
ReportLab PDF Library

User Guide

ReportLab Version 3.6.13

Document generated on 2025/07/10 10:35:08

ReportLab
Wimbletech
35 Wimbledon Hill Road
London SW19 7NB, UK

Table of contents

2Table of contents

6Chapter 1 Introduction
 . 61.1 About this document

 61.2 What is the ReportLab PDF Library?

 . 71.3 ReportLab's commercial software

 . 71.4 What is Python?

 . 71.5 Acknowledgements

 . 81.6 Installation and Setup

 . 81.7 Getting Involved

 . 81.8 Site Configuration

 . 91.9 Learning More About Python

 . 91.10 Goals of the 3.x release series

11Chapter 2 Graphics and Text with pdfgen
 . 112.1 Basic Concepts

 . 112.2 More about the Canvas

 . 122.3 Drawing Operations

 . 132.4 The tools: the "draw" operations

 152.5 The toolbox: the "state change" operations

 . 172.6 Other canvas methods.

 . 172.7 Coordinates (default user space)

 . 222.8 Colors

 . 252.9 Color space checking

 . 252.10 Color Overprinting

 . 272.11 Standard fonts and text objects

 . 292.12 Text object methods

 . 352.13 Paths and Lines

 . 392.14 Rectangles, circles, ellipses

 . 402.15 Bezier curves

 . 422.16 Path object methods

 472.17 Further Reading: The ReportLab Graphics Library

48Chapter 3 Fonts and encodings
 483.1 Unicode and UTF8 are the default input encodings

 . 483.2 Automatic output font substitution

User Guide Table of contents

Page 2

 . 493.3 Using non-standard Type 1 fonts

 503.4 Standard Single-Byte Font Encodings

 . 523.5 TrueType Font Support

 . 533.6 Asian Font Support

 . 543.7 RenderPM tests

55Chapter 4 Exposing PDF Special Capabilities
 . 554.1 Forms

 . 554.2 Links and Destinations

 . 574.3 Outline Trees

 . 574.4 Page Transition Effects

 . 574.5 Internal File Annotations

 . 584.6 Encryption

 . 604.7 Interactive Forms

65Chapter 5 PLATYPUS - Page Layout and Typography Using Scripts
 . 655.1 Design Goals

 . 665.2 Getting started

 . 675.3 Flowables

 . 675.4 Guidelines for flowable positioning

 . 685.5 Frames

 . 695.6 Documents and Templates

72Chapter 6 Paragraphs
 . 736.1 Using Paragraph Styles

 . 786.2 Paragraph XML Markup Tags

 . 796.3 Intra-paragraph markup

 . 826.4 Bullets and Paragraph Numbering

84Chapter 7 Tables and TableStyles
 . 847.1 Table User Methods

 . 857.2 TableStyle

 . 857.3 TableStyle User Methods

 . 867.4 TableStyle Commands

91Chapter 8 Programming Flowables
 918.1 DocAssign(self, var, expr, life='forever')

 918.2 DocExec(self, stmt, lifetime='forever')

User Guide Table of contents

Page 3

918.3 DocPara(self, expr, format=None, style=None, klass=None, escape=True)

 918.4 DocAssert(self, cond, format=None)

 918.5 DocIf(self, cond, thenBlock, elseBlock=[])

 . 918.6 DocWhile(self, cond, whileBlock)

92Chapter 9 Other Useful Flowables

 92
9.1 Preformatted(text, style, bulletText=None, dedent=0,

maxLineLength=None, splitChars=None, newLineChars=None)

 . . 929.2 XPreformatted(text, style, bulletText=None, dedent=0, frags=None)

 939.3 Image(filename, width=None, height=None)

 . 949.4 Spacer(width, height)

 . 949.5 PageBreak()

 . 949.6 CondPageBreak(height)

 . 949.7 KeepTogether(flowables)

 . 949.8 TableOfContents()

 . 959.9 SimpleIndex()

 . 969.10 ListFlowable(),ListItem()

 . 979.11 BalancedColumns()

98Chapter 10 Writing your own Flowable Objects
 . 9810.1 A very simple Flowable

 . 9910.2 Modifying a Built in Flowable

101Chapter 11 Graphics
 . 10111.1 Introduction

 . 10111.2 General Concepts

 . 10411.3 Charts

 . 10611.4 Labels

 . 10711.5 Axes

 . 11111.6 Bar Charts

 . 11411.7 Line Charts

 . 11511.8 Line Plots

 . 11711.9 Pie Charts

 . 12111.10 Legends

 . 12211.11 Shapes

 . 12711.12 Widgets

133Appendix A ReportLab Demos
 . 133A.1 Odyssey

User Guide Table of contents

Page 4

 . 133A.2 Standard Fonts and Colors

 . 133A.3 Py2pdf

 . 134A.4 Gadflypaper

 . 134A.5 Pythonpoint

User Guide Table of contents

Page 5

Chapter 1 Introduction

1.1 About this document
This document is an introduction to the ReportLab PDF library. Some previous programming experience is
presumed and familiarity with the Python Programming language is recommended. If you are new to Python,
we tell you in the next section where to go for orientation.

This manual does not cover 100% of the features, but should explain all the main concepts and help you get
started, and point you at other learning resources. After working your way through this, you should be ready
to begin writing programs to produce sophisticated reports.

In this chapter, we will cover the groundwork:
• What is ReportLab all about, and why should I use it?
• What is Python?
• How do I get everything set up and running?

We need your help to make sure this manual is complete and helpful. Please send any feedback to our user
mailing list, which is signposted from www.reportlab.com.

1.2 What is the ReportLab PDF Library?
This is a software library that lets you directly create documents in Adobe's Portable Document Format (PDF)
using the Python programming language. It also creates charts and data graphics in various bitmap and vector
formats as well as PDF.

PDF is the global standard for electronic documents. It supports high-quality printing yet is totally portable
across platforms, thanks to the freely available Acrobat Reader. Any application which previously generated
hard copy reports or driving a printer can benefit from making PDF documents instead; these can be archived,
emailed, placed on the web, or printed out the old-fashioned way. However, the PDF file format is a complex
indexed binary format which is impossible to type directly. The PDF format specification is more than 600
pages long and PDF files must provide precise byte offsets -- a single extra character placed anywhere in a
valid PDF document can render it invalid. This makes it harder to generate than HTML.

Most of the world's PDF documents have been produced by Adobe's Acrobat tools, or rivals such as JAWS
PDF Creator, which act as 'print drivers'. Anyone wanting to automate PDF production would typically use a
product like Quark, Word or Framemaker running in a loop with macros or plugins, connected to Acrobat.
Pipelines of several languages and products can be slow and somewhat unwieldy.

The ReportLab library directly creates PDF based on your graphics commands. There are no intervening
steps. Your applications can generate reports extremely fast - sometimes orders of magnitude faster than
traditional report-writing tools. This approach is shared by several other libraries - PDFlib for C, iText for
Java, iTextSharp for .NET and others. However, The ReportLab library differs in that it can work at much
higher levels, with a full featured engine for laying out documents complete with tables and charts.

In addition, because you are writing a program in a powerful general purpose language, there are no
restrictions at all on where you get your data from, how you transform it, and the kind of output you can
create. And you can reuse code across whole families of reports.

The ReportLab library is expected to be useful in at least the following contexts:
• Dynamic PDF generation on the web
• High-volume corporate reporting and database publishing
• An embeddable print engine for other applications, including a 'report language' so that users

can customize their own reports. This is particularly relevant to cross-platform apps which
cannot rely on a consistent printing or previewing API on each operating system.

• A 'build system' for complex documents with charts, tables and text such as management
accounts, statistical reports and scientific papers

• Going from XML to PDF in one step

User Guide Chapter 1 Introduction

Page 6

http://www.reportlab.com/

1.3 ReportLab's commercial software
The ReportLab library forms the foundation of our commercial solution for PDF generation, Report Markup
Language (RML). This is available for evaluation on our web site with full documentation. We believe that
RML is the fastest and easiest way to develop rich PDF workflows. You work in a markup language at a
similar level to HTML, using your favorite templating system to populate an RML document; then call our
rml2pdf API function to generate a PDF. It's what ReportLab staff use to build all of the solutions you can see
on reportlab.com. Key differences:

• Fully documented with two manuals, a formal specification (the DTD) and extensive
self-documenting tests. (By contrast, we try to make sure the open source documentation isn't
wrong, but we don't always keep up with the code)

• Work in high-level markup rather than constructing graphs of Python objects
• Requires no Python expertise - your colleagues may thank you after you've left!'
• Support for vector graphics and inclusion of other PDF documents
• Many more useful features expressed with a single tag, which would need a lot of coding in the

open source package
• Commercial support is included

We ask open source developers to consider trying out RML where it is appropriate. You can register on our
site and try out a copy before buying. The costs are reasonable and linked to the volume of the project, and the
revenue helps us spend more time developing this software.

1.4 What is Python?
Python is an interpreted, interactive, object-oriented programming language. It is often compared to Tcl, Perl,
Scheme or Java.

Python combines remarkable power with very clear syntax. It has modules, classes, exceptions, very high
level dynamic data types, and dynamic typing. There are interfaces to many system calls and libraries, as well
as to various windowing systems (X11, Motif, Tk, Mac, MFC). New built-in modules are easily written in C
or C++. Python is also usable as an extension language for applications that need a programmable interface.

Python is as old as Java and has been growing steadily in popularity for years; since our library first came out
it has entered the mainstream. Many ReportLab library users are already Python devotees, but if you are not,
we feel that the language is an excellent choice for document-generation apps because of its expressiveness
and ability to get data from anywhere.

Python is copyrighted but freely usable and distributable, even for commercial use.

1.5 Acknowledgements
Many people have contributed to ReportLab. We would like to thank in particular (in alphabetical order):
Albertas Agejevas, Alex Buck, Andre Reitz, Andrew Cutler, Andrew Mercer, Ben Echols, Benjamin Dumke,
Benn B, Chad Miller, Chris Buergi, Chris Lee, Christian Jacobs, Dinu Gherman, Edward Greve, Eric
Johnson, Felix Labrecque, Fubu @ bitbucket, Gary Poster, Germán M. Bravo, Guillaume Francois, Hans
Brand, Henning Vonbargen, Hosam Aly, Ian Stevens, James Martin-Collar, Jeff Bauer, Jerome Alet, Jerry
Casiano, Jorge Godoy, Keven D Smith, Kyle MacFarlane, Magnus Lie Hetland, Marcel Tromp, Marius
Gedminas, Mark de Wit, Matthew Duggan, Matthias Kirst, Matthias Klose, Max M, Michael Egorov,
Michael Spector, Mike Folwell, Mirko Dziadzka, Moshe Wagner, Nate Silva, Paul McNett, Peter Johnson,
PJACock, Publio da Costa Melo, Randolph Bentson, Robert Alsina, Robert Hölzl, Robert Kern, Ron Peleg,
Ruby Yocum, Simon King, Stephan Richter, Steve Halasz, Stoneleaf @ bitbucket, T Blatter, Tim Roberts,
Tomasz Swiderski, Ty Sarna, Volker Haas, Yoann Roman, and many more.

Special thanks go to Just van Rossum for his valuable assistance with font technicalities.

Moshe Wagner and Hosam Aly deserve a huge thanks for contributing to the RTL patch, which is not yet on
the trunk.

Marius Gedminas deserves a big hand for contributing the work on TrueType fonts and we are glad to include
these in the toolkit. Finally we thank Michal Kosmulski for the DarkGarden font for and Bitstream Inc. for

User Guide Chapter 1 Introduction

Page 7

the Vera fonts.

1.6 Installation and Setup
To avoid duplication, the installation instructions are kept in the README file in our distribution, which can
be viewed online at https://hg.reportlab.com/hg-public/reportlab/

This release (3.6.13) of ReportLab requires Python versions 3.7+ or higher. If you need to use Python 2,
please use the latest ReportLab 2.7 package that is suitable for you.

1.7 Getting Involved
ReportLab is an Open Source project. Although we are a commercial company we provide the core PDF
generation sources freely, even for commercial purposes, and we make no income directly from these
modules. We also welcome help from the community as much as any other Open Source project. There are
many ways in which you can help:

• General feedback on the core API. Does it work for you? Are there any rough edges? Does
anything feel clunky and awkward?

• New objects to put in reports, or useful utilities for the library. We have an open standard for
report objects, so if you have written a nice chart or table class, why not contribute it?

• Snippets and Case Studies: If you have produced some nice output, register online on
http://www.reportlab.com and submit a snippet of your output (with or without
scripts). If ReportLab solved a problem for you at work, write a little 'case study' and submit it.
And if your web site uses our tools to make reports, let us link to it. We will be happy to display
your work (and credit it with your name and company) on our site!

• Working on the core code: we have a long list of things to refine or to implement. If you are
missing some features or just want to help out, let us know!

The first step for anyone wanting to learn more or get involved is to join the mailing list. To Subscribe visit
http://two.pairlist.net/mailman/listinfo/reportlab-users. From there you can also
browse through the group's archives and contributions. The mailing list is the place to report bugs and get
support.

The code now lives on our website (http://hg.reportlab.com/hg-public/reportlab/) in a
Mercurial repository, along with an issue tracker and wiki. Everyone should feel free to contribute, but if you
are working actively on some improvements or want to draw attention to an issue, please use the mailing list
to let us know.

