Stream: Internet Engineering Task Force (IETF)

RFC: 9113

Obsoletes: 7540, 8740

Category: Standards Track

Published: June 2022

ISSN: 2070-1721

Authors: M. Thomson, Ed. C. Benfield, Ed.
Mozilla Apple Inc.

RFC 9113
HTTP/2

Abstract

This specification describes an optimized expression of the semantics of the Hypertext Transfer
Protocol (HTTP), referred to as HTTP version 2 (HTTP/2). HTTP/2 enables a more efficient use of
network resources and a reduced latency by introducing field compression and allowing multiple
concurrent exchanges on the same connection.

This document obsoletes RFCs 7540 and 8740.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at https://www.rfc-editor.org/info/rfc9113.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights
reserved.

Thomson & Benfield Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9113
https://www.rfc-editor.org/rfc/rfc7540
https://www.rfc-editor.org/rfc/rfc8740
https://www.rfc-editor.org/info/rfc9113

RFC9113 HTTP/2 June 2022

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. HTTP/2 Protocol Overview
2.1. Document Organization

2.2. Conventions and Terminology

3. Starting HTTP/2
3.1. HTTP/2 Version Identification
3.2. Starting HTTP/2 for "https" URIs
3.3. Starting HTTP/2 with Prior Knowledge
3.4. HTTP/2 Connection Preface

4. HTTP Frames
4.1. Frame Format
4.2. Frame Size
4.3. Field Section Compression and Decompression
4.3.1. Compression State
5. Streams and Multiplexing
5.1. Stream States
5.1.1. Stream Identifiers
5.1.2. Stream Concurrency
5.2. Flow Control
5.2.1. Flow-Control Principles
5.2.2. Appropriate Use of Flow Control
5.2.3. Flow-Control Performance
5.3. Prioritization

5.3.1. Background on Priority in RFC 7540

Thomson & Benfield Standards Track Page 2

https://trustee.ietf.org/license-info

RFC9113 HTTP/2 June 2022

5.3.2. Priority Signaling in This Document

5.4. Error Handling
5.4.1. Connection Error Handling
5.4.2. Stream Error Handling

5.4.3. Connection Termination
5.5. Extending HTTP/2

6. Frame Definitions

6.1. DATA

6.2. HEADERS

6.3. PRIORITY

6.4. RST_STREAM

6.5. SETTINGS
6.5.1. SETTINGS Format
6.5.2. Defined Settings

6.5.3. Settings Synchronization

6.6. PUSH_PROMISE
6.7. PING
6.8. GOAWAY
6.9. WINDOW_UPDATE
6.9.1. The Flow-Control Window
6.9.2. Initial Flow-Control Window Size
6.9.3. Reducing the Stream Window Size
6.10. CONTINUATION
7. Error Codes
8. Expressing HTTP Semantics in HTTP/2
8.1. HTTP Message Framing
8.1.1. Malformed Messages
8.2. HTTP Fields
8.2.1. Field Validity

8.2.2. Connection-Specific Header Fields

Thomson & Benfield Standards Track Page 3

RFC9113 HTTP/2 June 2022

8.2.3. Compressing the Cookie Header Field

8.3. HTTP Control Data
8.3.1. Request Pseudo-Header Fields
8.3.2. Response Pseudo-Header Fields

8.4. Server Push
8.4.1. Push Requests

8.4.2. Push Responses

8.5. The CONNECT Method
8.6. The Upgrade Header Field
8.7. Request Reliability
8.8. Examples
8.8.1. Simple Request
8.8.2. Simple Response
8.8.3. Complex Request
8.8.4. Response with Body

8.8.5. Informational Responses

9. HTTP/2 Connections
9.1. Connection Management

9.1.1. Connection Reuse

9.2. Use of TLS Features
9.2.1. TLS 1.2 Features
9.2.2. TLS 1.2 Cipher Suites
9.2.3. TLS 1.3 Features

10. Security Considerations
10.1. Server Authority
10.2. Cross-Protocol Attacks
10.3. Intermediary Encapsulation Attacks
10.4. Cacheability of Pushed Responses
10.5. Denial-of-Service Considerations

10.5.1. Limits on Field Block Size

Thomson & Benfield Standards Track Page 4

RFC9113 HTTP/2 June 2022

10.5.2. CONNECT Issues

10.6. Use of Compression
10.7. Use of Padding
10.8. Privacy Considerations

10.9. Remote Timing Attacks

11.TANA Considerations
11.1. HTTP2-Settings Header Field Registration
11.2. The h2c Upgrade Token

12. References
12.1. Normative References

12.2. Informative References

Appendix A. Prohibited TLS 1.2 Cipher Suites
Appendix B. Changes from RFC 7540
Acknowledgments

Contributors

Authors' Addresses

1. Introduction

The performance of applications using the Hypertext Transfer Protocol (HTTP, [HTTP]) is linked
to how each version of HTTP uses the underlying transport, and the conditions under which the
transport operates.

Making multiple concurrent requests can reduce latency and improve application performance.
HTTP/1.0 allowed only one request to be outstanding at a time on a given TCP [TCP] connection.
HTTP/1.1 [HTTP/1.1] added request pipelining, but this only partially addressed request
concurrency and still suffers from application-layer head-of-line blocking. Therefore, HTTP/1.0
and HTTP/1.1 clients use multiple connections to a server to make concurrent requests.

Furthermore, HTTP fields are often repetitive and verbose, causing unnecessary network traffic
aswell as causing the initial TCP congestion window to quickly fill. This can result in excessive
latency when multiple requests are made on a new TCP connection.

Thomson & Benfield Standards Track Page 5

RFC9113 HTTP/2 June 2022

HTTP/2 addresses these issues by defining an optimized mapping of HTTP's semantics to an
underlying connection. Specifically, it allows interleaving of messages on the same connection
and uses an efficient coding for HTTP fields. It also allows prioritization of requests, letting more
important requests complete more quickly, further improving performance.

The resulting protocol is more friendly to the network because fewer TCP connections can be
used in comparison to HTTP/1.x. This means less competition with other flows and longer-lived
connections, which in turn lead to better utilization of available network capacity. Note, however,
that TCP head-of-line blocking is not addressed by this protocol.

Finally, HTTP/2 also enables more efficient processing of messages through use of binary message
framing.

This document obsoletes RFCs 7540 and 8740. Appendix B lists notable changes.

2. HTTP/2 Protocol Overview

HTTP/2 provides an optimized transport for HTTP semantics. HTTP/2 supports all of the core
features of HTTP but aims to be more efficient than HTTP/1.1.

HTTP/2is a connection-oriented application-layer protocol that runs over a TCP connection
([TCPD. The client is the TCP connection initiator.

The basic protocol unit in HTTP/2 is a frame (Section 4.1). Each frame type serves a different
purpose. For example, HEADERS and DATA frames form the basis of HTTP requests and responses
(Section 8.1); other frame types like SETTINGS, WINDOW_UPDATE, and PUSH_PROMISE are used
in support of other HTTP/2 features.

Multiplexing of requests is achieved by having each HTTP request/response exchange associated
with its own stream (Section 5). Streams are largely independent of each other, so a blocked or
stalled request or response does not prevent progress on other streams.

Effective use of multiplexing depends on flow control and prioritization. Flow control (Section
5.2) ensures that it is possible to efficiently use multiplexed streams by restricting data that is
transmitted to what the receiver is able to handle. Prioritization (Section 5.3) ensures that limited
resources are used most effectively. This revision of HTTP/2 deprecates the priority signaling
scheme from [RFC7540].

Because HTTP fields used in a connection can contain large amounts of redundant data, frames
that contain them are compressed (Section 4.3). This has especially advantageous impact upon
request sizes in the common case, allowing many requests to be compressed into one packet.

Finally, HTTP/2 adds a new, optional interaction mode whereby a server can push responses to a
client (Section 8.4). This is intended to allow a server to speculatively send data to a client that the
server anticipates the client will need, trading off some network usage against a potential latency
gain. The server does this by synthesizing a request, which it sends as a PUSH_PROMISE frame.
The server is then able to send a response to the synthetic request on a separate stream.

Thomson & Benfield Standards Track Page 6

RFC9113 HTTP/2 June 2022

2.1. Document Organization

The HTTP/2 specification is split into four parts:

o Starting HTTP/2 (Section 3) covers how an HTTP/2 connection is initiated.

