Googl e

January 2010

Paral |l el NFS (pNFS) Bl ock/ Vol ume Layout
Abstr act

Paral l el NFS (pNFS) extends Network File Sharing version 4 (NFSv4) to
allowclients to directly access file data on the storage used by the
NFSv4 server. This ability to bypass the server for data access can
i ncrease both performance and parallelism but requires additiona
client functionality for data access, sone of which is dependent on
the class of storage used. The nain pNFS operations docunent
speci fi es storage-cl ass-i ndependent extensions to NFS; this docunent
specifies the additional extensions (primarily data structures) for
use of pNFS with bl ock- and vol une-based st orage.

Status of This Meno
This is an Internet Standards Track docunent.

This docunment is a product of the Internet Engi neering Task Force
(ITETF). It represents the consensus of the I ETF comunity. |t has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it nmay be obtai ned at
http://ww. rfc-editor.org/info/rfc5663

Bl ack, et al. St andards Track [Page 1]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

Copyright Notice

Copyright (c) 2010 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Bl ack, et al. St andards Track [Page 2]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

Tabl e

1

Nouokw

Bl ack,

of Contents
Nt roduCti ON ... e 4
1.1. Conventions Used in This Docunent 4
1.2. General Definitions 5
1. 3. Code Conponents Licensing Notice 5
1.4. XDR DesCription e e e e e 5
Bl ock Layout DeSCription 7
2.1. Background and Architecture 7
2.2. CETDEVICELIST and GETDEVICEINFOttt 9
2.2.1. Volune Identification 9
2.2.2. Volume Topol 0gyo 10
2.2.3. GETDEVI CELI ST and CETDEVI CEI NFO deviceid4 12
2.3. Data Structures: Extents and Extent Lists 12
2.3.1. Layout Requests and Extent Lists 15
2.3.2. Layout Commits 16
2.3.3. Layout Returns 16
2.3.4. Cient Copy-on-Wite Processing 17
2.3.5. Extents are Perm sSSions 18
2.3.6. End-of-file Processing 20
2.3.7. Layout Hints 20
2.3.8. dient Fencing 21
2.4. Crash Recovery ISSUBS e 23
2.5. Recalling Resources: CB RECALL ANY 23
2.6. Transient and Permanent Errors 24
Security Considerati ONS 24
CoONCl USI ONS .. 26
IANA Considerati ONS e e e e e e 26
ACKknow edgment S 26
Ref erencCes 27
7.1. Normative References i, 27
7.2. Informative References 27
et al. St andards Track [Page 3]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

1. Introduction

Figure 1 shows the overall architecture of a Parallel NFS (pNFS)

system
S +
[+----------- + e +
NESEEEEEEEEES + | |
[1] | NFSv4.1 + pNFS | |
+H] dients | <--------mmmii e >| Ser ver
+ | | |
S + | |
[l oo +
[l |
[] |
||| Storage R + |
||| Protocol | +----------- +
[|+----mmm - - [|+----------- + Control
R [1] | Pr ot ocol
e +| Storage |[------------ +
+| Systens |
S +

Figure 1: pNFS Architecture

The overall approach is that pNFS-enhanced clients obtain sufficient
informati on fromthe server to enable themto access the underlying
storage (on the storage systens) directly. See the pNFS portion of
[NFSv4.1] for nore details. This docunent is concerned with access
frompNFS clients to storage systens over storage protocols based on
bl ocks and vol unes, such as the Snall Conputer System Interface
(SCSl) protocol fanmily (e.g., parallel SCSI, Fibre Channel Protoco
(FCP) for Fibre Channel, Internet SCSI (iSCSl), Serial Attached SCSI
(SAS), and Fi bre Channel over Ethernet (FCoE)). This class of
storage is referred to as bl ock/volunme storage. Wile the Server to
St orage System protocol, called the "Control Protocol", is not of
concern for interoperability here, it will typically also be a

bl ock/vol ume protocol when clients use block/ volume protocols.

1.1. Conventions Used in This Docunent
The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",

"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].