1.8 Site Configuration
There are a number of options which most likely need to be configured globally for a site. The python script
module reportlab/rl_config.py aggregates the various settings files. You may want inspect the file
reportlab/rl_settings.py which contains defaults for the currently used
variables. There are several overrides for rl_settings" modules
reportlab.local_rl_settings, reportlab_settings (a script file anywhere on the python
path) and finally the file ~/.reportlab_settings (note no .py). Temporary changes can be made using
evironment variables which are the variables from rl_settings.py" prefixed with RL_ eg
RL_verbose=1$.

Useful rl_config variables

• verbose: set to integer values to control diagnostic output.
• shapeChecking: set this to zero to turn off a lot of error checking in the graphics modules
• defaultEncoding: set this to WinAnsiEncoding or MacRomanEncoding.
• defaultPageSize: set this to one of the values defined in reportlab/lib/pagesizes.py; as delivered

it is set to pagesizes.A4; other values are pagesizes.letter etc.
• defaultImageCaching: set to zero to inhibit the creation of .a85 files on your hard-drive. The

default is to create these preprocessed PDF compatible image files for faster loading

User Guide Chapter 1 Introduction

Page 8

• T1SearchPath: this is a python list of strings representing directories that may be queried for
information on Type 1 fonts

• TTFSearchPath: this is a python list of strings representing directories that may be queried for
information on TrueType fonts

• CMapSearchPath: this is a python list of strings representing directories that may be queried for
information on font code maps.

• showBoundary: set to non-zero to get boundary lines drawn.
• pageCompression: set to non-zero to try and get compressed PDF.
• allowtableBoundsErrors: set to 0 to force an error on very large Platypus table elements
• emptyTableAction: Controls behaviour for empty tables, can be 'error' (default), 'indicate' or

'ignore'.
• trustedHosts: if not None a list of glob patterns of trusted hosts; these may be used in places like

 tags in paragraph texts.
• trustedSchemes: a list of allowed URL schemes used with trustedHosts

For the full list of variables see the file reportlab/rl_settings.py.

Other modifications

More complex modifications to the reportlab toolkit environment may be made using one of the modules
rep[ortlab.local_rl_mods (.py script in reportlab folder), reportlab_mods (.py file on the
python path) or ~/.reportlab_mods (note no .py).

1.9 Learning More About Python
If you are a total beginner to Python, you should check out one or more from the growing number of
resources on Python programming. The following are freely available on the web:

• Python Documentation. A list of documentation on the Python.org web site.
http://www.python.org/doc/

• Python Tutorial. The official Python Tutorial , originally written by Guido van Rossum
himself. http://docs.python.org/tutorial/

• Learning to Program. A tutorial on programming by Alan Gauld. Has a heavy emphasis on
Python, but also uses other languages.
http://www.freenetpages.co.uk/hp/alan.gauld/

• Instant Python. A 6-page minimal crash course by Magnus Lie Hetland.
http://www.hetland.org/python/instant-python.php

• Dive Into Python. A free Python tutorial for experienced programmers.
http://www.diveintopython.net/

1.10 Goals of the 3.x release series
ReportLab 3.0 has been produced to help in the migration to Python 3.x. Python 3.x will be standard in future
Ubuntu releases and is gaining popularity, and a good proportion of major Python packages now run on
Python 3.

• Python 3.x compatibility. A single line of code should run on 3.6 and higher
• __init__.py restricts to >=3.6
• __init__.py allow the import of on optional reportlab.local_rl_mods to allow monkey patching

etc.
• rl_config now imports rl_settings, optionally local_rl_settings, reportlab_settings.py & finally

~/.reportlab_settings
• ReportLab C extensions now live inside reportlab; _rl_accel is no longer required. All _rl_accel

imports now pass through reportlab.lib.rl_accel
• xmllib is gone, alongside the paraparser stuff that caused issues in favour of HTMLParser.
• some obsolete C extensions (sgmlop and pyHnj) are gone
• Improved support for multi-threaded systems to the _rl_accel C extension module.
• Removed reportlab/lib/ para.py & pycanvas.py. These would better belong in third party

packages, which can make use of the monkeypatching feature above.

User Guide Chapter 1 Introduction

Page 9

• Add ability to output greyscale and 1-bit PIL images without conversion to RGB. (contributed
by Matthew Duggan)

• highlight annotation (contributed by Ben Echols)
• full compliance with pip, easy_install, wheels etc

Detailed release notes are available at
http://www.reportlab.com/software/documentation/relnotes/30/

User Guide Chapter 1 Introduction

Page 10

Chapter 2 Graphics and Text with pdfgen

2.1 Basic Concepts
The pdfgen package is the lowest level interface for generating PDF documents. A pdfgen program is
essentially a sequence of instructions for "painting" a document onto a sequence of pages. The interface
object which provides the painting operations is the pdfgen canvas.

The canvas should be thought of as a sheet of white paper with points on the sheet identified using Cartesian
(X,Y) coordinates which by default have the (0,0) origin point at the lower left corner of the page.
Furthermore the first coordinate x goes to the right and the second coordinate y goes up, by default.

A simple example program that uses a canvas follows.

 from reportlab.pdfgen import canvas
 def hello(c):
 c.drawString(100,100,"Hello World")
 c = canvas.Canvas("hello.pdf")
 hello(c)
 c.showPage()
 c.save()

The above code creates a canvas object which will generate a PDF file named hello.pdf in the current
working directory. It then calls the hello function passing the canvas as an argument. Finally the
showPage method saves the current page of the canvas and the save method stores the file and closes the
canvas.

The showPage method causes the canvas to stop drawing on the current page and any further operations
will draw on a subsequent page (if there are any further operations -- if not no new page is created). The
save method must be called after the construction of the document is complete -- it generates the PDF
document, which is the whole purpose of the canvas object.

2.2 More about the Canvas
Before describing the drawing operations, we will digress to cover some of the things which can be done to
configure a canvas. There are many different settings available. If you are new to Python or can't wait to
produce some output, you can skip ahead, but come back later and read this!

First of all, we will look at the constructor arguments for the canvas:

 def __init__(self,filename,
 pagesize=(595.27,841.89),
 bottomup = 1,
 pageCompression=0,
 encoding=rl_config.defaultEncoding,
 verbosity=0
 encrypt=None):

The filename argument controls the name of the final PDF file. You may also pass in any open binary
stream (such as sys.stdout, the python process standard output with a binary encoding) and the PDF
document will be written to that. Since PDF is a binary format, you should take care when writing other stuff
before or after it; you can't deliver PDF documents inline in the middle of an HTML page!

The pagesize argument is a tuple of two numbers in points (1/72 of an inch). The canvas defaults to A4 (an
international standard page size which differs from the American standard page size of letter), but it is
better to explicitly specify it. Most common page sizes are found in the library module
reportlab.lib.pagesizes, so you can use expressions like

from reportlab.lib.pagesizes import letter, A4
myCanvas = Canvas('myfile.pdf', pagesize=letter)
width, height = letter #keep for later

NOTE

User Guide Chapter 2 Graphics and Text with pdfgen

Page 11

If you have problems printing your document make sure you are using the right page size (usually either A4
or letter). Some printers do not work well with pages that are too large or too small.

Very often, you will want to calculate things based on the page size. In the example above we extracted the
width and height. Later in the program we may use the width variable to define a right margin as width -
inch rather than using a constant. By using variables the margin will still make sense even if the page size
changes.

The bottomup argument switches coordinate systems. Some graphics systems (like PDF and PostScript)
place (0,0) at the bottom left of the page others (like many graphical user interfaces [GUI's]) place the origin
at the top left. The bottomup argument is deprecated and may be dropped in future
Need to see if it really works for all tasks, and if not then get rid of it

The pageCompression option determines whether the stream of PDF operations for each page is
compressed. By default page streams are not compressed, because the compression slows the file generation
process. If output size is important set pageCompression=1, but remember that, compressed documents
will be smaller, but slower to generate. Note that images are always compressed, and this option will only
save space if you have a very large amount of text and vector graphics on each page.

The encoding argument is largely obsolete in version 2.0 and can probably be omitted by 99% of users. Its
default value is fine unless you very specifically need to use one of the 25 or so characters which are present
in MacRoman and not in Winansi. A useful reference to these is here:
http://www.alanwood.net/demos/charsetdiffs.html. The parameter determines which font encoding is used for
the standard Type 1 fonts; this should correspond to the encoding on your system. Note that this is the
encoding used internally by the font; text you pass to the ReportLab toolkit for rendering should always either
be a Python unicode string object or a UTF-8 encoded byte string (see the next chapter)! The font encoding
has two values at present: 'WinAnsiEncoding' or 'MacRomanEncoding'. The variable
rl_config.defaultEncoding above points to the former, which is standard on Windows, Mac OS X
and many Unices (including Linux). If you are Mac user and don't have OS X, you may want to make a
global change: modify the line at the top of reportlab/pdfbase/pdfdoc.py to switch it over. Otherwise, you can
probably just ignore this argument completely and never pass it. For all TTF and the commonly-used CID
fonts, the encoding you pass in here is ignored, since the reportlab library itself knows the right encodings in
those cases.

The demo script reportlab/demos/stdfonts.py will print out two test documents showing all code
points in all fonts, so you can look up characters. Special characters can be inserted into string commands
with the usual Python escape sequences; for example \101 = 'A'.

The verbosity argument determines how much log information is printed. By default, it is zero to assist
applications which want to capture PDF from standard output. With a value of 1, you will get a confirmation
message each time a document is generated. Higher numbers may give more output in future.

The encrypt argument determines if and how the document is encrypted. By default, the document is not
encrypted. If encrypt is a string object, it is used as the user password for the pdf. If encrypt is an
instance of reportlab.lib.pdfencrypt.StandardEncryption, this object is used to encrypt the
pdf. This allows more finegrained control over the encryption settings. Encryption is covered in more detail in
Chapter 4.
to do - all the info functions and other non-drawing stuff
Cover all constructor arguments, and setAuthor etc.

2.3 Drawing Operations
Suppose the hello function referenced above is implemented as follows (we will not explain each of the
operations in detail yet).

def hello(c):
 from reportlab.lib.units import inch
 # move the origin up and to the left
 c.translate(inch,inch)
 # define a large font
 c.setFont("Helvetica", 14)
 # choose some colors

User Guide Chapter 2 Graphics and Text with pdfgen

Page 12

http://www.alanwood.net/demos/charsetdiffs.html

 c.setStrokeColorRGB(0.2,0.5,0.3)
 c.setFillColorRGB(1,0,1)
 # draw some lines
 c.line(0,0,0,1.7*inch)
 c.line(0,0,1*inch,0)
 # draw a rectangle
 c.rect(0.2*inch,0.2*inch,1*inch,1.5*inch, fill=1)
 # make text go straight up
 c.rotate(90)
 # change color
 c.setFillColorRGB(0,0,0.77)
 # say hello (note after rotate the y coord needs to be negative!)
 c.drawString(0.3*inch, -inch, "Hello World")

Examining this code notice that there are essentially two types of operations performed using a canvas. The
first type draws something on the page such as a text string or a rectangle or a line. The second type changes
the state of the canvas such as changing the current fill or stroke color or changing the current font type and
size.

If we imagine the program as a painter working on the canvas the "draw" operations apply paint to the canvas
using the current set of tools (colors, line styles, fonts, etcetera) and the "state change" operations change one
of the current tools (changing the fill color from whatever it was to blue, or changing the current font to
Times-Roman in 15 points, for example).

The document generated by the "hello world" program listed above would contain the following graphics.

H
el

lo
 W

or
ld

Figure 2-1: "Hello World" in pdfgen

About the demos in this document

This document contains demonstrations of the code discussed like the one shown in the rectangle above.
These demos are drawn on a "tiny page" embedded within the real pages of the guide. The tiny pages are 5.5
inches wide and 3 inches tall. The demo displays show the actual output of the demo code. For convenience
the size of the output has been reduced slightly.

2.4 The tools: the "draw" operations
This section briefly lists the tools available to the program for painting information onto a page using the
canvas interface. These will be discussed in detail in later sections. They are listed here for easy reference and
for summary purposes.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 13

Line methods

canvas.line(x1,y1,x2,y2)

canvas.lines(linelist)

The line methods draw straight line segments on the canvas.

Shape methods

canvas.grid(xlist, ylist)

canvas.bezier(x1, y1, x2, y2, x3, y3, x4, y4)

canvas.arc(x1,y1,x2,y2)

canvas.rect(x, y, width, height, stroke=1, fill=0)

canvas.ellipse(x1,y1, x2,y2, stroke=1, fill=0)

canvas.wedge(x1,y1, x2,y2, startAng, extent, stroke=1, fill=0)

canvas.circle(x_cen, y_cen, r, stroke=1, fill=0)

canvas.roundRect(x, y, width, height, radius, stroke=1, fill=0)

The shape methods draw common complex shapes on the canvas.

String drawing methods

canvas.drawString(x, y, text):

canvas.drawRightString(x, y, text)

canvas.drawCentredString(x, y, text)

The draw string methods draw single lines of text on the canvas.

The text object methods

textobject = canvas.beginText(x, y)

canvas.drawText(textobject)

Text objects are used to format text in ways that are not supported directly by the canvas interface. A
program creates a text object from the canvas using beginText and then formats text by invoking
textobject methods. Finally the textobject is drawn onto the canvas using drawText.

The path object methods

path = canvas.beginPath()

canvas.drawPath(path, stroke=1, fill=0, fillMode=None)

canvas.clipPath(path, stroke=1, fill=0, fillMode=None)

Path objects are similar to text objects: they provide dedicated control for performing complex graphical
drawing not directly provided by the canvas interface. A program creates a path object using beginPath
populates the path with graphics using the methods of the path object and then draws the path on the canvas

User Guide Chapter 2 Graphics and Text with pdfgen

Page 14

using drawPath.