* The frame (Section 4) and stream (Section 5) layers describe the way HTTP/2 frames are
structured and formed into multiplexed streams.

e Frame (Section 6) and error (Section 7) definitions include details of the frame and error
types used in HTTP/2.

* HTTP mappings (Section 8) and additional requirements (Section 9) describe how HTTP
semantics are expressed using frames and streams.

While some of the frame- and stream-layer concepts are isolated from HTTP, this specification
does not define a completely generic frame layer. The frame and stream layers are tailored to the
needs of HTTP.

2.2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

All numeric values are in network byte order. Values are unsigned unless otherwise indicated.
Literal values are provided in decimal or hexadecimal as appropriate. Hexadecimal literals are
prefixed with "9x" to distinguish them from decimal literals.

This specification describes binary formats using the conventions described in Section 1.3 of RFC
9000 [QUIC]. Note that this format uses network byte order and that high-valued bits are listed
before low-valued bits.

The following terms are used:

client: The endpoint that initiates an HTTP/2 connection. Clients send HTTP requests and
receive HTTP responses.

connection: A transport-layer connection between two endpoints.
connection error: An error that affects the entire HTTP/2 connection.
endpoint: Either the client or server of the connection.

frame: The smallest unit of communication within an HTTP/2 connection, consisting of a
header and a variable-length sequence of octets structured according to the frame type.

peer: An endpoint. When discussing a particular endpoint, "peer"” refers to the endpoint that is
remote to the primary subject of discussion.

Thomson & Benfield Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc9000#section-1.3

RFC9113 HTTP/2 June 2022

receiver: An endpoint that is receiving frames.
sender: An endpoint that is transmitting frames.

server: The endpoint that accepts an HTTP/2 connection. Servers receive HTTP requests and
send HTTP responses.

stream: A Dbidirectional flow of frames within the HTTP/2 connection.

stream error: An error on the individual HTTP/2 stream.

"oy "o

Finally, the terms "gateway", "intermediary", "proxy", and "tunnel" are defined in Section 3.7 of
[HTTP]. Intermediaries act as both client and server at different times.

The term "content" as it applies to message bodies is defined in Section 6.4 of [HTTP].

3. Starting HTTP/2

Implementations that generate HTTP requests need to discover whether a server supports HTTP/
2.

HTTP/2 uses the "http" and "https" URI schemes defined in Section 4.2 of [HTTP], with the same
default port numbers as HTTP/1.1 [HTTP/1.1]. These URIs do not include any indication about
what HTTP versions an upstream server (the immediate peer to which the client wishes to
establish a connection) supports.

The means by which support for HTTP/2 is determined is different for "http"and "https" URIs.
Discovery for "https" URIs is described in Section 3.2. HTTP/2 support for "http" URIs can only be
discovered by out-of-band means and requires prior knowledge of the support as described in
Section 3.3.

3.1. HTTP/2 Version Identification

The protocol defined in this document has two identifiers. Creating a connection based on either
implies the use of the transport, framing, and message semantics described in this document.

* The string "h2" identifies the protocol where HTTP/2 uses Transport Layer Security (TLS); see
Section 9.2. This identifier is used in the TLS Application-Layer Protocol Negotiation (ALPN)
extension [TLS-ALPN] field and in any place where HTTP/2 over TLS is identified.

The "h2" string is serialized into an ALPN protocol identifier as the two-octet sequence: 0x68,
0x32.

» The "h2c" string was previously used as a token for use in the HTTP Upgrade mechanism's
Upgrade header field (Section 7.8 of [HTTP]). This usage was never widely deployed and is
deprecated by this document. The same applies to the HTTP2-Settings header field, which was
used with the upgrade to "h2c".

Thomson & Benfield Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc9110#section-3.7
https://www.rfc-editor.org/rfc/rfc9110#section-6.4
https://www.rfc-editor.org/rfc/rfc9110#section-4.2
https://www.rfc-editor.org/rfc/rfc9110#section-7.8

RFC9113 HTTP/2 June 2022

3.2. Starting HTTP/2 for "https" URIs

A client that makes a request to an "https" URI uses TLS [TLS13] with the ALPN extension [TLS-
ALPN].

HTTP/2 over TLS uses the "h2" protocol identifier. The "h2c" protocol identifier MUST NOT be sent
by a client or selected by a server; the "h2c" protocol identifier describes a protocol that does not
use TLS.

Once TLS negotiation is complete, both the client and the server MUST send a connection preface
(Section 3.4).

3.3. Starting HTTP/2 with Prior Knowledge

A client can learn that a particular server supports HTTP/2 by other means. For example, a client
could be configured with knowledge that a server supports HTTP/2.

A client that knows that a server supports HTTP/2 can establish a TCP connection and send the
connection preface (Section 3.4) followed by HTTP/2 frames. Servers can identify these
connections by the presence of the connection preface. This only affects the establishment of
HTTP/2 connections over cleartext TCP; HTTP/2 connections over TLS MUST use protocol
negotiation in TLS [TLS-ALPN].

Likewise, the server MUST send a connection preface (Section 3.4).

Without additional information, prior support for HTTP/2 is not a strong signal that a given
server will support HTTP/2 for future connections. For example, it is possible for server
configurations to change, for configurations to differ between instances in clustered servers, or
for network conditions to change.

3.4. HTTP/2 Connection Preface

In HTTP/2, each endpoint is required to send a connection preface as a final confirmation of the
protocol in use and to establish the initial settings for the HTTP/2 connection. The client and
server each send a different connection preface.

The client connection preface starts with a sequence of 24 octets, which in hex notation is:

0x505249202a20485454502322e300d0a0d0a534d0d0abBdoa

That is, the connection preface starts with the string "PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n".
This sequence MUST be followed by a SETTINGS frame (Section 6.5), which MAY be empty. The
client sends the client connection preface as the first application data octets of a connection.

Thomson & Benfield Standards Track Page 9

RFC9113 HTTP/2 June 2022

Note: The client connection preface is selected so that a large proportion of HTTP/1.1
or HTTP/1.0 servers and intermediaries do not attempt to process further frames.
Note that this does not address the concerns raised in [TALKING].

The server connection preface consists of a potentially empty SETTINGS frame (Section 6.5) that
MUST be the first frame the server sends in the HTTP/2 connection.

The SETTINGS frames received from a peer as part of the connection preface MUST be
acknowledged (see Section 6.5.3) after sending the connection preface.

To avoid unnecessary latency, clients are permitted to send additional frames to the server
immediately after sending the client connection preface, without waiting to receive the server
connection preface. It is important to note, however, that the server connection preface
SETTINGS frame might include settings that necessarily alter how a client is expected to
communicate with the server. Upon receiving the SETTINGS frame, the client is expected to honor
any settings established. In some configurations, it is possible for the server to transmit SETTINGS
before the client sends additional frames, providing an opportunity to avoid this issue.

Clients and servers MUST treat an invalid connection preface as a connection error (Section 5.4.1)
of type PROTOCOL_ERROR. A GOAWAY frame (Section 6.8) MAY be omitted in this case, since an
invalid preface indicates that the peer is not using HTTP/2.

4. HTTP Frames

Once the HTTP/2 connection is established, endpoints can begin exchanging frames.

4.1. Frame Format

All frames begin with a fixed 9-octet header followed by a variable-length frame payload.

HTTP Frame {
Length (24),
Type (8),
Flags (8),

Reserved (1),
Stream Identifier (31),

Frame Payload (..),
}

Figure 1: Frame Layout

The fields of the frame header are defined as:

Length:

Thomson & Benfield Standards Track Page 10

RFC9113 HTTP/2 June 2022

The length of the frame payload expressed as an unsigned 24-bit integer in units of octets.

Values greater than 214 (16,384) MUST NOT be sent unless the receiver has set a larger value for
SETTINGS_MAX FRAME_SIZE.

The 9 octets of the frame header are not included in this value.

Type: The 8-bit type of the frame. The frame type determines the format and semantics of the
frame. Frames defined in this document are listed in Section 6. Implementations MUST ignore
and discard frames of unknown types.

Flags: An 8-bit field reserved for boolean flags specific to the frame type.