Bl ack, et al. St andards Track [Page 4]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

1.2.

1. 4.

Bl a

Ceneral Definitions

The followi ng definitions are provided for the purpose of providing
an appropriate context for the reader.

Byt e

This docunent defines a byte as an octet, i.e., a datumexactly 8
bits in I ength.

Client

The "client" is the entity that accesses the NFS server’s
resources. The client nay be an application that contains the
logic to access the NFS server directly. The client nmay al so be
the traditional operating systemclient that provides rempote file
system services for a set of applications.

Server

The "server" is the entity responsible for coordinating client
access to a set of file systens and is identified by a server
owner .

Code Conponents Licensing Notice

The external data representation (XDR) description and scripts for
extracting the XDR description are Code Conponents as described in
Section 4 of "Legal Provisions Relating to | ETF Docunents"” [LEGAL].
These Code Conponents are licensed according to the ternms of Section
4 of "Legal Provisions Relating to | ETF Docunents".

XDR Descri ption

Thi s docunment contains the XDR ([XDR]) description of the NFSv4.1

bl ock |l ayout protocol. The XDR description is enbedded in this
docunent in a way that nmakes it sinple for the reader to extract into
a ready-to-conpile form The reader can feed this docunent into the
followi ng shell script to produce the machi ne readabl e XDR
description of the NFSv4.1 bl ock | ayout:

#!/ bi n/ sh
grep "N *//]" $* | sed 's?™ */[] ??° | sed 's?N *[]]$??
ck, et al. St andards Track [Page 5]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

That is, if the above script is stored in a file called "extract.sh"
and this docunent is in a file called "spec.txt", then the reader can
do:

sh extract.sh < spec.txt > nfs4_block_| ayout spec. x

The effect of the script is to renove both | eading white space and a
sentinel sequence of "///" fromeach matching line.

The enbedded XDR file header follows, wth subsequent pieces enbedded
t hr oughout the docunent:

1=

/11 * This code was derived from RFC 5663.

/1l * Please reproduce this note if possible.

1 =l

1=

/1l * Copyright (c) 2010 | ETF Trust and the persons identified
/1l * as the docunent authors. All rights reserved.

1l *

/11l * Redistribution and use in source and binary forms, with
/1l * or without nodification, are pernmitted provided that the
/1l * followi ng conditions are net:

I *

/1l * - Redistributions of source code nust retain the above
1 * copyright notice, this list of conditions and the

1l * foll owi ng discl ai ner.

1=

/1l * - Redistributions in binary form nust reproduce the above
Il * copyright notice, this list of conditions and the

11l * foll owi ng disclainmer in the docunentati on and/or other
1 * materials provided with the distribution

1l *

/1l * - Neither the nanme of Internet Society, |ETF or |ETF

I * Trust, nor the names of specific contributors, may be
Il * used to endorse or pronote products derived fromthis
11l * software wi thout specific prior witten perm ssion

1l *

Hr* TH S SOFTWARE | S PROVI DED BY THE COPYRI GHT HOLDERS
1= AND CONTRI BUTORS "AS | S" AND ANY EXPRESS OR | MPLI ED
I * WARRANTI ES, | NCLUDI NG BUT NOT LIM TED TO, THE

I * | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS

I * FOR A PARTI CULAR PURPCSE ARE DI SCLAI MED. | N NO

1 * EVENT SHALL THE COPYRI GHT OANER OR CONTRI BUTORS BE
Hr* LI ABLE FOR ANY DI RECT, | NDI RECT, | NClI DENTAL, SPECI AL,
1= EXEMPLARY, OR CONSEQUENTI AL DAMAGES (| NCLUDI NG, BUT
I * NOT LIM TED TO, PROCUREMENT OF SUBSTI TUTE GOODS OR
I * SERVI CES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS

Bl ack, et al. St andards Track [Page 6]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

2.

2.

= | NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF
1= LI ABILITY, WHETHER | N CONTRACT, STRICT LIABILITY
1= OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG
= IN ANY WAY OQUT OF THE USE OF THI S SOFTWARE, EVEN I F
1= ADVI SED OF THE PGCSSI BI LI TY OF SUCH DAMAGE

1 *

111

=

N nfs4_bl ock_| ayout _prot.x

1 =l

11

/11 %#include "nfsv4l. h"

111

The XDR code contained in this docunent depends on types fromthe
nfsv4l. x file. This includes both nfs types that end with a 4, such
as offset4, length4, etc., as well as nore generic types such as
uint32 t and uint64_t.

Bl ock Layout Description
1. Background and Architecture

The fundanental storage abstraction supported by bl ock/vol unme storage
is a storage volune consisting of a sequential series of fixed-size
bl ocks. This can be thought of as a logical disk; it nmay be realized
by the storage system as a physical disk, a portion of a physica

di sk, or something nore conplex (e.g., concatenation, striping, RAID
and conbi nations thereof) involving nultiple physical disks or
portions thereof.

A pNFS layout for this block/volune class of storage is responsible
for mapping froman NFS file (or portion of a file) to the bl ocks of
storage volunes that contain the file. The blocks are expressed as
extents with 64-bit offsets and | engths using the existing NFSv4

of fset4 and | ength4 types. Cients nust be able to performlI/Oto
the bl ock extents without affecting additional areas of storage
(especially inmportant for wites); therefore, extents MJST be aligned
to 512-byte boundaries, and witable extents MJST be aligned to the
bl ock size used by the NFSv4 server in managing the actual file
system (4 kil obytes and 8 kil obytes are comon bl ock sizes). This

bl ock size is available as the NFSv4.1 | ayout bl ksize attribute.

[NFSv4.1]. Readable extents SHOULD be aligned to the bl ock size used
by the NFSv4 server, but in order to support legacy file systens with
fragments, alignment to 512-byte boundaries is acceptable.

Bl ack, et al. St andards Track [Page 7]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

The pNFS operation for requesting a |layout (LAYOUTGET) includes the
"l ayouti onode4 | oga_i onode" argument, which indicates whether the
requested layout is for read-only use or read-wite use. A read-only
| ayout may contain holes that are read as zero, whereas a read-wite
layout will contain allocated, but un-initialized storage in those
holes (read as zero, can be witten by client). This docunent also
supports client participation in copy-on-wite (e.g., for file
systenms with snapshots) by providing both read-only and un-
initialized storage for the sane range in a layout. Reads are
initially performed on the read-only storage, with wites going to
the un-initialized storage. After the first wite that initializes
the un-initialized storage, all reads are perforned to that now
initialized witable storage, and the correspondi ng read-only storage
is no |longer used.

The bl ock/vol une | ayout sol ution expands the security
responsibilities of the pNFS clients, and there are a nunber of
environnents where the mandatory to inplenent security properties for
NFS cannot be satisfied. The additional security responsibilities of
the client follow, and a full discussion is present in Section 3,
"Security Considerations"

o Typically, storage area network (SAN) di sk arrays and SAN
protocol s provide access control nechanisns (e.g., Logical Unit
Nunmber (LUN) nmappi ng and/or masking), which operate at the
granularity of individual hosts, not individual blocks. For this
reason, bl ock-based protection nust be provided by the client
sof tware

o Simlarly, SAN disk arrays and SAN protocols typically are not
able to validate NFS |l ocks that apply to file regions. For
instance, if a file is covered by a nandatory read-only |ock, the
server can ensure that only readable layouts for the file are
granted to pNFS clients. However, it is up to each pNFS client to
ensure that the readable |ayout is used only to service read
requests, and not to allow wites to the existing parts of the
file.

Si nce bl ock/vol ume storage systens are generally not capabl e of
enforcing such file-based security, in environnments where pNFS
clients cannot be trusted to enforce such policies, pNFS bl ock/vol unme
storage |l ayouts SHOULD NOT be used.

Bl ack, et al. St andards Track [Page 8]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

2.2. GETDEVI CELI ST and GETDEVI CElI NFO
2.2.1. Volune ldentification

St orage systens such as storage arrays can have nultiple physica
network ports that need not be connected to a commbn network,
resulting in a pNFS client having sinultaneous nultipath access to
the sanme storage volunes via different ports on different networks.