It is also possible to use a path as a "clipping region" using the clipPath method -- for example a circular
path can be used to clip away the outer parts of a rectangular image leaving only a circular part of the image
visible on the page.

If fill=1 is specified then the fillMode argument may be used to set either 0=even-odd or
1=non-zero filling mode. which will alter the way that complex paths are filled. If the default None values
is used then the canvas _fillMode attribute value is used (normally 0 ie even-odd).

Image methods

NOTE You need the Python Imaging Library (PIL) to use images with the ReportLab package. Examples of the
techniques below can be found by running the script test_pdfgen_general.py in our tests
subdirectory and looking at page 7 of the output.

There are two similar-sounding ways to draw images. The preferred one is the drawImage method. This
implements a caching system so you can define an image once and draw it many times; it will only be stored
once in the PDF file. drawImage also exposes one advanced parameter, a transparency mask, and will
expose more in future. The older technique, drawInlineImage, stores bitmaps within the page stream and
is thus very inefficient if you use the same image more than once in a document; but can result in PDFs which
render faster if the images are very small and not repeated. We'll discuss the oldest one first:

canvas.drawInlineImage(self, image, x,y, width=None,height=None)

The drawInlineImage method places an image on the canvas. The image parameter may be either a PIL
Image object or an image filename. Many common file formats are accepted including GIF and JPEG. It
returns the size of the actual image in pixels as a (width, height) tuple.

canvas.drawImage(self, image, x,y, width=None,height=None,mask=None)

The arguments and return value work as for drawInlineImage. However, we use a caching system; a
given image will only be stored the first time it is used, and just referenced on subsequent use. If you supply a
filename, it assumes that the same filename means the same image. If you supply a PIL image, it tests if the
content has actually changed before re-embedding.

The mask parameter lets you create transparent images. It takes 6 numbers and defines the range of RGB
values which will be masked out or treated as transparent. For example with [0,2,40,42,136,139], it will mask
out any pixels with a Red value from 0 or 1, Green from 40 or 41 and Blue of 136, 137 or 138 (on a scale of
0-255). It's currently your job to know which color is the 'transparent' or background one.

PDF allows for many image features and we will expose more of the over time, probably with extra keyword
arguments to drawImage.

Ending a page

canvas.showPage()

The showPage method finishes the current page. All additional drawing will be done on another page.

NOTE Warning! All state changes (font changes, color settings, geometry transforms, etcetera) are FORGOTTEN
when you advance to a new page in pdfgen. Any state settings you wish to preserve must be set up again
before the program proceeds with drawing!

2.5 The toolbox: the "state change" operations
This section briefly lists the ways to switch the tools used by the program for painting information onto a
page using the canvas interface. These too will be discussed in detail in later sections.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 15

Changing Colors

canvas.setFillColorCMYK(c, m, y, k)

canvas.setStrikeColorCMYK(c, m, y, k)

canvas.setFillColorRGB(r, g, b)

canvas.setStrokeColorRGB(r, g, b)

canvas.setFillColor(acolor)

canvas.setStrokeColor(acolor)

canvas.setFillGray(gray)

canvas.setStrokeGray(gray)

PDF supports three different color models: gray level, additive (red/green/blue or RGB), and subtractive with
darkness parameter (cyan/magenta/yellow/darkness or CMYK). The ReportLab packages also provide named
colors such as lawngreen. There are two basic color parameters in the graphics state: the Fill color for
the interior of graphic figures and the Stroke color for the boundary of graphic figures. The above methods
support setting the fill or stroke color using any of the four color specifications.

Changing Fonts

canvas.setFont(psfontname, size, leading = None)

The setFont method changes the current text font to a given type and size. The leading parameter
specifies the distance down to move when advancing from one text line to the next.

Changing Graphical Line Styles

canvas.setLineWidth(width)

canvas.setLineCap(mode)

canvas.setLineJoin(mode)

canvas.setMiterLimit(limit)

canvas.setDash(self, array=[], phase=0)

Lines drawn in PDF can be presented in a number of graphical styles. Lines can have different widths, they
can end in differing cap styles, they can meet in different join styles, and they can be continuous or they can
be dotted or dashed. The above methods adjust these various parameters.

Changing Geometry

canvas.setPageSize(pair)

canvas.transform(a,b,c,d,e,f):

canvas.translate(dx, dy)

canvas.scale(x, y)

canvas.rotate(theta)

User Guide Chapter 2 Graphics and Text with pdfgen

Page 16

canvas.skew(alpha, beta)

All PDF drawings fit into a specified page size. Elements drawn outside of the specified page size are not
visible. Furthermore all drawn elements are passed through an affine transformation which may adjust their
location and/or distort their appearence. The setPageSize method adjusts the current page size. The
transform, translate, scale, rotate, and skew methods add additional transformations to the
current transformation. It is important to remember that these transformations are incremental -- a new
transform modifies the current transform (but does not replace it).

State control

canvas.saveState()

canvas.restoreState()

Very often it is important to save the current font, graphics transform, line styles and other graphics state in
order to restore them later. The saveState method marks the current graphics state for later restoration by
a matching restoreState. Note that the save and restore method invokation must match -- a restore call
restores the state to the most recently saved state which hasn't been restored yet. You cannot save the state on
one page and restore it on the next, however -- no state is preserved between pages.

2.6 Other canvas methods.
Not all methods of the canvas object fit into the "tool" or "toolbox" categories. Below are some of the
misfits, included here for completeness.

 canvas.setAuthor()
 canvas.addOutlineEntry(title, key, level=0, closed=None)
 canvas.setTitle(title)
 canvas.setSubject(subj)
 canvas.pageHasData()
 canvas.showOutline()
 canvas.bookmarkPage(name)
 canvas.bookmarkHorizontalAbsolute(name, yhorizontal)
 canvas.doForm()
 canvas.beginForm(name, lowerx=0, lowery=0, upperx=None, uppery=None)
 canvas.endForm()
 canvas.linkAbsolute(contents, destinationname, Rect=None, addtopage=1, name=None, **kw)
 canvas.linkRect(contents, destinationname, Rect=None, addtopage=1, relative=1, name=None, **kw)
 canvas.getPageNumber()
 canvas.addLiteral()
 canvas.getAvailableFonts()
 canvas.stringWidth(self, text, fontName, fontSize, encoding=None)
 canvas.setPageCompression(onoff=1)
 canvas.setPageTransition(self, effectname=None, duration=1,
 direction=0,dimension='H',motion='I')

2.7 Coordinates (default user space)
By default locations on a page are identified by a pair of numbers. For example the pair (4.5*inch,
1*inch) identifies the location found on the page by starting at the lower left corner and moving to the right
4.5 inches and up one inch.

For example, the following function draws a number of elements on a canvas.

def coords(canvas):
 from reportlab.lib.units import inch
 from reportlab.lib.colors import pink, black, red, blue, green
 c = canvas
 c.setStrokeColor(pink)
 c.grid([inch, 2*inch, 3*inch, 4*inch], [0.5*inch, inch, 1.5*inch, 2*inch, 2.5*inch])
 c.setStrokeColor(black)
 c.setFont("Times-Roman", 20)
 c.drawString(0,0, "(0,0) the Origin")
 c.drawString(2.5*inch, inch, "(2.5,1) in inches")
 c.drawString(4*inch, 2.5*inch, "(4, 2.5)")
 c.setFillColor(red)

User Guide Chapter 2 Graphics and Text with pdfgen

Page 17

 c.rect(0,2*inch,0.2*inch,0.3*inch, fill=1)
 c.setFillColor(green)
 c.circle(4.5*inch, 0.4*inch, 0.2*inch, fill=1)

In the default user space the "origin" (0,0) point is at the lower left corner. Executing the coords function
in the default user space (for the "demo minipage") we obtain the following.

(0,0) the Origin

(2.5,1) in inches

(4, 2.5)

Figure 2-2: The Coordinate System

Moving the origin: the translate method

Often it is useful to "move the origin" to a new point off the lower left corner. The
canvas.translate(x,y) method moves the origin for the current page to the point currently identified
by (x,y).

For example the following translate function first moves the origin before drawing the same objects as shown
above.

def translate(canvas):
 from reportlab.lib.units import cm
 canvas.translate(2.3*cm, 0.3*cm)
 coords(canvas)

This produces the following.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 18

(0,0) the Origin

(2.5,1) in inches

(4, 2.5)

Figure 2-3: Moving the origin: the translate method

NOTE Note: As illustrated in the example it is perfectly possible to draw objects or parts of objects "off the page". In
particular a common confusing bug is a translation operation that translates the entire drawing off the visible
area of the page. If a program produces a blank page it is possible that all the drawn objects are off the page.

Shrinking and growing: the scale operation

Another important operation is scaling. The scaling operation canvas.scale(dx,dy) stretches or
shrinks the x and y dimensions by the dx, dy factors respectively. Often dx and dy are the same -- for
example to reduce a drawing by half in all dimensions use dx = dy = 0.5. However for the purposes of
illustration we show an example where dx and dy are different.

def scale(canvas):
 canvas.scale(0.75, 0.5)
 coords(canvas)

This produces a "short and fat" reduced version of the previously displayed operations.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 19

(0,0) the Origin

(2.5,1) in inches

(4, 2.5)

Figure 2-4: Scaling the coordinate system

NOTE Note: scaling may also move objects or parts of objects off the page, or may cause objects to "shrink to
nothing."

Scaling and translation can be combined, but the order of the operations are important.

def scaletranslate(canvas):
 from reportlab.lib.units import inch
 canvas.setFont("Courier-BoldOblique", 12)
 # save the state
 canvas.saveState()
 # scale then translate
 canvas.scale(0.3, 0.5)
 canvas.translate(2.4*inch, 1.5*inch)
 canvas.drawString(0, 2.7*inch, "Scale then translate")
 coords(canvas)
 # forget the scale and translate...
 canvas.restoreState()
 # translate then scale
 canvas.translate(2.4*inch, 1.5*inch)
 canvas.scale(0.3, 0.5)
 canvas.drawString(0, 2.7*inch, "Translate then scale")
 coords(canvas)

This example function first saves the current canvas state and then does a scale followed by a
translate. Afterward the function restores the state (effectively removing the effects of the scaling and
translation) and then does the same operations in a different order. Observe the effect below.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 20

Scale then translate

(0,0) the Origin

(2.5,1) in inches

(4, 2.5)

Translate then scale

(0,0) the Origin

(2.5,1) in inches

(4, 2.5)

Figure 2-5: Scaling and Translating

NOTE Note: scaling shrinks or grows everything including line widths so using the canvas.scale method to render a
microscopic drawing in scaled microscopic units may produce a blob (because all line widths will get
expanded a huge amount). Also rendering an aircraft wing in meters scaled to centimeters may cause the lines
to shrink to the point where they disappear. For engineering or scientific purposes such as these scale and
translate the units externally before rendering them using the canvas.

Saving and restoring the canvas state: saveState and restoreState

The scaletranslate function used an important feature of the canvas object: the ability to save and
restore the current parameters of the canvas. By enclosing a sequence of operations in a matching pair of
canvas.saveState() an canvas.restoreState() operations all changes of font, color, line style,
scaling, translation, or other aspects of the canvas graphics state can be restored to the state at the point of
the saveState(). Remember that the save/restore calls must match: a stray save or restore operation may
cause unexpected and undesirable behavior. Also, remember that no canvas state is preserved across page
breaks, and the save/restore mechanism does not work across page breaks.

Mirror image

It is interesting although perhaps not terribly useful to note that scale factors can be negative. For example the
following function

def mirror(canvas):
 from reportlab.lib.units import inch
 canvas.translate(5.5*inch, 0)
 canvas.scale(-1.0, 1.0)
 coords(canvas)

creates a mirror image of the elements drawn by the coord function.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 21

(0,0) the Origin

(2.5,1) in inches

(4, 2.5)

Figure 2-6: Mirror Images

Notice that the text strings are painted backwards.

2.8 Colors
There are generally two types of colors used in PDF depending on the media where the PDF will be used. The
most commonly known screen colors model RGB can be used in PDF, however in professional printing
another color model CMYK is mainly used which gives more control over how inks are applied to paper.
More on these color models below.

RGB Colors

The RGB or additive color representation follows the way a computer screen adds different levels of the red,
green, and blue light to make any color in between, where white is formed by turning all three lights on full
(1,1,1).