Flags are assigned semantics specific to the indicated frame type. Unused flags are those that
have no defined semantics for a particular frame type. Unused flags MUST be ignored on
receipt and MUST be left unset (0x00) when sending.

Reserved: Areserved 1-bit field. The semantics of this bit are undefined, and the bit MUST remain
unset (0x00) when sending and MUST be ignored when receiving.

Stream Identifier: A stream identifier (see Section 5.1.1) expressed as an unsigned 31-bit integer.
The value 0x00 is reserved for frames that are associated with the connection as a whole as
opposed to an individual stream.

The structure and content of the frame payload are dependent entirely on the frame type.

4.2. Frame Size

The size of a frame payload is limited by the maximum size that a receiver advertises in the
SETTINGS_MAX_FRAME_SIZE setting. This setting can have any value between 214 (16,384) and
2241 (16,777,215) octets, inclusive.

All implementations MUST be capable of receiving and minimally processing frames up to 214
octets in length, plus the 9-octet frame header (Section 4.1). The size of the frame header is not
included when describing frame sizes.

Note: Certain frame types, such as PING (Section 6.7), impose additional limits on the
amount of frame payload data allowed.

An endpoint MUST send an error code of FRAME_SIZE_ERROR if a frame exceeds the size defined
in SETTINGS_MAX_FRAME_SIZE, exceeds any limit defined for the frame type, or is too small to
contain mandatory frame data. A frame size error in a frame that could alter the state of the
entire connection MUST be treated as a connection error (Section 5.4.1); this includes any frame
carrying a field block (Section 4.3) (that is, HEADERS, PUSH_PROMISE, and CONTINUATION), a
SETTINGS frame, and any frame with a stream identifier of 0.

Thomson & Benfield Standards Track Page 11

RFC9113 HTTP/2 June 2022

Endpoints are not obligated to use all available space in a frame. Responsiveness can be
improved by using frames that are smaller than the permitted maximum size. Sending large
frames can result in delays in sending time-sensitive frames (such as RST_STREAM,
WINDOW_UPDATE, or PRIORITY), which, if blocked by the transmission of a large frame, could
affect performance.

4.3. Field Section Compression and Decompression

Field section compression is the process of compressing a set of field lines (Section 5.2 of [HTTP])
to form a field block. Field section decompression is the process of decoding a field block into a
set of field lines. Details of HTTP/2 field section compression and decompression are defined in
[COMPRESSION], which, for historical reasons, refers to these processes as header compression
and decompression.

Each field block carries all of the compressed field lines of a single field section. Header sections
also include control data associated with the message in the form of pseudo-header fields (Section
8.3) that use the same format as a field line.

Note: RFC 7540 [RFC7540] used the term "header block" in place of the more generic
"field block".

Field blocks carry control data and header sections for requests, responses, promised requests,
and pushed responses (see Section 8.4). All these messages, except for interim responses and
requests contained in PUSH_PROMISE (Section 6.6) frames, can optionally include a field block
that carries a trailer section.

A field section is a collection of field lines. Each of the field lines in a field block carries a single
value. The serialized field block is then divided into one or more octet sequences, called field
block fragments. The first field block fragment is transmitted within the frame payload of
HEADERS (Section 6.2) or PUSH_PROMISE (Section 6.6), each of which could be followed by
CONTINUATION (Section 6.10) frames to carry subsequent field block fragments.

The Cookie header field [COOKIE] is treated specially by the HTTP mapping (see Section 8.2.3).

Areceiving endpoint reassembles the field block by concatenating its fragments and then
decompresses the block to reconstruct the field section.

A complete field section consists of either:

* a single HEADERS or PUSH_PROMISE frame, with the END_HEADERS flag set, or

* a HEADERS or PUSH_PROMISE frame with the END_HEADERS flag unset and one or more
CONTINUATION frames, where the last CONTINUATION frame has the END_HEADERS flag set.

Thomson & Benfield Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc9110#section-5.2

RFC9113 HTTP/2 June 2022

Each field block is processed as a discrete unit. Field blocks MUST be transmitted as a contiguous
sequence of frames, with no interleaved frames of any other type or from any other stream. The
last frame in a sequence of HEADERS or CONTINUATION frames has the END_HEADERS flag set.
The last frame in a sequence of PUSH_PROMISE or CONTINUATION frames has the END_HEADERS
flag set. This allows a field block to be logically equivalent to a single frame.

Field block fragments can only be sent as the frame payload of HEADERS, PUSH_PROMISE, or
CONTINUATION frames because these frames carry data that can modify the compression
context maintained by a receiver. An endpoint receiving HEADERS, PUSH_PROMISE, or
CONTINUATION frames needs to reassemble field blocks and perform decompression even if the
frames are to be discarded. A receiver MUST terminate the connection with a connection error
(Section 5.4.1) of type COMPRESSION_ERROR if it does not decompress a field block.

A decoding errorin a field block MUST be treated as a connection error (Section 5.4.1) of type
COMPRESSION_ERROR.

4.3.1. Compression State

Field compression is stateful. Each endpoint has an HPACK encoder context and an HPACK
decoder context that are used for encoding and decoding all field blocks on a connection. Section
4 of [COMPRESSION] defines the dynamic table, which is the primary state for each context.

The dynamic table has a maximum size that is set by an HPACK decoder. An endpoint
communicates the size chosen by its HPACK decoder context using the
SETTINGS_HEADER_TABLE_SIZE setting; see Section 6.5.2. When a connection is established, the
dynamic table size for the HPACK decoder and encoder at both endpoints starts at 4,096 bytes, the
initial value of the SETTINGS_HEADER_TABLE_SIZE setting.

Any change to the maximum value set using SETTINGS_HEADER_TABLE_SIZE takes effect when
the endpoint acknowledges settings (Section 6.5.3). The HPACK encoder at that endpoint can set
the dynamic table to any size up to the maximum value set by the decoder. An HPACK encoder
declares the size of the dynamic table with a Dynamic Table Size Update instruction (Section 6.3
of [COMPRESSION]).

Once an endpoint acknowledges a change to SETTINGS_HEADER_TABLE_SIZE that reduces the
maximum below the current size of the dynamic table, its HPACK encoder MUST start the next
field block with a Dynamic Table Size Update instruction that sets the dynamic table to a size that
isless than or equal to the reduced maximum; see Section 4.2 of [COMPRESSION]. An endpoint
MUST treat a field block that follows an acknowledgment of the reduction to the maximum
dynamic table size as a connection error (Section 5.4.1) of type COMPRESSION_ERROR if it does
not start with a conformant Dynamic Table Size Update instruction.

Implementers are advised that reducing the value of
SETTINGS_HEADER_TABLE_SIZE is not widely interoperable. Use of the connection
preface to reduce the value below the initial value of 4,096 is somewhat better
supported, but this might fail with some implementations.

Thomson & Benfield Standards Track Page 13

https://www.rfc-editor.org/rfc/rfc7541#section-4
https://www.rfc-editor.org/rfc/rfc7541#section-4
https://www.rfc-editor.org/rfc/rfc7541#section-6.3
https://www.rfc-editor.org/rfc/rfc7541#section-4.2

RFC9113 HTTP/2 June 2022

5. Streams and Multiplexing

A'stream" is an independent, bidirectional sequence of frames exchanged between the client and
server within an HTTP/2 connection. Streams have several important characteristics:

* Asingle HTTP/2 connection can contain multiple concurrently open streams, with either
endpoint interleaving frames from multiple streams.

* Streams can be established and used unilaterally or shared by either endpoint.
* Streams can be closed by either endpoint.

*» The order in which frames are sent is significant. Recipients process frames in the order they
are received. In particular, the order of HEADERS and DATA frames is semantically
significant.

* Streams are identified by an integer. Stream identifiers are assigned to streams by the
endpoint initiating the stream.

5.1. Stream States

The lifecycle of a stream is shown in Figure 2.