The networks may not even be the sanme technol ogy -- for exanple,
access to the sanme volume via both i SCSI and Fi bre Channel is
possi bl e, hence network addresses are difficult to use for vol une
identification. For this reason, this pNFS block |ayout identifies
storage volunes by content, for exanple providing the nmeans to match
(uni que portions of) |abels used by vol ume nanagers. Vol une
identification is performed by matching one or nore opaque byte
sequences to specific parts of the stored data. Any bl ock pNFS
systemusing this layout MJIST support a neans of content-based uni que
volume identification that can be enployed via the data structure

gi ven here.

/1l struct pnfs_bl ock_sig conmponent4 { /* disk signature conmponent */

1 int64_t bsc_sig_offset; /* byte offset of conponent
111 on vol une*/

111 opaque bsc_cont ent s<>; /* contents of this conponent
111 of the signature */

111y

111

Note that the opaque "bsc_contents" field in the
"pnfs_block _sig conponent4" structure MJUST NOT be interpreted as a
zero-terminated string, as it nay contain enbedded zero-val ued bytes.
There are no restrictions on alignnent (e.g., neither bsc_sig offset
nor the length are required to be multiples of 4). The
bsc_sig_offset is a signed quantity, which, when positive, represents
an byte offset fromthe start of the volume, and when negative
represents an byte offset fromthe end of the vol une.

Negative offsets are pernmitted in order to sinplify the client

i npl enment ati on on systens where the device label is found at a fixed
offset fromthe end of the volume. |If the server uses negative

of fsets to describe the signature, then the client and server MJST
NOT see different volune sizes. Negative offsets SHOULD NOT be used
in systens that dynamically resize volunes unless care is taken to
ensure that the device label is always present at the offset fromthe
end of the volume as seen by the clients.

Bl ack, et al. St andards Track [Page 9]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

A signature is an array of up to "PNFS_BLOCK MAX SI G COW" (defined
bel ow) signature conponents. The client MJUST NOT assune that al
signature conponents are co-located within a single sector on a bl ock
devi ce.

The pNFS client block Iayout driver uses this volune identification
to map pnfs_bl ock_vol une_type4 PNFS BLOCK VOLUME SI MPLE devi ceid4s to
its local view of a LUN.

2.2.2.

Vol urme Topol ogy

The pNFS bl ock server volune topology is expressed as an arbitrary
conbi nation of base volune types enunerated in the follow ng data
structures. The individual conponents of the topology are contained
in an array and conponents nmay refer to other conponents by using
array indices.

111
111
Iy
111
111
111
111
111
Iy
111
111
111
111
111
Iy
111
111
111
111
111
Iy
111
111
111
111
111
Iy
111
111
111
111

Bl ack,

enum pnfs_bl ock_vol une_type4d {

PNFS BLOCK VOLUVE SIMPLE = 0, /* volune maps to a single
LU */
PNFS_BLOCK VOLUME_SLICE =1, /* volunme is a slice of
anot her vol une */
PNFS_BLOCK _VOLUME_CONCAT = 2, /* volune is a
concat enati on of
mul tiple volumes */
PNFS_BLOCK _VOLUME_STRIPE = 3 /* volune is striped across
mul tiple vol umes */
b
const PNFS_BLOCK _MAX_ SI G COWP = 16;/* maxi mum conponents per

signature */
struct pnfs_bl ock_sinple volunme_info4 {

pnfs_bl ock_si g_conponent 4 bsv_ds<PNFS_BLOCK MAX_SI G_COWP>;
/* disk signature */
i
struct pnfs_block _slice_volunme_info4 {
of fset4 bsv_start; /* offset of the start of the
slice in bytes */
I ength4 bsv_I ength; /* length of slice in bytes */
uint32_t bsv_vol une; /* array index of sliced
vol ume */
i
struct pnfs_bl ock_concat _vol une_i nfo4 {
uint32_t bcv_vol umes<>; /* array indices of volunes
whi ch are concatenated */
et al. St andards Track [Page 10]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