There are three ways to specify RGB colors in pdfgen: by name (using the color module, by
red/green/blue (additive, RGB) value, or by gray level. The colors function below exercises each of the four
methods.

def colorsRGB(canvas):
 from reportlab.lib import colors
 from reportlab.lib.units import inch
 black = colors.black
 y = x = 0; dy=inch*3/4.0; dx=inch*5.5/5; w=h=dy/2; rdx=(dx-w)/2
 rdy=h/5.0; texty=h+2*rdy
 canvas.setFont("Helvetica",10)
 for [namedcolor, name] in (
 [colors.lavenderblush, "lavenderblush"],
 [colors.lawngreen, "lawngreen"],
 [colors.lemonchiffon, "lemonchiffon"],
 [colors.lightblue, "lightblue"],
 [colors.lightcoral, "lightcoral"]):
 canvas.setFillColor(namedcolor)
 canvas.rect(x+rdx, y+rdy, w, h, fill=1)
 canvas.setFillColor(black)
 canvas.drawCentredString(x+dx/2, y+texty, name)
 x = x+dx
 y = y + dy; x = 0
 for rgb in [(1,0,0), (0,1,0), (0,0,1), (0.5,0.3,0.1), (0.4,0.5,0.3)]:
 r,g,b = rgb
 canvas.setFillColorRGB(r,g,b)
 canvas.rect(x+rdx, y+rdy, w, h, fill=1)
 canvas.setFillColor(black)

User Guide Chapter 2 Graphics and Text with pdfgen

Page 22

 canvas.drawCentredString(x+dx/2, y+texty, "r%s g%s b%s"%rgb)
 x = x+dx
 y = y + dy; x = 0
 for gray in (0.0, 0.25, 0.50, 0.75, 1.0):
 canvas.setFillGray(gray)
 canvas.rect(x+rdx, y+rdy, w, h, fill=1)
 canvas.setFillColor(black)
 canvas.drawCentredString(x+dx/2, y+texty, "gray: %s"%gray)
 x = x+dx

lavenderblush lawngreen lemonchiffon lightblue lightcoral

r1 g0 b0 r0 g1 b0 r0 g0 b1 r0.5 g0.3 b0.1 r0.4 g0.5 b0.3

gray: 0.0 gray: 0.25 gray: 0.5 gray: 0.75 gray: 1.0

Figure 2-7: RGB Color Models

RGB Color Transparency

Objects may be painted over other objects to good effect in pdfgen. Generally There are two modes of
handling objects that overlap in space, the default objects in the top layer will hide any part of other objects
that falls underneath it. If you need transparency you got two choices:

1. If your document is intended to be printed in a professional way and you are working in CMYK color
space then you can use overPrint. In overPrinting the colors physically mix in the printer and thus a new color
is obtained. By default a knockout will be applied and only top object appears. Read the CMYK section if this
is what you intend to use.

2. If your document is intended for screen output and you are using RGB colors then you can set an alpha
value, where alpha is the opacity value of the color. The default alpha value is 1 (fully opaque) and you can
use any real number value in the range 0-1.

Alpha transparency (alpha) is similar to overprint but works in RGB color space this example below
demonstrates the alpha funtionality. Refer to our website http://www.reportlab.com/snippets/ and look for
snippets of overPrint and alpha to see the code that generates the graph below.

def alpha(canvas):
 from reportlab.graphics.shapes import Rect
 from reportlab.lib.colors import Color, black, blue, red
 red50transparent = Color(100, 0, 0, alpha=0.5)
 c = canvas
 c.setFillColor(black)
 c.setFont('Helvetica', 10)
 c.drawString(25,180, 'solid')
 c.setFillColor(blue)
 c.rect(25,25,100,100, fill=True, stroke=False)
 c.setFillColor(red)
 c.rect(100,75,100,100, fill=True, stroke=False)
 c.setFillColor(black)
 c.drawString(225,180, 'transparent')

User Guide Chapter 2 Graphics and Text with pdfgen

Page 23

 c.setFillColor(blue)
 c.rect(225,25,100,100, fill=True, stroke=False)
 c.setFillColor(red50transparent)
 c.rect(300,75,100,100, fill=True, stroke=False)

solid transparent

Figure 2-8: Alpha example

CMYK Colors

The CMYK or subtractive method follows the way a printer mixes three pigments (cyan, magenta, and yellow)
to form colors. Because mixing chemicals is more difficult than combining light there is a fourth parameter
for darkness. For example a chemical combination of the CMY pigments generally never makes a perfect
black -- instead producing a muddy color -- so, to get black printers don not use the CMY pigments but use a
direct black ink. Because CMYK maps more directly to the way printer hardware works it may be the case that
colors specified in CMYK will provide better fidelity and better control when printed.

There are two ways of representing CMYK Color: each color can be represented either by a real value
between 0 and 1, or integer value between 0 and 100. Depending on your preference you can either use
CMYKColor (for real values) or PCMYKColor (for integer values). 0 means 'no ink', so printing on white
papers gives you white. 1 (or 100 if you use PCMYKColor) means 'the maximum amount of ink'. e.g.
CMYKColor(0,0,0,1) is black, CMYKColor(0,0,0,0) means 'no ink', and CMYKColor(0.5,0,0,0) means 50
percent cyan color.

def colorsCMYK(canvas):
 from reportlab.lib.colors import CMYKColor, PCMYKColor
 from reportlab.lib.units import inch
 # creates a black CMYK ; CMYKColor use real values
 black = CMYKColor(0,0,0,1)
 # creates a cyan CMYK ; PCMYKColor use integer values
 cyan = PCMYKColor(100,0,0,0)
 y = x = 0; dy=inch*3/4.0; dx=inch*5.5/5; w=h=dy/2; rdx=(dx-w)/2
 rdy=h/5.0; texty=h+2*rdy
 canvas.setFont("Helvetica",10)
 y = y + dy; x = 0
 for cmyk in [(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (0,0,0,0)]:
 c,m,y1,k = cmyk
 canvas.setFillColorCMYK(c,m,y1,k)
 canvas.rect(x+rdx, y+rdy, w, h, fill=1)
 canvas.setFillColor(black)
 canvas.drawCentredString(x+dx/2, y+texty, "c%s m%s y%s k%s"%cmyk)
 x = x+dx

User Guide Chapter 2 Graphics and Text with pdfgen

Page 24

c1 m0 y0 k0 c0 m1 y0 k0 c0 m0 y1 k0 c0 m0 y0 k1 c0 m0 y0 k0

Figure 2-9: CMYK Color Models

2.9 Color space checking
The enforceColorSpace argument of the canvas is used to enforce the consistency of the colour model
used in a document. It accepts these values: CMYK, RGB, SEP, SEP_BLACK, SEP_CMYK. 'SEP' refers to
named color separations such as Pantone spot colors - these can be mixed with CMYK or RGB according to
the parameter used. The default is 'MIXED' which allows you to use colors from any color space. An
exception is raised if any colors used are not convertible to the specified model, e.g. rgb and cmyk (more
information in test_pdfgen_general). This approach doesn't check external images included in document.

2.10 Color Overprinting
When two CMYK colored objects overlap in printing, then either the object 'on top' will knock out the color
of the the one underneath it, or the colors of the two objects will mix in the overlapped area. This behaviour
can be set using the property overPrint.

The overPrint function will cause ovelapping areas of color to mix. In the example below, the colors of
the rectangles on the left should appear mixed where they overlap - If you can't see this effect then you may
need to enable the 'overprint preview' option in your PDF viewing software. Some PDF viewers such as
evince do not support overPrint; however Adobe Acrobat Reader does support it.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 25

overprint knockout

Figure 2-10: overPrint example

Other Object Order of Printing Examples

The word "SPUMONI" is painted in white over the colored rectangles, with the apparent effect of "removing"
the color inside the body of the word.

def spumoni(canvas):
 from reportlab.lib.units import inch
 from reportlab.lib.colors import pink, green, brown, white
 x = 0; dx = 0.4*inch
 for i in range(4):
 for color in (pink, green, brown):
 canvas.setFillColor(color)
 canvas.rect(x,0,dx,3*inch,stroke=0,fill=1)
 x = x+dx
 canvas.setFillColor(white)
 canvas.setStrokeColor(white)
 canvas.setFont("Helvetica-Bold", 85)
 canvas.drawCentredString(2.75*inch, 1.3*inch, "SPUMONI")

SPUMONI
Figure 2-11: Painting over colors

User Guide Chapter 2 Graphics and Text with pdfgen

Page 26

The last letters of the word are not visible because the default canvas background is white and painting
white letters over a white background leaves no visible effect.

This method of building up complex paintings in layers can be done in very many layers in pdfgen -- there
are fewer physical limitations than there are when dealing with physical paints.

def spumoni2(canvas):
 from reportlab.lib.units import inch
 from reportlab.lib.colors import pink, green, brown, white, black
 # draw the previous drawing
 spumoni(canvas)
 # now put an ice cream cone on top of it:
 # first draw a triangle (ice cream cone)
 p = canvas.beginPath()
 xcenter = 2.75*inch
 radius = 0.45*inch
 p.moveTo(xcenter-radius, 1.5*inch)
 p.lineTo(xcenter+radius, 1.5*inch)
 p.lineTo(xcenter, 0)
 canvas.setFillColor(brown)
 canvas.setStrokeColor(black)
 canvas.drawPath(p, fill=1)
 # draw some circles (scoops)
 y = 1.5*inch
 for color in (pink, green, brown):
 canvas.setFillColor(color)
 canvas.circle(xcenter, y, radius, fill=1)
 y = y+radius

The spumoni2 function layers an ice cream cone over the spumoni drawing. Note that different parts of
the cone and scoops layer over eachother as well.

SPUMONI
Figure 2-12: building up a drawing in layers

2.11 Standard fonts and text objects
Text may be drawn in many different colors, fonts, and sizes in pdfgen. The textsize function
demonstrates how to change the color and font and size of text and how to place text on the page.

def textsize(canvas):
 from reportlab.lib.units import inch
 from reportlab.lib.colors import magenta, red
 canvas.setFont("Times-Roman", 20)
 canvas.setFillColor(red)
 canvas.drawCentredString(2.75*inch, 2.5*inch, "Font size examples")
 canvas.setFillColor(magenta)

User Guide Chapter 2 Graphics and Text with pdfgen

Page 27

 size = 7
 y = 2.3*inch
 x = 1.3*inch
 for line in lyrics:
 canvas.setFont("Helvetica", size)
 canvas.drawRightString(x,y,"%s points: " % size)
 canvas.drawString(x,y, line)
 y = y-size*1.2
 size = size+1.5

The textsize function generates the following page.

Font size examples
7 points: well she hit Net Solutions

8.5 points: and she registered her own .com site now
10.0 points: and filled it up with yahoo profile pics

11.5 points: she snarfed in one night now
13.0 points: and she made 50 million when Hugh Hefner

14.5 points: bought up the rights now
16.0 points: and she'll have fun fun fun

17.5 points: til her Daddy takes the keyboard away

Figure 2-13: text in different fonts and sizes

A number of different fonts are always available in pdfgen.

def fonts(canvas):
 from reportlab.lib.units import inch
 text = "Now is the time for all good men to..."
 x = 1.8*inch
 y = 2.7*inch
 for font in canvas.getAvailableFonts():
 canvas.setFont(font, 10)
 canvas.drawString(x,y,text)
 canvas.setFont("Helvetica", 10)
 canvas.drawRightString(x-10,y, font+":")
 y = y-13

The fonts function lists the fonts that are always available. These don't need to be stored in a PDF
document, since they are guaranteed to be present in Acrobat Reader.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 28

Now is the time for all good men to...Courier:
Now is the time for all good men to...Courier-Bold:
Now is the time for all good men to...Courier-BoldOblique:
Now is the time for all good men to...Courier-Oblique:
Now is the time for all good men to...Helvetica:
Now is the time for all good men to...Helvetica-Bold:
Now is the time for all good men to...Helvetica-BoldOblique:
Now is the time for all good men to...Helvetica-Oblique:
■■■ ■■ ■■■ ■■■■ ■■■ ■■■ ■■■■ ■■■ ■■...Symbol:
Now is the time for all good men to...Times-Bold:
Now is the time for all good men to...Times-BoldItalic:
Now is the time for all good men to...Times-Italic:
Now is the time for all good men to...Times-Roman:
■■■ ■■ ■■■ ■■■■ ■■■ ■■■ ■■■■ ■■■ ■■■■■ZapfDingbats:

Figure 2-14: the 14 standard fonts

The Symbol and ZapfDingbats fonts cannot display properly because the required glyphs are not present in
those fonts.

For information on how to use arbitrary fonts, see the next chapter.

2.12 Text object methods
For the dedicated presentation of text in a PDF document, use a text object. The text object interface provides
detailed control of text layout parameters not available directly at the canvas level. In addition, it results in
smaller PDF that will render faster than many separate calls to the drawString methods.

textobject.setTextOrigin(x,y)

textobject.setTextTransform(a,b,c,d,e,f)

textobject.moveCursor(dx, dy) # from start of current LINE

(x,y) = textobject.getCursor()

x = textobject.getX(); y = textobject.getY()

textobject.setFont(psfontname, size, leading = None)

textobject.textOut(text)

textobject.textLine(text='')

textobject.textLines(stuff, trim=1)

The text object methods shown above relate to basic text geometry.