Thomson & Benfield Standards Track Page 14

RFC9113

HTTP/2

>

send PP recv PP
/7 idle —\
send H /
reserved recv H reserved
(local) (remote)
recv ES send ES
send H /7 open —\ recv H
half- half-
closed send R / closed
(remote) recv R (local)
send ES / recv ES /
send R / send R /
recv R A 4 recv R
send R / L——Ppf ¢—— send R /
recv R closed recv R

<

Figure 2: Stream States

send: endpoint sends this frame

recv: endpoint receives this frame

H: HEADERS frame (with implied CONTINUATION frames)
ES: END_STREAM flag
R: RST_STREAM frame
PP: PUSH_PROMISE frame (with implied CONTINUATION frames); state transitions are for the

promised stream

June 2022

Note that this diagram shows stream state transitions and the frames and flags that affect those
transitions only. In this regard, CONTINUATION frames do not result in state transitions; they are
effectively part of the HEADERS or PUSH_PROMISE that they follow. For the purpose of state
transitions, the END_STREAM flag is processed as a separate event to the frame that bears it; a

HEADERS frame with the END_STREAM flag set can cause two state transitions.

Thomson & Benfield

Standards Track

Page 15

RFC9113 HTTP/2 June 2022

Both endpoints have a subjective view of the state of a stream that could be different when
frames are in transit. Endpoints do not coordinate the creation of streams; they are created
unilaterally by either endpoint. The negative consequences of a mismatch in states are limited to
the "closed" state after sending RST_STREAM, where frames might be received for some time after
closing.

Streams have the following states:

idle: All streams start in the "idle" state.
The following transitions are valid from this state:

* Sending a HEADERS frame as a client, or receiving a HEADERS frame as a server, causes
the stream to become "open". The stream identifier is selected as described in Section 5.1.1.
The same HEADERS frame can also cause a stream to immediately become "half-closed".

* Sending a PUSH_PROMISE frame on another stream reserves the idle stream that is
identified for later use. The stream state for the reserved stream transitions to "reserved
(Iocal)". Only a server may send PUSH_PROMISE frames.

* Receiving a PUSH_PROMISE frame on another stream reserves an idle stream that is
identified for later use. The stream state for the reserved stream transitions to "reserved
(remote)". Only a client may receive PUSH_PROMISE frames.

* Note that the PUSH_PROMISE frame is not sent on the idle stream but references the
newly reserved stream in the Promised Stream ID field.

* Opening a stream with a higher-valued stream identifier causes the stream to transition
immediately to a "closed" state; note that this transition is not shown in the diagram.

Receiving any frame other than HEADERS or PRIORITY on a stream in this state MUST be
treated as a connection error (Section 5.4.1) of type PROTOCOL_ERROR. If this stream is
initiated by the server, as described in Section 5.1.1, then receiving a HEADERS frame MUST
also be treated as a connection error (Section 5.4.1) of type PROTOCOL_ERROR.

reserved (local): A stream in the "reserved (local)" state is one that has been promised by
sending a PUSH_PROMISE frame. A PUSH_PROMISE frame reserves an idle stream by
associating the stream with an open stream that was initiated by the remote peer (see Section
8.4).

In this state, only the following transitions are possible:

* The endpoint can send a HEADERS frame. This causes the stream to open in a "half-closed
(remote)" state.

¢ Either endpoint can send a RST_STREAM frame to cause the stream to become "closed".
This releases the stream reservation.

An endpoint MUST NOT send any type of frame other than HEADERS, RST_STREAM, or
PRIORITY in this state.

Thomson & Benfield Standards Track Page 16

RFC9113 HTTP/2 June 2022

A PRIORITY or WINDOW_UPDATE frame MAY be received in this state. Receiving any type of
frame other than RST STREAM, PRIORITY, or WINDOW _UPDATE on a stream in this state
MUST be treated as a connection error (Section 5.4.1) of type PROTOCOL_ERROR.

reserved (remote): A stream in the "reserved (remote)" state has been reserved by a remote
peer.

In this state, only the following transitions are possible:

* Receiving a HEADERS frame causes the stream to transition to "half-closed (local)".

* Either endpoint can send a RST_STREAM frame to cause the stream to become "closed".
This releases the stream reservation.

An endpoint MUST NOT send any type of frame other than RST_STREAM, WINDOW _UPDATE,
or PRIORITY in this state.

Receiving any type of frame other than HEADERS, RST_STREAM, or PRIORITY on a stream in
this state MUST be treated as a connection error (Section 5.4.1) of type PROTOCOL_ERROR.

open: Astream in the "open" state may be used by both peers to send frames of any type. In this
state, sending peers observe advertised stream-level flow-control limits (Section 5.2).

From this state, either endpoint can send a frame with an END_STREAM flag set, which causes
the stream to transition into one of the "half-closed" states. An endpoint sending an
END_STREAM flag causes the stream state to become "half-closed (local)"; an endpoint
receiving an END_STREAM flag causes the stream state to become "half-closed (remote)".

Either endpoint can send a RST_STREAM frame from this state, causing it to transition
immediately to "closed".

half-closed (local): A stream that is in the "half-closed (local)" state cannot be used for sending
frames other than WINDOW_UPDATE, PRIORITY, and RST_STREAM.

A stream transitions from this state to "closed" when a frame is received with the
END_STREAM flag set or when either peer sends a RST_STREAM frame.

An endpoint can receive any type of frame in this state. Providing flow-control credit using
WINDOW_UPDATE frames is necessary to continue receiving flow-controlled frames. In this
state, a receiver can ignore WINDOW_UPDATE frames, which might arrive for a short period
after a frame with the END_STREAM flag set is sent.

PRIORITY frames can be received in this state.

half-closed (remote): A stream that is "half-closed (remote)" is no longer being used by the peer
to send frames. In this state, an endpoint is no longer obligated to maintain a receiver flow-
control window.

Thomson & Benfield Standards Track Page 17

RFC9113 HTTP/2 June 2022

If an endpoint receives additional frames, other than WINDOW_UPDATE, PRIORITY, or
RST_STREAM, for a stream that is in this state, it MUST respond with a stream error (Section
5.4.2) of type STREAM_CLOSED.

A stream that is "half-closed (remote)" can be used by the endpoint to send frames of any type.
In this state, the endpoint continues to observe advertised stream-level flow-control limits
(Section 5.2).

A stream can transition from this state to "closed" by sending a frame with the END_STREAM
flag set or when either peer sends a RST_STREAM frame.

closed: The "closed" state is the terminal state.

A stream enters the "closed" state after an endpoint both sends and receives a frame with an
END_STREAM flag set. A stream also enters the "closed" state after an endpoint either sends or
receives a RST_STREAM frame.

An endpoint MUST NOT send frames other than PRIORITY on a closed stream. An endpoint
MAY treat receipt of any other type of frame on a closed stream as a connection error (Section
5.4.1) of type STREAM_CLOSED, except as noted below.

An endpoint that sends a frame with the END_STREAM flag set or a RST_STREAM frame might
receive a WINDOW _UPDATE or RST_STREAM frame from its peer in the time before the peer
receives and processes the frame that closes the stream.

An endpoint that sends a RST_STREAM frame on a stream that is in the "open" or "half-closed
(local)" state could receive any type of frame. The peer might have sent or enqueued for
sending these frames before processing the RST_STREAM frame. An endpoint MUST minimally
process and then discard any frames it receives in this state. This means updating header
compression state for HEADERS and PUSH_PROMISE frames. Receiving a PUSH_PROMISE
frame also causes the promised stream to become "reserved (remote)", even when the
PUSH_PROMISE frame is received on a closed stream. Additionally, the content of DATA
frames counts toward the connection flow-control window.

An endpoint can perform this minimal processing for all streams that are in the "closed" state.
Endpoints MAY use other signals to detect that a peer has received the frames that caused the
stream to enter the "closed" state and treat receipt of any frame other than PRIORITY as a
connection error (Section 5.4.1) of type PROTOCOL_ERROR. Endpoints can use frames that
indicate that the peer has received the closing signal to drive this. Endpoints SHOULD NOT use
timers for this purpose. For example, an endpoint that sends a SETTINGS frame after closing a
stream can safely treat receipt of a DATA frame on that stream as an error after receiving an
acknowledgment of the settings. Other things that might be used are PING frames, receiving
data on streams that were created after closing the stream, or responses to requests created
after closing the stream.

In the absence of more specific rules, implementations SHOULD treat the receipt of a frame that is
not expressly permitted in the description of a state as a connection error (Section 5.4.1) of type
PROTOCOL_ERROR. Note that PRIORITY can be sent and received in any stream state.