11y},

111

/1l struct pnfs_block_stripe_volume_info4 {

111 | ength4 bsv_stripe_unit; /* size of stripe in bytes */
111 uint32_t bsv_vol unes<>; /* array indices of volunes
11/ which are striped across --
111 MJUST be same size */
11y

111

/11 union pnfs_block volume4 switch (pnfs_bl ock_vol ume_typed type) {
/11 case PNFS_BLOCK VOLUME_SI MPLE:

11/ pnfs_bl ock_si npl e _vol une_i nfo4 bv_si npl e_i nfo;

111 case PNFS BLOCK VOLUME SLI CE

111 pnfs_bl ock_slice_volunme_info4 bv_slice_ info;

111 case PNFS_BLOCK_VOLUME_CONCAT:

Iy pnfs_bl ock_concat _vol ume_i nf o4 bv_concat _i nf o;

/11 case PNFS_BLOCK VOLUME_STRI PE:

11/ pnfs_bl ock_stripe_volune_info4 bv_stripe_info;

11y},

111

/11 I* block layout specific type for da_addr_body */

/1l struct pnfs_bl ock_devi ceaddr4 {

111 pnfs_bl ock_vol une4 bda_vol unmes<>; /* array of volumes */
Iy},

111

The "pnfs_bl ock_devi ceaddr4" data structure is a structure that
allows arbitrarily conplex nested volune structures to be encoded.
The types of aggregations that are allowed are stri pes,
concatenations, and slices. Note that the vol une topol ogy expressed
in the pnfs_bl ock _deviceaddr4 data structure will always resolve to a
set of pnfs_block volune_type4d PNFS BLOCK VOLUME SI MPLE. The array
of volunes is ordered such that the root of the volume hierarchy is
the last element of the array. Concat, slice, and stripe vol unes
MUST refer to volunes defined by | ower indexed el enents of the array.

The "pnfs_bl ock _device_addr4" data structure is returned by the
server as the storage-protocol-specific opaque field da_addr_body in
the "devi ce_addr4" structure by a successful GETDEVI CElI NFO operation
[NFSv4. 1].

As noted above, all device addr4 structures eventually resolve to a
set of volunes of type PNFS BLOCK VOLUME SI MPLE. These vol unes are
each uniquely identified by a set of signature conponents.
Conpl i cated vol ume hi erarchi es may be conposed of dozens of vol unes
each with several signature conponents; thus, the device address may
require several kilobytes. The client SHOULD be prepared to allocate
a large buffer to contain the result. |In the case of the server

Bl ack, et al. St andards Track [Page 11]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

returni ng NFS4AERR TOOSMALL, the client SHOULD all ocate a buffer of at
| east gdir_mincount _bytes to contain the expected result and retry
t he GETDEVI CElI NFO r equest .

2.2.3. GETDEVI CELI ST and GETDEVI CEI NFO devi cei d4

The server in response to a GETDEVI CELI ST request typically will
return a single "deviceid4" in the gdlr_deviceid list array. This is
because the devicei d4 when passed to GETDEVICEINFO will return a
"devi ce_addr4", which encodes the entire volunme hierarchy. In the
case of copy-on-wite file systenms, the "gdlr_deviceid_list" array
may contain two deviceid4's, one referencing the read-only vol unme

hi erarchy, and one referencing the witable volunme hierarchy. There
is no required ordering of the readable and witable IDs in the array
as the volumes are uniquely identified by their deviceid4, and are
referred to by | ayouts using the deviceid4. Another exanple of the
server returning nultiple device itens occurs when the file handle
represents the root of a nanespace spanning nultiple physical file
systens on the server, each with a different volunme hierarchy. In
this exanple, a server inplenentation may return either a |ist of
device I Ds used by each of the physical file systems, or it may
return an enpty list.