A text object maintains a text cursor which moves about the page when text is drawn. For example the
setTextOrigin places the cursor in a known position and the textLine and textLines methods
move the text cursor down past the lines that have been missing.

def cursormoves1(canvas):
 from reportlab.lib.units import inch
 textobject = canvas.beginText()
 textobject.setTextOrigin(inch, 2.5*inch)
 textobject.setFont("Helvetica-Oblique", 14)
 for line in lyrics:

User Guide Chapter 2 Graphics and Text with pdfgen

Page 29

 textobject.textLine(line)
 textobject.setFillGray(0.4)
 textobject.textLines('''
 With many apologies to the Beach Boys
 and anyone else who finds this objectionable
 ''')
 canvas.drawText(textobject)

The cursormoves function relies on the automatic movement of the text cursor for placing text after the
origin has been set.

well she hit Net Solutions
and she registered her own .com site now
and filled it up with yahoo profile pics
she snarfed in one night now
and she made 50 million when Hugh Hefner
bought up the rights now
and she'll have fun fun fun
til her Daddy takes the keyboard away
With many apologies to the Beach Boys
and anyone else who finds this objectionable

Figure 2-15: How the text cursor moves

It is also possible to control the movement of the cursor more explicitly by using the moveCursor method
(which moves the cursor as an offset from the start of the current line NOT the current cursor, and which also
has positive y offsets move down (in contrast to the normal geometry where positive y usually moves up.

def cursormoves2(canvas):
 from reportlab.lib.units import inch
 textobject = canvas.beginText()
 textobject.setTextOrigin(2, 2.5*inch)
 textobject.setFont("Helvetica-Oblique", 14)
 for line in lyrics:
 textobject.textOut(line)
 textobject.moveCursor(14,14) # POSITIVE Y moves down!!!
 textobject.setFillColorRGB(0.4,0,1)
 textobject.textLines('''
 With many apologies to the Beach Boys
 and anyone else who finds this objectionable
 ''')
 canvas.drawText(textobject)

Here the textOut does not move the down a line in contrast to the textLine function which does move
down.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 30

well she hit Net Solutions
and she registered her own .com site now

and filled it up with yahoo profile pics
she snarfed in one night now

and she made 50 million when Hugh Hefner
bought up the rights now

and she'll have fun fun fun
til her Daddy takes the keyboard away

With many apologies to the Beach Boys
and anyone else who finds this objectionable

Figure 2-16: How the text cursor moves again

Character Spacing

textobject.setCharSpace(charSpace)

The setCharSpace method adjusts one of the parameters of text -- the inter-character spacing.

def charspace(canvas):
 from reportlab.lib.units import inch
 textobject = canvas.beginText()
 textobject.setTextOrigin(3, 2.5*inch)
 textobject.setFont("Helvetica-Oblique", 10)
 charspace = 0
 for line in lyrics:
 textobject.setCharSpace(charspace)
 textobject.textLine("%s: %s" %(charspace,line))
 charspace = charspace+0.5
 textobject.setFillGray(0.4)
 textobject.textLines('''
 With many apologies to the Beach Boys
 and anyone else who finds this objectionable
 ''')
 canvas.drawText(textobject)

The charspace function exercises various spacing settings. It produces the following page.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 31

0: well she hit Net Solutions
0.5: and she registered her own .com site now
1.0: and f i l led i t up wi th yahoo prof i le pics
1 . 5 : s h e s n a r f e d i n o n e n i g h t n o w
2 . 0 : a n d s h e m a d e 5 0 m i l l i o n w h e n H u g h H e f n e r
2 . 5 : b o u g h t u p t h e r i g h t s n o w
3 . 0 : a n d s h e ' l l h a v e f u n f u n f u n
3 . 5 : t i l h e r D a d d y t a k e s t h e k e y b o a r d a w a y
W i t h m a n y a p o l o g i e s t o t h e B e a c h B o y s
a n d a n y o n e e l s e w h o f i n d s t h i s o b j e c t i o n a b l e

Figure 2-17: Adjusting inter-character spacing

Word Spacing

textobject.setWordSpace(wordSpace)

The setWordSpace method adjusts the space between words.

def wordspace(canvas):
 from reportlab.lib.units import inch
 textobject = canvas.beginText()
 textobject.setTextOrigin(3, 2.5*inch)
 textobject.setFont("Helvetica-Oblique", 12)
 wordspace = 0
 for line in lyrics:
 textobject.setWordSpace(wordspace)
 textobject.textLine("%s: %s" %(wordspace,line))
 wordspace = wordspace+2.5
 textobject.setFillColorCMYK(0.4,0,0.4,0.2)
 textobject.textLines('''
 With many apologies to the Beach Boys
 and anyone else who finds this objectionable
 ''')
 canvas.drawText(textobject)

The wordspace function shows what various word space settings look like below.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 32

0: well she hit Net Solutions
2.5: and she registered her own .com site now
5.0: and filled it up with yahoo profile pics
7.5: she snarfed in one night now
10.0: and she made 50 million when Hugh Hefner
12.5: bought up the rights now
15.0: and she'll have fun fun fun
17.5: til her Daddy takes the keyboard away
With many apologies to the Beach Boys
and anyone else who finds this objectionable

Figure 2-18: Adjusting word spacing

Horizontal Scaling

textobject.setHorizScale(horizScale)

Lines of text can be stretched or shrunken horizontally by the setHorizScale method.

def horizontalscale(canvas):
 from reportlab.lib.units import inch
 textobject = canvas.beginText()
 textobject.setTextOrigin(3, 2.5*inch)
 textobject.setFont("Helvetica-Oblique", 12)
 horizontalscale = 80 # 100 is default
 for line in lyrics:
 textobject.setHorizScale(horizontalscale)
 textobject.textLine("%s: %s" %(horizontalscale,line))
 horizontalscale = horizontalscale+10
 textobject.setFillColorCMYK(0.0,0.4,0.4,0.2)
 textobject.textLines('''
 With many apologies to the Beach Boys
 and anyone else who finds this objectionable
 ''')
 canvas.drawText(textobject)

The horizontal scaling parameter horizScale is given in percentages (with 100 as the default), so the 80
setting shown below looks skinny.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 33

80: well she hit Net Solutions
90: and she registered her own .com site now
100: and filled it up with yahoo profile pics
110: she snarfed in one night now
120: and she made 50 million when Hugh Hefner
130: bought up the rights now
140: and she'll have fun fun fun
150: til her Daddy takes the keyboard away
With many apologies to the Beach Boys
and anyone else who finds this objectionable

Figure 2-19: adjusting horizontal text scaling

Interline spacing (Leading)

textobject.setLeading(leading)

The vertical offset between the point at which one line starts and where the next starts is called the leading
offset. The setLeading method adjusts the leading offset.

def leading(canvas):
 from reportlab.lib.units import inch
 textobject = canvas.beginText()
 textobject.setTextOrigin(3, 2.5*inch)
 textobject.setFont("Helvetica-Oblique", 14)
 leading = 8
 for line in lyrics:
 textobject.setLeading(leading)
 textobject.textLine("%s: %s" %(leading,line))
 leading = leading+2.5
 textobject.setFillColorCMYK(0.8,0,0,0.3)
 textobject.textLines('''
 With many apologies to the Beach Boys
 and anyone else who finds this objectionable
 ''')
 canvas.drawText(textobject)

As shown below if the leading offset is set too small characters of one line my write over the bottom parts of
characters in the previous line.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 34

8: well she hit Net Solutions10.5: and she registered her own .com site now
13.0: and filled it up with yahoo profile pics
15.5: she snarfed in one night now
18.0: and she made 50 million when Hugh Hefner
20.5: bought up the rights now

23.0: and she'll have fun fun fun

25.5: til her Daddy takes the keyboard away

With many apologies to the Beach Boys

and anyone else who finds this objectionable

Figure 2-20: adjusting the leading

Other text object methods

textobject.setTextRenderMode(mode)

The setTextRenderMode method allows text to be used as a forground for clipping background
drawings, for example.

textobject.setRise(rise)

The setRise method raises or
lowers

 text on the line (for creating superscripts or subscripts, for example).

textobject.setFillColor(aColor);
textobject.setStrokeColor(self, aColor)
and similar

These color change operations change the color of the text and are otherwise similar to the color methods for
the canvas object.

2.13 Paths and Lines
Just as textobjects are designed for the dedicated presentation of text, path objects are designed for the
dedicated construction of graphical figures. When path objects are drawn onto a canvas they are drawn as
one figure (like a rectangle) and the mode of drawing for the entire figure can be adjusted: the lines of the
figure can be drawn (stroked) or not; the interior of the figure can be filled or not; and so forth.

For example the star function uses a path object to draw a star

def star(canvas, title="Title Here", aka="Comment here.",
 xcenter=None, ycenter=None, nvertices=5):
 from math import pi
 from reportlab.lib.units import inch
 radius=inch/3.0
 if xcenter is None: xcenter=2.75*inch
 if ycenter is None: ycenter=1.5*inch
 canvas.drawCentredString(xcenter, ycenter+1.3*radius, title)
 canvas.drawCentredString(xcenter, ycenter-1.4*radius, aka)
 p = canvas.beginPath()
 p.moveTo(xcenter,ycenter+radius)
 from math import pi, cos, sin
 angle = (2*pi)*2/5.0
 startangle = pi/2.0

User Guide Chapter 2 Graphics and Text with pdfgen

Page 35

 for vertex in range(nvertices-1):
 nextangle = angle*(vertex+1)+startangle
 x = xcenter + radius*cos(nextangle)
 y = ycenter + radius*sin(nextangle)
 p.lineTo(x,y)
 if nvertices==5:
 p.close()
 canvas.drawPath(p)

The star function has been designed to be useful in illustrating various line style parameters supported by
pdfgen.

Title Here

Comment here.

Figure 2-21: line style parameters

Line join settings

The setLineJoin method can adjust whether line segments meet in a point a square or a rounded vertex.

def joins(canvas):
 from reportlab.lib.units import inch
 # make lines big
 canvas.setLineWidth(5)
 star(canvas, "Default: mitered join", "0: pointed", xcenter = 1*inch)
 canvas.setLineJoin(1)
 star(canvas, "Round join", "1: rounded")
 canvas.setLineJoin(2)
 star(canvas, "Bevelled join", "2: square", xcenter=4.5*inch)

The line join setting is only really of interest for thick lines because it cannot be seen clearly for thin lines.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 36

Default: mitered join

0: pointed

Round join

1: rounded

Bevelled join

2: square

Figure 2-22: different line join styles

Line cap settings

The line cap setting, adjusted using the setLineCap method, determines whether a terminating line ends in
a square exactly at the vertex, a square over the vertex or a half circle over the vertex.

def caps(canvas):
 from reportlab.lib.units import inch
 # make lines big
 canvas.setLineWidth(5)
 star(canvas, "Default", "no projection",xcenter = 1*inch,
 nvertices=4)
 canvas.setLineCap(1)
 star(canvas, "Round cap", "1: ends in half circle", nvertices=4)
 canvas.setLineCap(2)
 star(canvas, "Square cap", "2: projects out half a width", xcenter=4.5*inch,
 nvertices=4)

The line cap setting, like the line join setting, is only clearly visible when the lines are thick.

Default

no projection

Round cap

1: ends in half circle

Square cap

2: projects out half a width

Figure 2-23: line cap settings

User Guide Chapter 2 Graphics and Text with pdfgen

Page 37

Dashes and broken lines

The setDash method allows lines to be broken into dots or dashes.

def dashes(canvas):
 from reportlab.lib.units import inch
 # make lines big
 canvas.setDash(6,3)
 star(canvas, "Simple dashes", "6 points on, 3 off", xcenter = 1*inch)
 canvas.setDash(1,2)
 star(canvas, "Dots", "One on, two off")
 canvas.setDash([1,1,3,3,1,4,4,1], 0)
 star(canvas, "Complex Pattern", "[1,1,3,3,1,4,4,1]", xcenter=4.5*inch)

The patterns for the dashes or dots can be in a simple on/off repeating pattern or they can be specified in a
complex repeating pattern.

Simple dashes

6 points on, 3 off

Dots

One on, two off

Complex Pattern

[1,1,3,3,1,4,4,1]

Figure 2-24: some dash patterns

Creating complex figures with path objects

Combinations of lines, curves, arcs and other figures can be combined into a single figure using path objects.
For example the function shown below constructs two path objects using lines and curves. This function will
be used later on as part of a pencil icon construction.

def penciltip(canvas, debug=1):
 from reportlab.lib.colors import tan, black, green
 from reportlab.lib.units import inch
 u = inch/10.0
 canvas.setLineWidth(4)
 if debug:
 canvas.scale(2.8,2.8) # make it big
 canvas.setLineWidth(1) # small lines
 canvas.setStrokeColor(black)
 canvas.setFillColor(tan)
 p = canvas.beginPath()
 p.moveTo(10*u,0)
 p.lineTo(0,5*u)
 p.lineTo(10*u,10*u)
 p.curveTo(11.5*u,10*u, 11.5*u,7.5*u, 10*u,7.5*u)
 p.curveTo(12*u,7.5*u, 11*u,2.5*u, 9.7*u,2.5*u)
 p.curveTo(10.5*u,2.5*u, 11*u,0, 10*u,0)
 canvas.drawPath(p, stroke=1, fill=1)
 canvas.setFillColor(black)
 p = canvas.beginPath()
 p.moveTo(0,5*u)

User Guide Chapter 2 Graphics and Text with pdfgen

Page 38

 p.lineTo(4*u,3*u)
 p.lineTo(5*u,4.5*u)
 p.lineTo(3*u,6.5*u)
 canvas.drawPath(p, stroke=1, fill=1)
 if debug:
 canvas.setStrokeColor(green) # put in a frame of reference
 canvas.grid([0,5*u,10*u,15*u], [0,5*u,10*u])

Note that the interior of the pencil tip is filled as one object even though it is constructed from several lines
and curves. The pencil lead is then drawn over it using a new path object.

Figure 2-25: a pencil tip

2.14 Rectangles, circles, ellipses
The pdfgen module supports a number of generally useful shapes such as rectangles, rounded rectangles,
ellipses, and circles. Each of these figures can be used in path objects or can be drawn directly on a canvas.
For example the pencil function below draws a pencil icon using rectangles and rounded rectangles with
various fill colors and a few other annotations.

def pencil(canvas, text="No.2"):
 from reportlab.lib.colors import yellow, red, black,white
 from reportlab.lib.units import inch
 u = inch/10.0
 canvas.setStrokeColor(black)
 canvas.setLineWidth(4)
 # draw erasor
 canvas.setFillColor(red)
 canvas.circle(30*u, 5*u, 5*u, stroke=1, fill=1)
 # draw all else but the tip (mainly rectangles with different fills)
 canvas.setFillColor(yellow)
 canvas.rect(10*u,0,20*u,10*u, stroke=1, fill=1)
 canvas.setFillColor(black)
 canvas.rect(23*u,0,8*u,10*u,fill=1)
 canvas.roundRect(14*u, 3.5*u, 8*u, 3*u, 1.5*u, stroke=1, fill=1)
 canvas.setFillColor(white)
 canvas.rect(25*u,u,1.2*u,8*u, fill=1,stroke=0)
 canvas.rect(27.5*u,u,1.2*u,8*u, fill=1, stroke=0)
 canvas.setFont("Times-Roman", 3*u)
 canvas.drawCentredString(18*u, 4*u, text)
 # now draw the tip
 penciltip(canvas,debug=0)
 # draw broken lines across the body.
 canvas.setDash([10,5,16,10],0)
 canvas.line(11*u,2.5*u,22*u,2.5*u)
 canvas.line(22*u,7.5*u,12*u,7.5*u)

User Guide Chapter 2 Graphics and Text with pdfgen

Page 39

NOTE Note that this function is used to create the "margin pencil" to the left. Also note that the order in which the
elements are drawn are important because, for example, the white rectangles "erase" parts of a black rectangle
and the "tip" paints over part of the yellow rectangle.