Thomson & Benfield Standards Track Page 18

RFC9113 HTTP/2 June 2022

The rules in this section only apply to frames defined in this document. Receipt of frames for
which the semantics are unknown cannot be treated as an error, as the conditions for sending
and receiving those frames are also unknown; see Section 5.5.

An example of the state transitions for an HTTP request/response exchange can be found in
Section 8.8. An example of the state transitions for server push can be found in Sections 8.4.1 and
8.4.2.

5.1.1. Stream Identifiers

Streams are identified by an unsigned 31-bit integer. Streams initiated by a client MUST use odd-
numbered stream identifiers; those initiated by the server MUST use even-numbered stream
identifiers. A stream identifier of zero (0x00) is used for connection control messages; the stream
identifier of zero cannot be used to establish a new stream.

The identifier of a newly established stream MUST be numerically greater than all streams that
the initiating endpoint has opened or reserved. This governs streams that are opened using a
HEADERS frame and streams that are reserved using PUSH_PROMISE. An endpoint that receives
an unexpected stream identifier MUST respond with a connection error (Section 5.4.1) of type
PROTOCOL_ERROR.

A HEADERS frame will transition the client-initiated stream identified by the stream identifier in
the frame header from "idle" to "open". APUSH_PROMISE frame will transition the server-
initiated stream identified by the Promised Stream ID field in the frame payload from "idle" to
"reserved (local)" or "reserved (remote)". When a stream transitions out of the "idle" state, all
streams in the "idle" state that might have been opened by the peer with a lower-valued stream
identifier immediately transition to "closed". That is, an endpoint may skip a stream identifier,
with the effect being that the skipped stream is immediately closed.

Stream identifiers cannot be reused. Long-lived connections can result in an endpoint exhausting
the available range of stream identifiers. A client that is unable to establish a new stream
identifier can establish a new connection for new streams. A server that is unable to establish a
new stream identifier can send a GOAWAY frame so that the client is forced to open a new
connection for new streams.

5.1.2. Stream Concurrency

A peer can limit the number of concurrently active streams using the
SETTINGS_MAX_CONCURRENT_STREAMS parameter (see Section 6.5.2) within a SETTINGS frame.
The maximum concurrent streams setting is specific to each endpoint and applies only to the
peer that receives the setting. That is, clients specify the maximum number of concurrent streams
the server can initiate, and servers specify the maximum number of concurrent streams the
client can initiate.

Streams that are in the "open" state or in either of the "half-closed" states count toward the
maximum number of streams that an endpoint is permitted to open. Streams in any of these
three states count toward the limit advertised in the SETTINGS_ MAX CONCURRENT_STREAMS
setting. Streams in either of the "reserved" states do not count toward the stream limit.

Thomson & Benfield Standards Track Page 19

RFC9113 HTTP/2 June 2022

Endpoints MUST NOT exceed the limit set by their peer. An endpoint that receives a HEADERS
frame that causes its advertised concurrent stream limit to be exceeded MUST treat this as a
stream error (Section 5.4.2) of type PROTOCOL_ERROR or REFUSED_STREAM. The choice of error
code determines whether the endpoint wishes to enable automatic retry (see Section 8.7 for
details).

An endpoint that wishes to reduce the value of SETTINGS_MAX_CONCURRENT_STREAMS to a
value that is below the current number of open streams can either close streams that exceed the
new value or allow streams to complete.

5.2. Flow Control

Using streams for multiplexing introduces contention over use of the TCP connection, resulting in
blocked streams. A flow-control scheme ensures that streams on the same connection do not
destructively interfere with each other. Flow control is used for both individual streams and the
connection as a whole.

HTTP/2 provides for flow control through use of the WINDOW_UPDATE frame (Section 6.9).

5.2.1. Flow-Control Principles

HTTP/2 stream flow control aims to allow a variety of flow-control algorithms to be used without
requiring protocol changes. Flow control in HTTP/2 has the following characteristics:

1. Flow control is specific to a connection. HTTP/2 flow control operates between the endpoints
of a single hop and not over the entire end-to-end path.

2.Flow control is based on WINDOW _UPDATE frames. Receivers advertise how many octets
they are prepared to receive on a stream and for the entire connection. This is a credit-based
scheme.

3. Flow control is directional with overall control provided by the receiver. A receiver MAY
choose to set any window size that it desires for each stream and for the entire connection. A
sender MUST respect flow-control limits imposed by a receiver. Clients, servers, and
intermediaries all independently advertise their flow-control window as a receiver and abide
by the flow-control limits set by their peer when sending.

4. The initial value for the flow-control window is 65,535 octets for both new streams and the
overall connection.

5. The frame type determines whether flow control applies to a frame. Of the frames specified in
this document, only DATA frames are subject to flow control; all other frame types do not
consume space in the advertised flow-control window. This ensures that important control
frames are not blocked by flow control.

6. An endpoint can choose to disable its own flow control, but an endpoint cannot ignore flow-
control signals from its peer.

7.HTTP/2 defines only the format and semantics of the WINDOW_UPDATE frame (Section 6.9).
This document does not stipulate how a receiver decides when to send this frame or the value
that it sends, nor does it specify how a sender chooses to send packets. Implementations are
able to select any algorithm that suits their needs.

Thomson & Benfield Standards Track Page 20

RFC9113 HTTP/2 June 2022

Implementations are also responsible for prioritizing the sending of requests and responses,
choosing how to avoid head-of-line blocking for requests, and managing the creation of new
streams. Algorithm choices for these could interact with any flow-control algorithm.

5.2.2. Appropriate Use of Flow Control

Flow control is defined to protect endpoints that are operating under resource constraints. For
example, a proxy needs to share memory between many connections and also might have a slow
upstream connection and a fast downstream one. Flow control addresses cases where the
receiver is unable to process data on one stream yet wants to continue to process other streams
in the same connection.

Deployments that do not require this capability can advertise a flow-control window of the

maximum size (231-1) and can maintain this window by sending a WINDOW_UPDATE frame
when any data is received. This effectively disables flow control for that receiver. Conversely, a
sender is always subject to the flow-control window advertised by the receiver.

Deployments with constrained resources (for example, memory) can employ flow control to limit
the amount of memory a peer can consume. Note, however, that this can lead to suboptimal use
of available network resources if flow control is enabled without knowledge of the bandwidth *
delay product (see [RFC7323]).

Even with full awareness of the current bandwidth * delay product, implementation of flow
control can be difficult. Endpoints MUST read and process HTTP/2 frames from the TCP receive
buffer as soon as data is available. Failure to read promptly could lead to a deadlock when critical
frames, such as WINDOW _UPDATE, are not read and acted upon. Reading frames promptly does
not expose endpoints to resource exhaustion attacks, as HTTP/2 flow control limits resource
commitments.

5.2.3. Flow-Control Performance

If an endpoint cannot ensure that its peer always has available flow-control window space that is
greater than the peer's bandwidth * delay product on this connection, its receive throughput will
be limited by HTTP/2 flow control. This will result in degraded performance.

Sending timely WINDOW_UPDATE frames can improve performance. Endpoints will want to
balance the need to improve receive throughput with the need to manage resource exhaustion
risks and should take careful note of Section 10.5 in defining their strategy to manage window
sizes.

5.3. Prioritization

In a multiplexed protocol like HTTP/2, prioritizing allocation of handwidth and computation
resources to streams can be critical to attaining good performance. A poor prioritization scheme
can result in HTTP/2 providing poor performance. With no parallelism at the TCP layer,
performance could be significantly worse than HTTP/1.1.

Thomson & Benfield Standards Track Page 21

RFC9113 HTTP/2 June 2022

A good prioritization scheme benefits from the application of contextual knowledge such as the
content of resources, how resources are interrelated, and how those resources will be used by a
peer. In particular, clients can possess knowledge about the priority of requests that is relevant to
server prioritization. In those cases, having clients provide priority information can improve
performance.

5.3.1. Background on Priority in RFC 7540

RFC 7540 defined a rich system for signaling priority of requests. However, this system proved to
be complex, and it was not uniformly implemented.

The flexible scheme meant that it was possible for clients to express priorities in very different
ways, with little consistency in the approaches that were adopted. For servers, implementing
generic support for the scheme was complex. Implementation of priorities was uneven in both
clients and servers. Many server deployments ignored client signals when prioritizing their
handling of requests.