Each deviceid4 returned by a successful GETDEVI CELI ST operation is a
shorthand id used to reference the whol e vol une topol ogy. These
device IDs, as well as device IDs returned in extents of a LAYOUTGET
operation, can be used as input to the GETDEVI CEl NFO operation
Decodi ng the "pnfs_bl ock_devi ceaddr4" results in a flat ordering of
data bl ocks mapped to PNFS_BLOCK VOLUVE_SI MPLE vol unes. Conbi ned
with the mapping to a client LUN described in Section 2.2.1 "Vol une
Identification", a |logical volune offset can be mapped to a bl ock on
a pNFS client LUN [NFSv4.1].

2. 3. Data Structures: Extents and Extent Lists

A pNFS bl ock layout is a list of extents within a flat array of data
bl ocks in a logical volune. The details of the volune topol ogy can
be determ ned by using the CGETDEVI CEI NFO operation (see discussion of
volunme identification, Section 2.2 above). The block |ayout

descri bes the individual block extents on the volune that nmake up the
file. The offsets and length contained in an extent are specified in
units of bytes.

Bl ack, et al. St andards Track [Page 12]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

/1] enum pnfs_bl ock _extent _stated {

111 PNFS BLOCK READ WRI TE_ DATA = 0,/* the data located by this
111 extent is valid

111 for reading and witing. */
111 PNFS BLOCK READ DATA =1, /* the data located by this
11/ extent is valid for reading
111 only; it may not be

111 witten. */

111 PNFS BLOCK | NVALID DATA = 2, /* the location is valid; the
111 data is invalid. It is a
1 newWly (pre-) allocated

11/ extent. There is physica
111 space on the volune. */

111 PNFS BLOCK NONE _DATA =3 /* the location is invalid.
111 It is a hole in the file.
111 There is no physical space
1 on the volune. */

Iy},

111

/1l struct pnfs_bl ock_extent4 {

111 devi cei d4 bex_vol _id; /* id of |ogical volune on

111 whi ch extent of file is

111 stored. */

111 of fset4 bex_file_offset; /* the starting byte offset in
111 the file */

111 | engt h4 bex | engt h; /* the size in bytes of the
1 extent */

11/ of fset4 bex storage offset; /* the starting byte offset
111 in the volune */

111 pnfs_bl ock_extent state4 bex_state;

111 /* the state of this extent */
1y

/11

/11 I* block | ayout specific type for |oc_body */
/1l struct pnfs_block |ayoutd {

111 pnfs_bl ock_extent4 bl o_extents<>;

111 /* extents which make up this
111 | ayout. */

11y},

111

The bl ock I ayout consists of a list of extents that map the | ogical
regions of the file to physical locations on a volunme. The
"bex_storage_offset” field within each extent identifies a | ocation
on the logical volune specified by the "bex_vol __id" field in the
extent. The bex vol _iditself is shorthand for the whol e topol ogy of

Bl ack, et al. St andards Track [Page 13]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

the | ogical volune on which the file is stored. The client is
responsi ble for translating this logical offset into an offset on the

appropriate underlying SAN logical unit. |In nost cases, all extents
in alayout will reside on the sane volune and t hus have the same
bex vol _id. In the case of copy-on-wite file systens, the

PNFS BLOCK READ DATA extents nay have a different bex vol _id fromthe
writabl e extents.

Each extent maps a logical region of the file onto a portion of the
specified | ogical volune. The bex file_offset, bex_length, and

bex _state fields for an extent returned fromthe server are valid for
all extents. |In contrast, the interpretation of the

bex storage offset field depends on the value of bex _state as follows
(in increasing order):

0 PNFS_BLOCK READ WRI TE_DATA neans that bex_storage_offset is valid,
and points to valid/initialized data that can be read and witten.

0 PNFS BLOCK READ DATA neans that bex_storage offset is valid and
points to valid/ initialized data that can only be read. Wite
operations are prohibited; the client may need to request a
read-write | ayout.