No.2

Figure 2-26: a whole pencil

2.15 Bezier curves
Programs that wish to construct figures with curving borders generally use Bezier curves to form the borders.

def bezier(canvas):
 from reportlab.lib.colors import yellow, green, red, black
 from reportlab.lib.units import inch
 i = inch
 d = i/4
 # define the bezier curve control points
 x1,y1, x2,y2, x3,y3, x4,y4 = d,1.5*i, 1.5*i,d, 3*i,d, 5.5*i-d,3*i-d
 # draw a figure enclosing the control points
 canvas.setFillColor(yellow)
 p = canvas.beginPath()
 p.moveTo(x1,y1)
 for (x,y) in [(x2,y2), (x3,y3), (x4,y4)]:
 p.lineTo(x,y)
 canvas.drawPath(p, fill=1, stroke=0)
 # draw the tangent lines
 canvas.setLineWidth(inch*0.1)
 canvas.setStrokeColor(green)
 canvas.line(x1,y1,x2,y2)
 canvas.setStrokeColor(red)
 canvas.line(x3,y3,x4,y4)
 # finally draw the curve
 canvas.setStrokeColor(black)
 canvas.bezier(x1,y1, x2,y2, x3,y3, x4,y4)

A Bezier curve is specified by four control points (x1,y1), (x2,y2), (x3,y3), (x4,y4). The curve
starts at (x1,y1) and ends at (x4,y4) and the line segment from (x1,y1) to (x2,y2) and the line
segment from (x3,y3) to (x4,y4) both form tangents to the curve. Furthermore the curve is entirely
contained in the convex figure with vertices at the control points.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 40

Figure 2-27: basic bezier curves

The drawing above (the output of testbezier) shows a bezier curves, the tangent lines defined by the
control points and the convex figure with vertices at the control points.

Smoothly joining bezier curve sequences

It is often useful to join several bezier curves to form a single smooth curve. To construct a larger smooth
curve from several bezier curves make sure that the tangent lines to adjacent bezier curves that join at a
control point lie on the same line.

def bezier2(canvas):
 from reportlab.lib.colors import yellow, green, red, black
 from reportlab.lib.units import inch
 # make a sequence of control points
 xd,yd = 5.5*inch/2, 3*inch/2
 xc,yc = xd,yd
 dxdy = [(0,0.33), (0.33,0.33), (0.75,1), (0.875,0.875),
 (0.875,0.875), (1,0.75), (0.33,0.33), (0.33,0)]
 pointlist = []
 for xoffset in (1,-1):
 yoffset = xoffset
 for (dx,dy) in dxdy:
 px = xc + xd*xoffset*dx
 py = yc + yd*yoffset*dy
 pointlist.append((px,py))
 yoffset = -xoffset
 for (dy,dx) in dxdy:
 px = xc + xd*xoffset*dx
 py = yc + yd*yoffset*dy
 pointlist.append((px,py))
 # draw tangent lines and curves
 canvas.setLineWidth(inch*0.1)
 while pointlist:
 [(x1,y1),(x2,y2),(x3,y3),(x4,y4)] = pointlist[:4]
 del pointlist[:4]
 canvas.setLineWidth(inch*0.1)
 canvas.setStrokeColor(green)
 canvas.line(x1,y1,x2,y2)
 canvas.setStrokeColor(red)
 canvas.line(x3,y3,x4,y4)
 # finally draw the curve
 canvas.setStrokeColor(black)
 canvas.bezier(x1,y1, x2,y2, x3,y3, x4,y4)

The figure created by testbezier2 describes a smooth complex curve because adjacent tangent lines "line
up" as illustrated below.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 41

Figure 2-28: bezier curves

2.16 Path object methods
Path objects build complex graphical figures by setting the "pen" or "brush" at a start point on the canvas and
drawing lines or curves to additional points on the canvas. Most operations apply paint on the canvas starting
at the end point of the last operation and leave the brush at a new end point.

pathobject.moveTo(x,y)

The moveTo method lifts the brush (ending any current sequence of lines or curves if there is one) and
replaces the brush at the new (x,y) location on the canvas to start a new path sequence.

pathobject.lineTo(x,y)

The lineTo method paints straight line segment from the current brush location to the new (x,y) location.

pathobject.curveTo(x1, y1, x2, y2, x3, y3)

The curveTo method starts painting a Bezier curve beginning at the current brush location, using
(x1,y1), (x2,y2), and (x3,y3) as the other three control points, leaving the brush on (x3,y3).

pathobject.arc(x1,y1, x2,y2, startAng=0, extent=90)

pathobject.arcTo(x1,y1, x2,y2, startAng=0, extent=90)

The arc and arcTo methods paint partial ellipses. The arc method first "lifts the brush" and starts a new
shape sequence. The arcTo method joins the start of the partial ellipse to the current shape sequence by line
segment before drawing the partial ellipse. The points (x1,y1) and (x2,y2) define opposite corner points
of a rectangle enclosing the ellipse. The startAng is an angle (in degrees) specifying where to begin the
partial ellipse where the 0 angle is the midpoint of the right border of the enclosing rectangle (when
(x1,y1) is the lower left corner and (x2,y2) is the upper right corner). The extent is the angle in
degrees to traverse on the ellipse.

def arcs(canvas):
 from reportlab.lib.units import inch
 canvas.setLineWidth(4)
 canvas.setStrokeColorRGB(0.8, 1, 0.6)
 # draw rectangles enclosing the arcs
 canvas.rect(inch, inch, 1.5*inch, inch)
 canvas.rect(3*inch, inch, inch, 1.5*inch)
 canvas.setStrokeColorRGB(0, 0.2, 0.4)

User Guide Chapter 2 Graphics and Text with pdfgen

Page 42

 canvas.setFillColorRGB(1, 0.6, 0.8)
 p = canvas.beginPath()
 p.moveTo(0.2*inch, 0.2*inch)
 p.arcTo(inch, inch, 2.5*inch,2*inch, startAng=-30, extent=135)
 p.arc(3*inch, inch, 4*inch, 2.5*inch, startAng=-45, extent=270)
 canvas.drawPath(p, fill=1, stroke=1)

The arcs function above exercises the two partial ellipse methods. It produces the following drawing.

Figure 2-29: arcs in path objects

pathobject.rect(x, y, width, height)

The rect method draws a rectangle with lower left corner at (x,y) of the specified width and height.

pathobject.ellipse(x, y, width, height)

The ellipse method draws an ellipse enclosed in the rectange with lower left corner at (x,y) of the
specified width and height.

pathobject.circle(x_cen, y_cen, r)

The circle method draws a circle centered at (x_cen, y_cen) with radius r.

def variousshapes(canvas):
 from reportlab.lib.units import inch
 inch = int(inch)
 canvas.setStrokeGray(0.5)
 canvas.grid(range(0,int(11*inch/2),int(inch/2)), range(0,int(7*inch/2),int(inch/2)))
 canvas.setLineWidth(4)
 canvas.setStrokeColorRGB(0, 0.2, 0.7)
 canvas.setFillColorRGB(1, 0.6, 0.8)
 p = canvas.beginPath()
 p.rect(0.5*inch, 0.5*inch, 0.5*inch, 2*inch)
 p.circle(2.75*inch, 1.5*inch, 0.3*inch)
 p.ellipse(3.5*inch, 0.5*inch, 1.2*inch, 2*inch)
 canvas.drawPath(p, fill=1, stroke=1)

The variousshapes function above shows a rectangle, circle and ellipse placed in a frame of reference
grid.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 43

Figure 2-30: rectangles, circles, ellipses in path objects

pathobject.close()

The close method closes the current graphical figure by painting a line segment from the last point of the
figure to the starting point of the figure (the the most recent point where the brush was placed on the paper by
moveTo or arc or other placement operations).

def closingfigures(canvas):
 from reportlab.lib.units import inch
 h = inch/3.0; k = inch/2.0
 canvas.setStrokeColorRGB(0.2,0.3,0.5)
 canvas.setFillColorRGB(0.8,0.6,0.2)
 canvas.setLineWidth(4)
 p = canvas.beginPath()
 for i in (1,2,3,4):
 for j in (1,2):
 xc,yc = inch*i, inch*j
 p.moveTo(xc,yc)
 p.arcTo(xc-h, yc-k, xc+h, yc+k, startAng=0, extent=60*i)
 # close only the first one, not the second one
 if j==1:
 p.close()
 canvas.drawPath(p, fill=1, stroke=1)

The closingfigures function illustrates the effect of closing or not closing figures including a line
segment and a partial ellipse.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 44

Figure 2-31: closing and not closing pathobject figures

Closing or not closing graphical figures effects only the stroked outline of a figure, not the filling of the figure
as illustrated above.

For a more extensive example of drawing using a path object examine the hand function.

def hand(canvas, debug=1, fill=0):
 (startx, starty) = (0,0)
 curves = [
 (0, 2), (0, 4), (0, 8), # back of hand
 (5, 8), (7,10), (7,14),
 (10,14), (10,13), (7.5, 8), # thumb
 (13, 8), (14, 8), (17, 8),
 (19, 8), (19, 6), (17, 6),
 (15, 6), (13, 6), (11, 6), # index, pointing
 (12, 6), (13, 6), (14, 6),
 (16, 6), (16, 4), (14, 4),
 (13, 4), (12, 4), (11, 4), # middle
 (11.5, 4), (12, 4), (13, 4),
 (15, 4), (15, 2), (13, 2),
 (12.5, 2), (11.5, 2), (11, 2), # ring
 (11.5, 2), (12, 2), (12.5, 2),
 (14, 2), (14, 0), (12.5, 0),
 (10, 0), (8, 0), (6, 0), # pinky, then close
]
 from reportlab.lib.units import inch
 if debug: canvas.setLineWidth(6)
 u = inch*0.2
 p = canvas.beginPath()
 p.moveTo(startx, starty)
 ccopy = list(curves)
 while ccopy:
 [(x1,y1), (x2,y2), (x3,y3)] = ccopy[:3]
 del ccopy[:3]
 p.curveTo(x1*u,y1*u,x2*u,y2*u,x3*u,y3*u)
 p.close()
 canvas.drawPath(p, fill=fill)
 if debug:
 from reportlab.lib.colors import red, green
 (lastx, lasty) = (startx, starty)
 ccopy = list(curves)
 while ccopy:
 [(x1,y1), (x2,y2), (x3,y3)] = ccopy[:3]
 del ccopy[:3]
 canvas.setStrokeColor(red)
 canvas.line(lastx*u,lasty*u, x1*u,y1*u)
 canvas.setStrokeColor(green)
 canvas.line(x2*u,y2*u, x3*u,y3*u)
 (lastx,lasty) = (x3,y3)

User Guide Chapter 2 Graphics and Text with pdfgen

Page 45

In debug mode (the default) the hand function shows the tangent line segments to the bezier curves used to
compose the figure. Note that where the segments line up the curves join smoothly, but where they do not line
up the curves show a "sharp edge".

Figure 2-32: an outline of a hand using bezier curves

Used in non-debug mode the hand function only shows the Bezier curves. With the fill parameter set the
figure is filled using the current fill color.

def hand2(canvas):
 canvas.translate(20,10)
 canvas.setLineWidth(3)
 canvas.setFillColorRGB(0.1, 0.3, 0.9)
 canvas.setStrokeGray(0.5)
 hand(canvas, debug=0, fill=1)

Note that the "stroking" of the border draws over the interior fill where they overlap.

Figure 2-33: the finished hand, filled

User Guide Chapter 2 Graphics and Text with pdfgen

Page 46

2.17 Further Reading: The ReportLab Graphics Library
So far the graphics we have seen were created on a fairly low level. It should be noted, though, that there is
another way of creating much more sophisticated graphics using the dedicated high-level ReportLab
Graphics Library.

It can be used to produce high-quality, platform-independant, reusable graphics for different output formats
(vector and bitmap) like PDF, EPS, SVG, JPG and PNG.

A more thorough description of its philsophy and features is now covered in Chapter 11 of this document,
Graphics, which contains information about the existing components and how to create customized ones.

Chapter 11 also contains details of the ReportLab charting package and its components (labels, axes, legends
and different types of charts like bar, line and pie charts) that builds directly on the graphics library.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 47

Chapter 3 Fonts and encodings
This chapter covers fonts, encodings and Asian language capabilities. If you are purely concerned with
generating PDFs for Western European languages, you can just read the "Unicode is the default" section
below and skip the rest on a first reading. We expect this section to grow considerably over time. We hope
that Open Source will enable us to give better support for more of the world's languages than other tools, and
we welcome feedback and help in this area.

3.1 Unicode and UTF8 are the default input encodings
Starting with reportlab Version 2.0 (May 2006), all text input you provide to our APIs should be in UTF8 or
as Python Unicode objects. This applies to arguments to canvas.drawString and related APIs, table cell
content, drawing object parameters, and paragraph source text.