In short, the prioritization signaling in RFC 7540 [RFC7540] was not successful.

5.3.2. Priority Signaling in This Document

This update to HTTP/2 deprecates the priority signaling defined in RFC 7540 [RFC7540]. The bulk of
the text related to priority signals is not included in this document. The description of frame fields
and some of the mandatory handling is retained to ensure that implementations of this
document remain interoperable with implementations that use the priority signaling described
in RFC 7540.

A thorough description of the RFC 7540 priority scheme remains in Section 5.3 of [RFC7540].

Signaling priority information is necessary to attain good performance in many cases. Where
signaling priority information is important, endpoints are encouraged to use an alternative
scheme, such as the scheme described in [HTTP-PRIORITY].

Though the priority signaling from RFC 7540 was not widely adopted, the information it provides
can still be useful in the absence of better information. Endpoints that receive priority signals in
HEADERS or PRIORITY frames can benefit from applying that information. In particular,
implementations that consume these signals would not benefit from discarding these priority
signals in the absence of alternatives.

Servers SHOULD use other contextual information in determining priority of requests in the
absence of any priority signals. Servers MAY interpret the complete absence of signals as an
indication that the client has not implemented the feature. The defaults described in Section 5.3.5
of [RFC7540] are known to have poor performance under most conditions, and their use is
unlikely to be deliberate.

Thomson & Benfield Standards Track Page 22

https://www.rfc-editor.org/rfc/rfc7540#section-5.3
https://www.rfc-editor.org/rfc/rfc7540#section-5.3.5

RFC9113 HTTP/2 June 2022

5.4. Error Handling

HTTP/2 framing permits two classes of errors:

* An error condition that renders the entire connection unusable is a connection error.
* An error in an individual stream is a stream error.

Alist of error codes is included in Section 7.

It is possible that an endpoint will encounter frames that would cause multiple errors.
Implementations MAY discover multiple errors during processing, but they SHOULD report at
most one stream and one connection error as a result.

The first stream error reported for a given stream prevents any other errors on that stream from
being reported. In comparison, the protocol permits multiple GOAWAY frames, though an
endpoint SHOULD report just one type of connection error unless an error is encountered during
graceful shutdown. If this occurs, an endpoint MAY send an additional GOAWAY frame with the
new error code, in addition to any prior GOAWAY that contained NO_ERROR.

If an endpoint detects multiple different errors, it MAY choose to report any one of those errors. If
a frame causes a connection error, that error MUST be reported. Additionally, an endpoint MAY
use any applicable error code when it detects an error condition; a generic error code (such as
PROTOCOL_ERROR or INTERNAL_ERROR) can always be used in place of more specific error
codes.

5.4.1. Connection Error Handling

A connection error is any error that prevents further processing of the frame layer or corrupts
any connection state.

An endpoint that encounters a connection error SHOULD first send a GOAWAY frame (Section 6.8)
with the stream identifier of the last stream that it successfully received from its peer. The
GOAWAY frame includes an error code (Section 7) that indicates why the connection is
terminating. After sending the GOAWAY frame for an error condition, the endpoint MUST close
the TCP connection.

It is possible that the GOAWAY will not be reliably received by the receiving endpoint. In the event
of a connection error, GOAWAY only provides a best-effort attempt to communicate with the peer
about why the connection is being terminated.

An endpoint can end a connection at any time. In particular, an endpoint MAY choose to treat a
stream error as a connection error. Endpoints SHOULD send a GOAWAY frame when ending a
connection, providing that circumstances permit it.

5.4.2. Stream Error Handling

A stream erroris an error related to a specific stream that does not affect processing of other
streams.

Thomson & Benfield Standards Track Page 23

RFC9113 HTTP/2 June 2022

An endpoint that detects a stream error sends a RST_STREAM frame (Section 6.4) that contains
the stream identifier of the stream where the error occurred. The RST STREAM frame includes an
error code that indicates the type of error.

ARST_STREAM is the last frame that an endpoint can send on a stream. The peer that sends the
RST_STREAM frame MUST be prepared to receive any frames that were sent or enqueued for
sending by the remote peer. These frames can be ignored, except where they modify connection
state (such as the state maintained for field section compression (Section 4.3) or flow control).

Normally, an endpoint SHOULD NOT send more than one RST_STREAM frame for any stream.
However, an endpoint MAY send additional RST_STREAM frames if it receives frames on a closed
stream after more than a round-trip time. This behavior is permitted to deal with misbehaving
implementations.

To avoid looping, an endpoint MUST NOT send a RST_STREAM in response to a RST_STREAM
frame.

5.4.3. Connection Termination

If the TCP connection is closed or reset while streams remain in the "open" or "half-closed" states,
then the affected streams cannot be automatically retried (see Section 8.7 for details).

5.5. Extending HTTP/2

HTTP/2 permits extension of the protocol. Within the limitations described in this section,
protocol extensions can be used to provide additional services or alter any aspect of the protocol.
Extensions are effective only within the scope of a single HTTP/2 connection.

This applies to the protocol elements defined in this document. This does not affect the existing
options for extending HTTP, such as defining new methods, status codes, or fields (see Section 16
of [HTTP]).

Extensions are permitted to use new frame types (Section 4.1), new settings (Section 6.5), or new
error codes (Section 7). Registries for managing these extension points are defined in Section 11
of [RFC7540].

Implementations MUST ignore unknown or unsupported values in all extensible protocol
elements. Implementations MUST discard frames that have unknown or unsupported types. This
means that any of these extension points can be safely used by extensions without prior
arrangement or negotiation. However, extension frames that appear in the middle of a field
block (Section 4.3) are not permitted; these MUST be treated as a connection error (Section 5.4.1)
of type PROTOCOL_ERROR.

Extensions SHOULD avoid changing protocol elements defined in this document or elements for
which no extension mechanism is defined. This includes changes to the layout of frames,
additions or changes to the way that frames are composed into HTTP messages (Section 8.1), the
definition of pseudo-header fields, or changes to any protocol element that a compliant endpoint
might treat as a connection error (Section 5.4.1).

Thomson & Benfield Standards Track Page 24

https://www.rfc-editor.org/rfc/rfc9110#section-16
https://www.rfc-editor.org/rfc/rfc7540#section-11

RFC9113 HTTP/2 June 2022

An extension that changes existing protocol elements or state MUST be negotiated before being
used. For example, an extension that changes the layout of the HEADERS frame cannot be used
until the peer has given a positive signal that this is acceptable. In this case, it could also be
necessary to coordinate when the revised layout comes into effect. For example, treating frames
other than DATA frames as flow controlled requires a change in semantics that both endpoints
need to understand, so this can only be done through negotiation.

This document doesn't mandate a specific method for negotiating the use of an extension but
notes that a setting (Section 6.5.2) could be used for that purpose. If both peers set a value that
indicates willingness to use the extension, then the extension can be used. If a setting is used for
extension negotiation, the initial value MUST be defined in such a fashion that the extension is
initially disabled.

6. Frame Definitions

This specification defines a number of frame types, each identified by a unique 8-bit type code.
Each frame type serves a distinct purpose in the establishment and management of either the
connection as a whole or individual streams.

The transmission of specific frame types can alter the state of a connection. If endpoints fail to
maintain a synchronized view of the connection state, successful communication within the
connection will no longer be possible. Therefore, it is important that endpoints have a shared
comprehension of how the state is affected by the use of any given frame.

6.1. DATA

DATA frames (type=0x00) convey arbitrary, variable-length sequences of octets associated with a
stream. One or more DATA frames are used, for instance, to carry HTTP request or response
message contents.

DATA frames MAY also contain padding. Padding can be added to DATA frames to obscure the size
of messages. Padding is a security feature; see Section 10.7.

Thomson & Benfield Standards Track Page 25

RFC9113 HTTP/2 June 2022

DATA Frame {
Length (24),
Type (8) = 0x00,

Unused Flags (4),
PADDED Flag (1),
Unused Flags (2),
END_STREAM Flag (1),

Reserved (1),
Stream Identifier (31),

[Pad Length (8)],

Data (..),

Padding (..2040),
}

Figure 3: DATA Frame Format

The Length, Type, Unused Flag(s), Reserved, and Stream Identifier fields are described in Section
4. The DATA frame contains the following additional fields:

Pad Length: An 8-bit field containing the length of the frame padding in units of octets. This field
is conditional and is only present if the PADDED flag is set.