0 PNFS BLOCK | NVALI D_DATA neans that bex_storage offset is valid,
but points to invalid un-initialized data. This data nust not be
physically read fromthe disk until it has been initialized. A
read request for a PNFS_BLOCK | NVALI D DATA extent must fill the
user buffer with zeros, unless the extent is covered by a
PNFS BLOCK_READ DATA extent of a copy-on-wite file system Wite
requests nust wite whole server-sized blocks to the disk; bytes
not initialized by the user nust be set to zero. Any wite to
storage in a PNFS BLOCK | NVALI D_DATA extent changes the witten
portion of the extent to PNFS_BLOCK_READ WRI TE_DATA; the pNFS
client is responsible for reporting this change via LAYOUTCOVM T.

0 PNFS_BLOCK NONE _DATA neans that bex _storage offset is not valid,
and this extent may not be used to satisfy wite requests. Read
requests may be satisfied by zero-filling as for
PNFS_BLOCK_| NVALI D_DATA. PNFS_BLOCK_NONE_DATA extents may be
returned by requests for readable extents; they are never returned
if the request was for a witable extent.

An extent list contains all relevant extents in increasing order of

the bex file offset of each extent; any ties are broken by increasing
order of the extent state (bex_state).

Bl ack, et al. St andards Track [Page 14]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

2.3.1. Layout Requests and Extent Lists

Each request for a layout specifies at |east three paraneters: file

of fset, desired size, and mininumsize. |If the status of a request
i ndi cates success, the extent list returned nust neet the follow ng
criteria:

0 A request for a readable (but not witable) |layout returns only
PNFS_BLOCK _READ DATA or PNFS_BLOCK NONE _DATA extents (but not
PNFS_BLOCK | NVALI D_DATA or PNFS_BLOCK READ WRI TE_DATA extents).

0 A request for a witable layout returns PNFS BLOCK READ WRI TE DATA
or PNFS BLOCK | NVALI D_DATA extents (but not PNFS BLOCK NONE DATA
extents). It may also return PNFS_BLOCK READ DATA extents only
when the offset ranges in those extents are al so covered by
PNFS BLOCK | NVALI D_DATA extents to pernmit wites.

0o The first extent in the list MJST contain the requested starting
of f set.

0 The total size of extents within the requested range MJST cover at
| east the mininmum size. One exception is allowed: the total size
MAY be smaller if only readable extents were requested and ECF is
encount er ed.

0 Extents in the extent list MJUST be logically contiguous for a
read-only layout. For a read-wite layout, the set of witable
extents (i.e., excluding PNFS BLOCK READ DATA extents) MJIST be
| ogically contiguous. Every PNFS _BLOCK READ DATA extent in a
read-write |layout MJST be covered by one or nore
PNFS BLOCK | NVALI D _DATA extents. This overlap of
PNFS_BLOCK_READ DATA and PNFS BLOCK | NVALI D DATA extents is the
only permitted extent overlap

0 Extents MIST be ordered in the list by starting offset, wth
PNFS_BLOCK_READ DATA extents precedi ng PNFS_BLOCK | NVALI D_DATA
extents in the case of equal bex file_ offsets.

If the mnimumrequested size, loga _mnlength, is zero, this is an
indication to the netadata server that the client desires any |ayout
at offset loga_offset or less that the netadata server has "readily
available". Readily is subjective, and depends on the |ayout type
and the pNFS server inplenentation. For block |ayout servers,
readily avail abl e SHOULD be interpreted such that readable | ayouts
are always available, even if sonme extents are in the

PNFS BLOCK_NONE_DATA state. When processing requests for witable

| ayouts, a layout is readily available if extents can be returned in
t he PNFS_BLOCK_READ WRI TE_DATA st at e.