We considered making the input encoding configurable or even locale-dependent, but decided that "explicit is
better than implicit".

This simplifies many things we used to do previously regarding greek letters, symbols and so on. To display
any character, find out its unicode code point, and make sure the font you are using is able to display it.

If you are adapting a ReportLab 1.x application, or reading data from another source which contains
single-byte data (e.g. latin-1 or WinAnsi), you need to do a conversion into Unicode. The Python codecs
package now includes converters for all the common encodings, including Asian ones.

If your data is not encoded as UTF8, you will get a UnicodeDecodeError as soon as you feed in a non-ASCII
character. For example, this snippet below is attempting to read in and print a series of names, including one
with a French accent: Marc-André Lemburg. The standard error is quite helpful and tells you what
character it doesn't like:

>>> from reportlab.pdfgen.canvas import Canvas
>>> c = Canvas('temp.pdf')
>>> y = 700
>>> for line in file('latin_python_gurus.txt','r'):
... c.drawString(100, y, line.strip())
...
Traceback (most recent call last):
...
UnicodeDecodeError: 'utf8' codec can't decode bytes in position 9-11: invalid data
-->é L<--emburg
>>>

The simplest fix is just to convert your data to unicode, saying which encoding it comes from, like this:

>>> for line in file('latin_input.txt','r'):
... uniLine = unicode(line, 'latin-1')
... c.drawString(100, y, uniLine.strip())
>>>
>>> c.save()

3.2 Automatic output font substitution
There are still a number of places in the code, including the rl_config defaultEncoding parameter, and
arguments passed to various Font constructors, which refer to encodings. These were useful in the past when
people needed to use glyphs in the Symbol and ZapfDingbats fonts which are supported by PDF viewing
devices. By default the standard fonts (Helvetica, Courier, Times Roman) will offer the glyphs available in
Latin-1. However, if our engine detects a character not in the font, it will attempt to switch to Symbol or
ZapfDingbats to display these. For example, if you include the Unicode character for a pair of right-facing
scissors, \u2702, in a call to drawString, you should see them (there is an example in
test_pdfgen_general.py/pdf). It is not necessary to switch fonts in your code.

User Guide Chapter 3 Fonts and encodings

Page 48

3.3 Using non-standard Type 1 fonts
As discussed in the previous chapter, every copy of Acrobat Reader comes with 14 standard fonts built in.
Therefore, the ReportLab PDF Library only needs to refer to these by name. If you want to use other fonts,
they must be available to your code and will be embedded in the PDF document.

You can use the mechanism described below to include arbitrary fonts in your documents. We have an open
source font named DarkGardenMK which we may use for testing and/or documenting purposes (and which
you may use as well). It comes bundled with the ReportLab distribution in the directory
reportlab/fonts.

Right now font-embedding relies on font description files in the Adobe AFM ('Adobe Font Metrics') and PFB
('Printer Font Binary') format. The former is an ASCII file and contains information about the characters
('glyphs') in the font such as height, width, bounding box info and other 'metrics', while the latter is a binary
file that describes the shapes of the font. The reportlab/fonts directory contains the files
'DarkGardenMK.afm' and 'DarkGardenMK.pfb' that are used as an example font.

In the following example locate the folder containing the test font and register it for future use with the
pdfmetrics module, after which we can use it like any other standard font.

import os
import reportlab
folder = os.path.dirname(reportlab.__file__) + os.sep + 'fonts'
afmFile = os.path.join(folder, 'DarkGardenMK.afm')
pfbFile = os.path.join(folder, 'DarkGardenMK.pfb')

from reportlab.pdfbase import pdfmetrics
justFace = pdfmetrics.EmbeddedType1Face(afmFile, pfbFile)
faceName = 'DarkGardenMK' # pulled from AFM file
pdfmetrics.registerTypeFace(justFace)
justFont = pdfmetrics.Font('DarkGardenMK',
 faceName,
 'WinAnsiEncoding')
pdfmetrics.registerFont(justFont)

canvas.setFont('DarkGardenMK', 32)
canvas.drawString(10, 150, 'This should be in')
canvas.drawString(10, 100, 'DarkGardenMK')

Note that the argument "WinAnsiEncoding" has nothing to do with the input; it's to say which set of
characters within the font file will be active and available.

This should be in

DarkGardenMK

Figure 3-1: Using a very non-standard font

User Guide Chapter 3 Fonts and encodings

Page 49

The font's facename comes from the AFM file's FontName field. In the example above we knew the name in
advance, but quite often the names of font description files are pretty cryptic and then you might want to
retrieve the name from an AFM file automatically. When lacking a more sophisticated method you can use
some code as simple as this:

class FontNameNotFoundError(Exception):
 pass

def findFontName(path):
 "Extract a font name from an AFM file."

 f = open(path)

 found = 0
 while not found:
 line = f.readline()[:-1]
 if not found and line[:16] == 'StartCharMetrics':
 raise FontNameNotFoundError, path
 if line[:8] == 'FontName':
 fontName = line[9:]
 found = 1

 return fontName

In the DarkGardenMK example we explicitely specified the place of the font description files to be loaded. In
general, you'll prefer to store your fonts in some canonic locations and make the embedding mechanism
aware of them. Using the same configuration mechanism we've already seen at the beginning of this section
we can indicate a default search path for Type-1 fonts.

Unfortunately, there is no reliable standard yet for such locations (not even on the same platform) and, hence,
you might have to edit one of the files reportlab_settings.py or ~/.reportlab_settings to
modify the value of the T1SearchPath identifier to contain additional directories. Our own
recommendation is to use the reportlab/fonts folder in development; and to have any needed fonts as
packaged parts of your application in any kind of controlled server deployment. This insulates you from fonts
being installed and uninstalled by other software or system administrator.

Warnings about missing glyphs

If you specify an encoding, it is generally assumed that the font designer has provided all the needed glyphs.
However, this is not always true. In the case of our example font, the letters of the alphabet are present, but
many symbols and accents are missing. The default behaviour is for the font to print a 'notdef' character -
typically a blob, dot or space - when passed a character it cannot draw. However, you can ask the library to
warn you instead; the code below (executed before loading a font) will cause warnings to be generated for
any glyphs not in the font when you register it.

import reportlab.rl_config
reportlab.rl_config.warnOnMissingFontGlyphs = 0

3.4 Standard Single-Byte Font Encodings
This section shows you the glyphs available in the common encodings.

The code chart below shows the characters in the WinAnsiEncoding. This is the standard encoding on
Windows and many Unix systems in America and Western Europe. It is also knows as Code Page 1252, and
is practically identical to ISO-Latin-1 (it contains one or two extra characters). This is the default encoding
used by the Reportlab PDF Library. It was generated from a standard routine in reportlab/lib,
codecharts.py, which can be used to display the contents of fonts. The index numbers along the edges
are in hex.

User Guide Chapter 3 Fonts and encodings

Page 50

00

20

40

60

80

A0

C0

E0

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

 ! " # $ % & ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^ _
` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~ •
€ • ‚ ƒ „ … † ‡ ˆ ‰ Š ‹ Œ • Ž • • ‘ ’ “ ” • – — ˜ ™ š › œ • ž Ÿ
 ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ­ ® ¯ ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿
À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß
à á â ã ä å æ ç è é ê ë ì í î ï ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

Figure 3-2: WinAnsi Encoding

The code chart below shows the characters in the MacRomanEncoding. as it sounds, this is the standard
encoding on Macintosh computers in America and Western Europe. As usual with non-unicode encodings,
the first 128 code points (top 4 rows in this case) are the ASCII standard and agree with the WinAnsi code
chart above; but the bottom 4 rows differ.

00

20

40

60

80

A0

C0

E0

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

 ! " # $ % & ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^ _
` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~ ■

Ä Å Ç É Ñ Ö Ü á à â ä ã å ç é è ê ë í ì î ï ñ ó ò ô ö õ ú ù û ü
† ° ¢ £ § • ¶ ß ® © ™ ´ ¨ ≠ Æ Ø ∞ ± ≤ ≥ ¥ µ ∂ ∑ ∏ π ∫ ª º Ω æ ø
¿ ¡ ¬ √ ƒ ≈ ∆ « » … ■ À Ã Õ Œ œ – — “ ” ‘ ’ ÷ ◊ ÿ Ÿ ⁄ € ‹ › fi fl
‡ · ‚ „ ‰ Â Ê Á Ë È Í Î Ï Ì Ó Ô ■ Ò Ú Û Ù ı ˆ ˜ ¯ ˘ ˙ ˚ ¸ ˝ ˛ ˇ

Figure 3-3: MacRoman Encoding

These two encodings are available for the standard fonts (Helvetica, Times-Roman and Courier and their
variants) and will be available for most commercial fonts including those from Adobe. However, some fonts
contain non- text glyphs and the concept does not really apply. For example, ZapfDingbats and Symbol can
each be treated as having their own encoding.

00

20

40

60

80

A0

C0

E0

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

 ✁ ✂ ✃ ✄ ☎ ✆ ✇ ✈ ✉ ☛ ☞ ✌ ✍ ✎ ✏ ✐ ✑ ✒ ✓ ✔ ✕ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✝ ✞ ✟

✠ ✡ ✢ ✣ ✤ ✥ ✦ ✧ ★ ✩ ✪ ✫ ✬ ✭ ✮ ✯ ✰ ✱ ✲ ✳ ✴ ✵ ✶ ✷ ✸ ✹ ✺ ✻ ✼ ✽ ✾ ✿

❀ ❁ ❂ ❃ ❄ ❅ ❆ ❇ ❈ ❉ ❊ ❋ ● ❍ ■ ❏ ❐ ❑ ❒ ▲ ▼ ◆ ❖ ◗ ❘ ❙ ❚ ❛ ❜ ❝ ❞ ■

❨ ❩ ❪ ❫ ❬ ❭ ❮ ❯ ❰ ❱ ❲ ❳ ❴ ❵ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■ ❡ ❢ ❣ ❤ ❥ ❦ ❧ ♣ ♦ ♥ ♠ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ❶ ❷ ❸ ❹ ❺ ❻ ❼ ❽ ❾ ❿

➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ ➊ ➋ ➌ ➍ ➎ ➏ ➐ ➑ ➒ ➓ ➔ → ↔ ↕ ➘ ➙ ➚ ➛ ➜ ➝ ➞ ➟

➠ ➡ ➢ ➣ ➤ ➥ ➦ ➧ ➨ ➩ ➪ ➫ ➬ ➭ ➮ ➯ ■ ➱ ➲ ➳ ➴ ➵ ➶ ➷ ➸ ➹ ➺ ➻ ➼ ➽ ➾ ■

Figure 3-4: ZapfDingbats and its one and only encoding

00

20

40

60

80

A0

C0

E0

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

 ! ∀ # ∃ % & ∋ () ∗ + , − . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
≅ Α Β Χ ∆ Ε Φ Γ Η Ι ϑ Κ Λ Μ Ν Ο Π Θ Ρ Σ Τ Υ ς Ω Ξ Ψ Ζ [∴] ⊥ _
 α β χ δ ε φ γ η ι ϕ κ λ µ ν ο π θ ρ σ τ υ ϖ ω ξ ψ ζ { | } ∼ ■

■ ■

€ ϒ ′ ≤ ⁄ ∞ ƒ ♣ ♦ ♥ ♠ ↔ ← ↑ → ↓ ° ± ″ ≥ × ∝ ∂ • ÷ ≠ ≡ ≈ …   ↵
ℵ ℑ ℜ ℘ ⊗ ⊕ ∅ ∩ ∪ ⊃ ⊇ ⊄ ⊂ ⊆ ∈ ∉ ∠ ∇    ∏ √ ⋅ ¬ ∧ ∨ ⇔ ⇐ ⇑ ⇒ ⇓
◊ 〈    ∑           ■ 〉 ∫ ⌠  ⌡          ■

Figure 3-5: Symbol and its one and only encoding

User Guide Chapter 3 Fonts and encodings

Page 51

3.5 TrueType Font Support
Marius Gedminas (mgedmin@delfi.lt) with the help of Viktorija Zaksiene (vika@pov.lt) have
contributed support for embedded TrueType fonts. TrueType fonts work in Unicode/UTF8 and are not
limited to 256 characters.

We use reportlab.pdfbase.ttfonts.TTFont to create a true type font object and register using
reportlab.pdfbase.pdfmetrics.registerFont. In pdfgen drawing directly to the canvas we
can do

we know some glyphs are missing, suppress warnings
import reportlab.rl_config
reportlab.rl_config.warnOnMissingFontGlyphs = 0

from reportlab.pdfbase import pdfmetrics
from reportlab.pdfbase.ttfonts import TTFont
pdfmetrics.registerFont(TTFont('Vera', 'Vera.ttf'))
pdfmetrics.registerFont(TTFont('VeraBd', 'VeraBd.ttf'))
pdfmetrics.registerFont(TTFont('VeraIt', 'VeraIt.ttf'))
pdfmetrics.registerFont(TTFont('VeraBI', 'VeraBI.ttf'))
canvas.setFont('Vera', 32)
canvas.drawString(10, 150, "Some text encoded in UTF-8")
canvas.drawString(10, 100, "In the Vera TT Font!")

Some UTF-8 text encoded

in the Vera TT Font!

Figure 3-6: Using a the Vera TrueType Font

In the above example the true type font object is created using

 TTFont(name,filename)

so that the ReportLab internal name is given by the first argument and the second argument is a string(or file
like object) denoting the font's TTF file. In Marius' original patch the filename was supposed to be exactly
correct, but we have modified things so that if the filename is relative then a search for the corresponding file
is done in the current directory and then in directories specified by
reportlab.rl_config.TTFSearchpath!