Data: Application data. The amount of data is the remainder of the frame payload after
subtracting the length of the other fields that are present.

Padding: Padding octets that contain no application semantic value. Padding octets MUST be set
to zero when sending. A receiver is not obligated to verify padding but MAY treat non-zero
padding as a connection error (Section 5.4.1) of type PROTOCOL_ERROR.

The DATA frame defines the following flags:

PADDED (0x08): When set, the PADDED flag indicates that the Pad Length field and any padding
that it describes are present.

END_STREAM (0x01): When set, the END_STREAM flag indicates that this frame is the last that
the endpoint will send for the identified stream. Setting this flag causes the stream to enter one
of the "half-closed" states or the "closed" state (Section 5.1).

Note: An endpoint that learns of stream closure after sending all data can close a
stream by sending a STREAM frame with a zero-length Data field and the
END_STREAM flag set. This is only possible if the endpoint does not send trailers, as
the END_STREAM flag appears on a HEADERS frame in that case; see Section 8.1.

DATA frames MUST be associated with a stream. If a DATA frame is received whose Stream
Identifier field is 0x00, the recipient MUST respond with a connection error (Section 5.4.1) of type
PROTOCOL_ERROR.

Thomson & Benfield Standards Track Page 26

RFC9113 HTTP/2 June 2022

DATA frames are subject to flow control and can only be sent when a stream is in the "open" or
"half-closed (remote)" state. The entire DATA frame payload is included in flow control, including
the Pad Length and Padding fields if present. If a DATA frame is received whose stream is not in
the "open" or "half-closed (local)" state, the recipient MUST respond with a stream error (Section
5.4.2) of type STREAM_CLOSED.

The total number of padding octets is determined by the value of the Pad Length field. If the
length of the padding is the length of the frame payload or greater, the recipient MUST treat this as
a connection error (Section 5.4.1) of type PROTOCOL_ERROR.

Note: A frame can be increased in size by one octet by including a Pad Length field
with a value of zero.

6.2. HEADERS

The HEADERS frame (type=0x01) is used to open a stream (Section 5.1), and additionally carries a
field block fragment. Despite the name, a HEADERS frame can carry a header section or a trailer

nwon

section. HEADERS frames can be sent on a stream in the "idle", "reserved (local)", "open", or "half-
closed (remote)" state.

HEADERS Frame {
Length (24),
Type (8) = 0x01,

Unused Flags (2),
PRIORITY Flag (1),
Unused Flag (1),
PADDED Flag (1),
END_HEADERS Flag (1),
Unused Flag (1),
END_STREAM Flag (1),

Reserved (1),
Stream Identifier (31),

[Pad Length (8)],
[Exclusive (1)],
[Stream Dependency (31)],
[Weight (8)],
Field Block Fragment (..),
Padding (..2040),

}

Figure 4: HEADERS Frame Format

The Length, Type, Unused Flag(s), Reserved, and Stream Identifier fields are described in Section
4. The HEADERS frame payload has the following additional fields:

Pad Length:

Thomson & Benfield Standards Track Page 27

RFC9113 HTTP/2 June 2022

An 8-bit field containing the length of the frame padding in units of octets. This field is only
present if the PADDED flag is set.

Exclusive: A single-bit flag. This field is only present if the PRIORITY flag is set. Priority signals in
HEADERS frames are deprecated; see Section 5.3.2.

Stream Dependency: A 31-bit stream identifier. This field is only present if the PRIORITY flag is
set.

Weight: An unsigned 8-bit integer. This field is only present if the PRIORITY flag is set.
Field Block Fragment: A field block fragment (Section 4.3).

Padding: Padding octets that contain no application semantic value. Padding octets MUST be set
to zero when sending. A receiver is not obligated to verify padding but MAY treat non-zero
padding as a connection error (Section 5.4.1) of type PROTOCOL_ERROR.

The HEADERS frame defines the following flags:

PRIORITY (0x20): When set, the PRIORITY flag indicates that the Exclusive, Stream Dependency,
and Weight fields are present.

PADDED (0x08): When set, the PADDED flag indicates that the Pad Length field and any padding
that it describes are present.

END_HEADERS (0x04): When set, the END_HEADERS flag indicates that this frame contains an
entire field block (Section 4.3) and is not followed by any CONTINUATION frames.

A HEADERS frame without the END_HEADERS flag set MUST be followed by a CONTINUATION
frame for the same stream. A receiver MUST treat the receipt of any other type of frame or a
frame on a different stream as a connection error (Section 5.4.1) of type PROTOCOL_ERROR.

END_STREAM (0x01): When set, the END_STREAM flag indicates that the field block (Section 4.3)
is the last that the endpoint will send for the identified stream.

A HEADERS frame with the END_STREAM flag set signals the end of a stream. However, a
HEADERS frame with the END_STREAM flag set can be followed by CONTINUATION frames on
the same stream. Logically, the CONTINUATION frames are part of the HEADERS frame.

The frame payload of a HEADERS frame contains a field block fragment (Section 4.3). A field
block that does not fit within a HEADERS frame is continued in a CONTINUATION frame (Section
6.10).

HEADERS frames MUST be associated with a stream. If a HEADERS frame is received whose
Stream Identifier field is 0x00, the recipient MUST respond with a connection error (Section 5.4.1)
of type PROTOCOL_ERROR.

The HEADERS frame changes the connection state as described in Section 4.3.

Thomson & Benfield Standards Track Page 28

RFC9113 HTTP/2 June 2022

The total number of padding octets is determined by the value of the Pad Length field. If the
length of the padding is the length of the frame payload or greater, the recipient MUST treat this as
a connection error (Section 5.4.1) of type PROTOCOL_ERROR.

Note: A frame can be increased in size by one octet by including a Pad Length field
with a value of zero.

6.3. PRIORITY

The PRIORITY frame (type=0x02) is deprecated; see Section 5.3.2. APRIORITY frame can be sent in
any stream state, including idle or closed streams.

PRIORITY Frame {
Length (24) = 6xe5,
Type (8) = 0x02,
Unused Flags (8),

Reserved (1),
Stream Identifier (31),

Exclusive (1),
Stream Dependency (31),
Weight (8),

}

Figure 5: PRIORITY Frame Format

The Length, Type, Unused Flag(s), Reserved, and Stream Identifier fields are described in Section
4. The frame payload of a PRIORITY frame contains the following additional fields:

Exclusive: A single-bit flag.
Stream Dependency: A 31-bit stream identifier.

Weight: An unsigned 8-bit integer.
The PRIORITY frame does not define any flags.

The PRIORITY frame always identifies a stream. If a PRIORITY frame is received with a stream
identifier of 0x00, the recipient MUST respond with a connection error (Section 5.4.1) of type
PROTOCOL_ERROR.

Sending or receiving a PRIORITY frame does not affect the state of any stream (Section 5.1). The
PRIORITY frame can be sent on a stream in any state, including "idle" or "closed". A PRIORITY
frame cannot be sent between consecutive frames that comprise a single field block (Section 4.3).

A PRIORITY frame with a length other than 5 octets MUST be treated as a stream error (Section
5.4.2) of type FRAME_SIZE_ERROR.

Thomson & Benfield Standards Track Page 29

RFC9113 HTTP/2 June 2022

6.4. RST _STREAM

The RST_STREAM frame (type=0x03) allows for immediate termination of a stream. RST_STREAM
is sent to request cancellation of a stream or to indicate that an error condition has occurred.

RST_STREAM Frame {
Length (24) = oxe4,
Type (8) = 0x03,

Unused Flags (8),

Reserved (1),
Stream Identifier (31),

Error Code (32),
}

Figure 6: RST_STREAM Frame Format

The Length, Type, Unused Flag(s), Reserved, and Stream Identifier fields are described in Section
4. Additionally, the RST_STREAM frame contains a single unsigned, 32-bit integer identifying the
error code (Section 7). The error code indicates why the stream is being terminated.

The RST_STREAM frame does not define any flags.