Bl ack, et al. St andards Track [Page 15]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

2.3.2. Layout Conmits

/11 I* block layout specific type for |ou_body */
/1l struct pnfs_block_ | ayoutupdated {

111 pnfs_bl ock_extent4 blu_comrit _|ist<>;

111 /* list of extents which
/111 * now contain valid data.
11 * [

11},

11

The "pnfs_bl ock | ayout update4" structure is used by the client as the
bl ock- protocol specific argunent in a LAYOUTCOW T operation. The
"blu_conmit_list" field is an extent |ist covering regions of the
file layout that were previously in the PNFS_BLOCK | NVALI D_DATA
state, but have been witten by the client and should now be
considered in the PNFS BLOCK READ WRI TE DATA state. The bex_state
field of each extent in the blu commt |ist MJST be set to

PNFS BLOCK READ WRI TE_DATA. The extents in the commit |ist MJUST be
di sjoint and MJST be sorted by bex file offset. The
bex_storage_offset field is unused. |Inplenentors should be aware
that a server may be unable to commit regions at a granularity

smal ler than a file-systemblock (typically 4 KB or 8 KB). As noted
above, the block-size that the server uses is available as an NFSv4
attribute, and any extents included in the "blu commt _list" MJST be
aligned to this granularity and have a size that is a nultiple of
this granularity. |If the client believes that its actions have noved
the end-of-file into the mddle of a block being conmitted, the
client MUST wite zeroes fromthe end-of-file to the end of that

bl ock before conmitting the block. Failure to do so may result in
junk (un-initialized data) appearing in that area if the file is
subsequently extended by noving the end-of-file.

2.3.3. Layout Returns

The LAYOUTRETURN operation is done w thout any bl ock | ayout specific
data. Wen the LAYOUTRETURN operation specifies a
LAYOUTRETURNA_FI LE return type, then the layoutreturn_file4 data
structure specifies the region of the file layout that is no |onger
needed by the client. The opaque "lIrf_body" field of the

"l ayoutreturn_file4" data structure MJIST have length zero. A
LAYOUTRETURN operation represents an explicit rel ease of resources hy
the client, usually done for the purpose of avoiding unnecessary
CB_LAYOUTRECALL operations in the future. The client may return
disjoint regions of the file by using nultiple LAYOUTRETURN
operations within a single COMPOUND operati on.

Bl ack, et al. St andards Track [Page 16]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

Not e that the bl ock/volunme | ayout supports unilateral |ayout
revocation. Wen a layout is unilaterally revoked by the server
usually due to the client’s | ease time expiring, or a delegation
being recalled, or the client failing to return a layout in a tinely
manner, it is inportant for the sake of correctness that any in-
flight 1/Cs that the client issued before the | ayout was revoked are
rejected at the storage. For the bl ock/volunme protocol, this is
possi ble by fencing a client with an expired layout tiner fromthe
physi cal storage. Note, however, that the granularity of this
operation can only be at the host/logical-unit level. Thus, if one
of aclient’s layouts is unilaterally revoked by the server, it wll
effectively render useless *all* of the client’s layouts for files

| ocated on the storage units conprising the logical volunme. This may
render useless the client’s layouts for files in other file systens.

2.3.4. dient Copy-on-Wite Processing

Copy-on-wite is a nechanismused to support file and/or file system
snapshots. Wen witing to unaligned regions, or to regions snaller
than a file system bl ock, the witer nust copy the portions of the
original file data to a new location on disk. This behavior can
either be inplemented on the client or the server. The paragraphs
bel ow descri be how a pNFS bl ock |ayout client inplenments access to a
file that requires copy-on-wite semantics.

Di sti ngui shing the PNFS_BLOCK READ WRI TE_DATA and
PNFS_BLOCK_READ DATA extent types in conbination with the allowed
overlap of PNFS BLOCK READ DATA extents w th PNFS_BLOCK | NVALI D_DATA
extents all ows copy-on-wite processing to be done by pNFS clients.
In classic NFS, this operation would be done by the server. Since
pPNFS enables clients to do direct block access, it is useful for
clients to participate in copy-on-wite operations. Al block/volume
pPNFS clients MJST support this copy-on-wite processing.

When a client wishes to wite data covered by a PNFS BLOCK READ DATA
extent, it MJUST have requested a witable layout fromthe server

that layout will contain PNFS BLOCK | NVALI D DATA extents to cover al
the data ranges of that |ayout’s PNFS BLOCK READ DATA extents. Moirre
precisely, for any bex_file_offset range covered by one or nore

PNFS BLOCK_READ DATA extents in