The RST_STREAM frame fully terminates the referenced stream and causes it to enter the "closed"
state. After receiving a RST_STREAM on a stream, the receiver MUST NOT send additional frames
for that stream, except for PRIORITY. However, after sending the RST_STREAM, the sending
endpoint MUST be prepared to receive and process additional frames sent on the stream that
might have been sent by the peer prior to the arrival of the RST_STREAM.

RST_STREAM frames MUST be associated with a stream. If a RST_STREAM frame is received with a
stream identifier of 0x00, the recipient MUST treat this as a connection error (Section 5.4.1) of type
PROTOCOL_ERROR.

RST STREAM frames MUST NOT be sent for a stream in the "idle" state. If a RST_STREAM frame
identifying an idle stream is received, the recipient MUST treat this as a connection error (Section
5.4.1) of type PROTOCOL_ERROR.

ARST_STREAM frame with a length other than 4 octets MUST be treated as a connection error
(Section 5.4.1) of type FRAME_SIZE_ERROR.

6.5. SETTINGS

The SETTINGS frame (type=0x04) conveys configuration parameters that affect how endpoints
communicate, such as preferences and constraints on peer behavior. The SETTINGS frame is also
used to acknowledge the receipt of those settings. Individually, a configuration parameter from a
SETTINGS frame is referred to as a "setting".

Thomson & Benfield Standards Track Page 30

RFC9113 HTTP/2 June 2022

Settings are not negotiated; they describe characteristics of the sending peer, which are used by
the receiving peer. Different values for the same setting can be advertised by each peer. For
example, a client might set a high initial flow-control window, whereas a server might set a lower
value to conserve resources.

A SETTINGS frame MUST be sent by both endpoints at the start of a connection and MAY be sent
at any other time by either endpoint over the lifetime of the connection. Implementations MUST
support all of the settings defined by this specification.

Each parameter in a SETTINGS frame replaces any existing value for that parameter. Settings are
processed in the order in which they appear, and a receiver of a SETTINGS frame does not need to
maintain any state other than the current value of each setting. Therefore, the value of a
SETTINGS parameter is the last value that is seen by a receiver.

SETTINGS frames are acknowledged by the receiving peer. To enable this, the SETTINGS frame
defines the ACK flag:

ACK (0x01): When set, the ACK flag indicates that this frame acknowledges receipt and
application of the peer's SETTINGS frame. When this bit is set, the frame payload of the
SETTINGS frame MUST be empty. Receipt of a SETTINGS frame with the ACK flag set and a
length field value other than 0 MUST be treated as a connection error (Section 5.4.1) of type
FRAME_SIZE_ERROR. For more information, see Section 6.5.3 ("Settings Synchronization").

SETTINGS frames always apply to a connection, never a single stream. The stream identifier for a
SETTINGS frame MUST be zero (0x00). If an endpoint receives a SETTINGS frame whose Stream
Identifier field is anything other than 0x00, the endpoint MUST respond with a connection error
(Section 5.4.1) of type PROTOCOL_ERROR.

The SETTINGS frame affects connection state. Abadly formed or incomplete SETTINGS frame
MUST be treated as a connection error (Section 5.4.1) of type PROTOCOL_ERROR.

A SETTINGS frame with a length other than a multiple of 6 octets MUST be treated as a connection
error (Section 5.4.1) of type FRAME_SIZE_ERROR.

6.5.1. SETTINGS Format

The frame payload of a SETTINGS frame consists of zero or more settings, each consisting of an
unsigned 16-bit setting identifier and an unsigned 32-bit value.

Thomson & Benfield Standards Track Page 31

RFC9113 HTTP/2 June 2022

SETTINGS Frame {
Length (24),
Type (8) = 0x04,

Unused Flags (7),
ACK Flag (1),

Reserved (1),
Stream Identifier (31) = 9,

Setting (48) ...,
}

Setting {
Identifier (16),
Value (32),

Figure 7: SETTINGS Frame Format

The Length, Type, Unused Flag(s), Reserved, and Stream Identifier fields are described in Section
4. The frame payload of a SETTINGS frame contains any number of Setting fields, each of which
consists of:

Identifier: A 16-bit setting identifier; see Section 6.5.2.

Value: A 32-bit value for the setting.

6.5.2. Defined Settings

The following settings are defined:

SETTINGS_HEADER_TABLE_SIZE (0x01): This setting allows the sender to inform the remote
endpoint of the maximum size of the compression table used to decode field blocks, in units of
octets. The encoder can select any size equal to or less than this value by using signaling
specific to the compression format inside a field block (see [COMPRESSION]). The initial value
is 4,096 octets.

SETTINGS_ENABLE_PUSH (0x02): This setting can be used to enable or disable server push. A
server MUST NOT send a PUSH_PROMISE frame if it receives this parameter set to a value of 0;
see Section 8.4. A client that has both set this parameter to 0 and had it acknowledged MUST
treat the receipt of a PUSH_PROMISE frame as a connection error (Section 5.4.1) of type
PROTOCOL_ERROR.

The initial value of SETTINGS _ENABLE_PUSH is 1. For a client, this value indicates that it is
willing to receive PUSH_PROMISE frames. For a server, this initial value has no effect, and is
equivalent to the value 0. Any value other than 0 or 1 MUST be treated as a connection error
(Section 5.4.1) of type PROTOCOL_ERROR.

Thomson & Benfield Standards Track Page 32

RFC9113 HTTP/2 June 2022

A server MUST NOT explicitly set this value to 1. A server MAY choose to omit this setting when
it sends a SETTINGS frame, but if a server does include a value, it MUST be 0. A client MUST
treat receipt of a SETTINGS frame with SETTINGS_ENABLE_PUSH set to 1 as a connection error
(Section 5.4.1) of type PROTOCOL_ERROR.

SETTINGS_MAX_CONCURRENT_STREAMS (0x03): This setting indicates the maximum number
of concurrent streams that the sender will allow. This limit is directional: it applies to the
number of streams that the sender permits the receiver to create. Initially, there is no limit to
this value. It is recommended that this value be no smaller than 100, so as to not unnecessarily
limit parallelism.

Avalue of 0 for SETTINGS_MAX_CONCURRENT_STREAMS SHOULD NOT be treated as special by
endpoints. A zero value does prevent the creation of new streams; however, this can also
happen for any limit that is exhausted with active streams. Servers SHOULD only set a zero
value for short durations; if a server does not wish to accept requests, closing the connection is
more appropriate.

SETTINGS_INITIAL, WINDOW_SIZE (0x04): This setting indicates the sender's initial window size
(in units of octets) for stream-level flow control. The initial value is 2161 (65,535) octets.

This setting affects the window size of all streams (see Section 6.9.2).

Values above the maximum flow-control window size of 231-1 MUST be treated as a
connection error (Section 5.4.1) of type FLOW_CONTROL_ERROR.

SETTINGS_MAX_FRAME_SIZE (0x05): This setting indicates the size of the largest frame payload
that the sender is willing to receive, in units of octets.

The initial value is 214 (16,384) octets. The value advertised by an endpoint MUST be between

this initial value and the maximum allowed frame size (224—1 or 16,777,215 octets), inclusive.
Values outside this range MUST be treated as a connection error (Section 5.4.1) of type
PROTOCOL_ERROR.

SETTINGS_MAX_HEADER_LIST SIZE (0x06): This advisory setting informs a peer of the
maximum field section size that the sender is prepared to accept, in units of octets. The value
is based on the uncompressed size of field lines, including the length of the name and value in
units of octets plus an overhead of 32 octets for each field line.

For any given request, a lower limit than what is advertised MAY be enforced. The initial value
of this setting is unlimited.

An endpoint that receives a SETTINGS frame with any unknown or unsupported identifier MUST
ignore that setting.

Thomson & Benfield Standards Track Page 33

RFC9113 HTTP/2 June 2022

6.5.3. Settings Synchronization

Most values in SETTINGS benefit from or require an understanding of when the peer has received
and applied the changed parameter values. In order to provide such synchronization timepoints,
the recipient of a SETTINGS frame in which the ACK flag is not set MUST apply the updated settings
as soon as possible upon receipt. SETTINGS frames are acknowledged in the order in which they
are received.

The values in the SETTINGS frame MUST be processed in the order they appea