Before using the TT Fonts in Platypus we should add a mapping from the family name to the individual font
names that describe the behaviour under the and <i> attributes.

from reportlab.pdfbase.pdfmetrics import registerFontFamily
registerFontFamily('Vera',normal='Vera',bold='VeraBd',italic='VeraIt',boldItalic='VeraBI')

If we only have a Vera regular font, no bold or italic then we must map all to the same internal fontname.
and <i> tags may now be used safely, but have no effect. After registering and mapping the Vera font as

User Guide Chapter 3 Fonts and encodings

Page 52

above we can use paragraph text like

<font name="Times-Roman"
size="14">This is in
Times-Roman <font
name="Vera" color="magenta"
size="14">and this is in magenta
Vera!

This is in Times-Roman
and this is in magenta
Vera!

Figure 3-7: Using TTF fonts in paragraphs

3.6 Asian Font Support
The Reportlab PDF Library aims to expose full support for Asian fonts. PDF is the first really portable
solution for Asian text handling. There are two main approaches for this: Adobe's Asian Language Packs, or
TrueType fonts.

Asian Language Packs

This approach offers the best performance since nothing needs embedding in the PDF file; as with the
standard fonts, everything is on the reader.

Adobe makes available add-ons for each main language. In Adobe Reader 6.0 and 7.0, you will be prompted
to download and install these as soon as you try to open a document using them. In earlier versions, you
would see an error message on opening an Asian document and had to know what to do.

Japanese, Traditional Chinese (Taiwan/Hong Kong), Simplified Chinese (mainland China) and Korean are all
supported and our software knows about the following fonts:

• chs = Chinese Simplified (mainland): 'STSong-Light'
• cht = Chinese Traditional (Taiwan): 'MSung-Light', 'MHei-Medium'
• kor = Korean: 'HYSMyeongJoStd-Medium','HYGothic-Medium'
• jpn = Japanese: 'HeiseiMin-W3', 'HeiseiKakuGo-W5'

Since many users will not have the font packs installed, we have included a rather grainy bitmap of some
Japanese characters. We will discuss below what is needed to generate them.

An image should have appeared here.

Prior to Version 2.0, you had to specify one of many native encodings when registering a CID Font. In
version 2.0 you should a new UnicodeCIDFont class.

from reportlab.pdfbase import pdfmetrics
from reportlab.pdfbase.cidfonts import UnicodeCIDFont
pdfmetrics.registerFont(UnicodeCIDFont('HeiseiMin-W3'))
canvas.setFont('HeiseiMin-W3', 16)

the two unicode characters below are "Tokyo"
msg = u'\u6771\u4EAC : Unicode font, unicode input'
canvas.drawString(100, 675, msg)

The old coding style with explicit encodings should still work, but is now only relevant if you need to
construct vertical text. We aim to add more readable options for horizontal and vertical text to the
UnicodeCIDFont constructor in future. The following four test scripts generate samples in the corresponding
languages:

tests/test_multibyte_jpn.py
tests/test_multibyte_kor.py
tests/test_multibyte_chs.py
tests/test_multibyte_cht.py

In previous versions of the ReportLab PDF Library, we had to make use of Adobe's CMap files (located near
Acrobat Reader if the Asian Language packs were installed). Now that we only have one encoding to deal
with, the character width data is embedded in the package, and CMap files are not needed for generation. The
CMap search path in rl_config.py is now deprecated and has no effect if you restrict yourself to

User Guide Chapter 3 Fonts and encodings

Page 53

UnicodeCIDFont.

TrueType fonts with Asian characters

This is the easy way to do it. No special handling at all is needed to work with Asian TrueType fonts.
Windows users who have installed, for example, Japanese as an option in Control Panel, will have a font
"msmincho.ttf" which can be used. However, be aware that it takes time to parse the fonts, and that quite
large subsets may need to be embedded in your PDFs. We can also now parse files ending in .ttc, which are a
slight variation of .ttf.

To Do

We expect to be developing this area of the package for some time.accept2dyear Here is an outline of the
main priorities. We welcome help!

• Ensure that we have accurate character metrics for all encodings in horizontal and vertical
writing.

• Add options to UnicodeCIDFont to allow vertical and proportional variants where the font
permits it.

• Improve the word wrapping code in paragraphs and allow vertical writing.

3.7 RenderPM tests
This may also be the best place to mention the test function of reportlab/graphics/renderPM.py,
which can be considered the cannonical place for tests which exercise renderPM (the "PixMap Renderer", as
opposed to renderPDF, renderPS or renderSVG).

If you run this from the command line, you should see lots of output like the following.

C:\code\reportlab\graphics>renderPM.py
wrote pmout\renderPM0.gif
wrote pmout\renderPM0.tif
wrote pmout\renderPM0.png
wrote pmout\renderPM0.jpg
wrote pmout\renderPM0.pct
...
wrote pmout\renderPM12.gif
wrote pmout\renderPM12.tif
wrote pmout\renderPM12.png
wrote pmout\renderPM12.jpg
wrote pmout\renderPM12.pct
wrote pmout\index.html

This runs a number of tests progressing from a "Hello World" test, through various tests of Lines; text strings
in a number of sizes, fonts, colours and alignments; the basic shapes; translated and rotated groups; scaled
coordinates; rotated strings; nested groups; anchoring and non-standard fonts.

It creates a subdirectory called pmout, writes the image files into it, and writes an index.html page which
makes it easy to refer to all the results.

The font-related tests which you may wish to look at are test #11 ('Text strings in a non-standard font') and
test #12 ('Test Various Fonts').

User Guide Chapter 3 Fonts and encodings

Page 54

Chapter 4 Exposing PDF Special Capabilities
PDF provides a number of features to make electronic document viewing more efficient and comfortable, and
our library exposes a number of these.

4.1 Forms
The Form feature lets you create a block of graphics and text once near the start of a PDF file, and then
simply refer to it on subsequent pages. If you are dealing with a run of 5000 repetitive business forms - for
example, one-page invoices or payslips - you only need to store the backdrop once and simply draw the
changing text on each page. Used correctly, forms can dramatically cut file size and production time, and
apparently even speed things up on the printer.

Forms do not need to refer to a whole page; anything which might be repeated often should be placed in a
form.

The example below shows the basic sequence used. A real program would probably define the forms up front
and refer to them from another location.

def forms(canvas):
 #first create a form...
 canvas.beginForm("SpumoniForm")
 #re-use some drawing functions from earlier
 spumoni(canvas)
 canvas.endForm()

 #then draw it
 canvas.doForm("SpumoniForm")

4.2 Links and Destinations
PDF supports internal hyperlinks. There is a very wide range of link types, destination types and events which
can be triggered by a click. At the moment we just support the basic ability to jump from one part of a
document to another, and to control the zoom level of the window after the jump. The bookmarkPage method
defines a destination that is the endpoint of a jump.

 canvas.bookmarkPage(name,
 fit="Fit",
 left=None,
 top=None,
 bottom=None,
 right=None,
 zoom=None
)

By default the bookmarkPage method defines the page itself as the destination. After jumping to an
endpoint defined by bookmarkPage, the PDF browser will display the whole page, scaling it to fit the screen:

canvas.bookmarkPage(name)

The bookmarkPage method can be instructed to display the page in a number of different ways by
providing a fit parameter.

fit Parameters Required Meaning

Fit Entire page fits in window (the default)

FitH top Top coord at top of window, width scaled to fit

FitV left Left coord at left of window, height scaled to fit

FitR left bottom right top Scale window to fit the specified rectangle

XYZ left top zoom
Fine grained control. If you omit a parameter
the PDF browser interprets it as "leave as is"

User Guide Chapter 4 Exposing PDF Special Capabilities

Page 55

Table 4-1 - Required attributes for different fit types

Note : fit settings are case-sensitive so fit="FIT" is invalid

Sometimes you want the destination of a jump to be some part of a page. The FitR fit allows you to identify
a particular rectangle, scaling the area to fit the entire page.

To set the display to a particular x and y coordinate of the page and to control the zoom directly use
fit="XYZ".

canvas.bookmarkPage('my_bookmark',fit="XYZ",left=0,top=200)

This destination is at the leftmost of the page with the top of the screen at position 200. Because zoom was
not set the zoom remains at whatever the user had it set to.

canvas.bookmarkPage('my_bookmark',fit="XYZ",left=0,top=200,zoom=2)

This time zoom is set to expand the page 2X its normal size.

Note : Both XYZ and FitR fit types require that their positional parameters (top, bottom, left,
right) be specified in terms of the default user space. They ignore any geometric transform in effect in the
canvas graphic state.

NOTE Note: Two previous bookmark methods are supported but deprecated now that bookmarkPage is so general.
These are bookmarkHorizontalAbsolute and bookmarkHorizontal.

Defining internal links

 canvas.linkAbsolute(contents, destinationname, Rect=None, addtopage=1, name=None,
 thickness=0, color=None, dashArray=None, **kw)

The linkAbsolute method defines a starting point for a jump. When the user is browsing the generated
document using a dynamic viewer (such as Acrobat Reader) when the mouse is clicked when the pointer is
within the rectangle specified by Rect the viewer will jump to the endpoint associated with
destinationname. As in the case with bookmarkHorizontalAbsolute the rectangle Rect must
be specified in terms of the default user space. The contents parameter specifies a chunk of text which
displays in the viewer if the user left-clicks on the region.

The rectangle Rect must be specified in terms of a tuple (x1,y1,x2,y2) identifying the lower left and
upper right points of the rectangle in default user space.

For example the code

 canvas.bookmarkPage("Meaning_of_life")

defines a location as the whole of the current page with the identifier Meaning_of_life. To create a
rectangular link to it while drawing a possibly different page, we would use this code:

 canvas.linkAbsolute("Find the Meaning of Life", "Meaning_of_life",
 (inch, inch, 6*inch, 2*inch))

By default during interactive viewing a rectangle appears around the link. Use the keyword argument
Border='[0 0 0]' to suppress the visible rectangle around the during viewing link. For example

 canvas.linkAbsolute("Meaning of Life", "Meaning_of_life",
 (inch, inch, 6*inch, 2*inch), Border='[0 0 0]')

The thickness, color and dashArray arguments may be used alternately to specify a border if no
Border argument is specified. If Border is specified it must be either a string representation of a PDF array or
a PDFArray (see the pdfdoc module). The color argument (which should be a Color instance) is
equivalent to a keyword argument C which should resolve to a PDF color definition (Normally a three entry
PDF array).

User Guide Chapter 4 Exposing PDF Special Capabilities

Page 56

The canvas.linkRect method is similar in intent to the linkAbsolute method, but has an extra
argument relative=1 so is intended to obey the local userspace transformation.

4.3 Outline Trees
Acrobat Reader has a navigation page which can hold a document outline; it should normally be visible when
you open this guide. We provide some simple methods to add outline entries. Typically, a program to make a
document (such as this user guide) will call the method canvas.addOutlineEntry(self, title,
key, level=0, closed=None) as it reaches each heading in the document.

title is the caption which will be displayed in the left pane. The key must be a string which is unique
within the document and which names a bookmark, as with the hyperlinks. The level is zero - the
uppermost level - unless otherwise specified, and it is an error to go down more than one level at a time (for
example to follow a level 0 heading by a level 2 heading). Finally, the closed argument specifies whether
the node in the outline pane is closed or opened by default.

The snippet below is taken from the document template that formats this user guide. A central processor looks
at each paragraph in turn, and makes a new outline entry when a new chapter occurs, taking the chapter
heading text as the caption text. The key is obtained from the chapter number (not shown here), so Chapter 2
has the key 'ch2'. The bookmark to which the outline entry points aims at the whole page, but it could as
easily have been an individual paragraph.

#abridged code from our document template
if paragraph.style == 'Heading1':
 self.chapter = paragraph.getPlainText()
 key = 'ch%d' % self.chapterNo
 self.canv.bookmarkPage(key)
 self.canv.addOutlineEntry(paragraph.getPlainText(),
 key, 0, 0)

4.4 Page Transition Effects

 canvas.setPageTransition(self, effectname=None, duration=1,
 direction=0,dimension='H',motion='I')

The setPageTransition method specifies how one page will be replaced with the next. By setting the
page transition effect to "dissolve" for example the current page will appear to melt away when it is replaced
by the next page during interactive viewing. These effects are useful in spicing up slide presentations, among
other places. Please see the reference manual for more detail on how to use this method.

4.5 Internal File Annotations

 canvas.setAuthor(name)
 canvas.setTitle(title)
 canvas.setSubject(subj)

These methods have no automatically seen visible effect on the document. They add internal annotations to
the document. These annotations can be viewed using the "Document Info" menu item of the browser and
they also can be used as a simple standard way of providing basic information about the document to
archiving software which need not parse the entire file. To find the annotations view the *.pdf output file
using a standard text editor (such as notepad on MS/Windows or vi or emacs on unix) and look for the
string /Author in the file contents.

def annotations(canvas):
 from reportlab.lib.units import inch
 canvas.drawString(inch, 2.5*inch,
 "setAuthor, setTitle, setSubject have no visible effect")
 canvas.drawString(inch, inch, "But if you are viewing this document dynamically")
 canvas.drawString(inch, 0.5*inch, "please look at File/Document Info")
 canvas.setAuthor("the ReportLab Team")
 canvas.setTitle("ReportLab PDF Generation User Guide")
 canvas.setSubject("How to Generate PDF files using the ReportLab modules")

User Guide Chapter 4 Exposing PDF Special Capabilities

Page 57

If you want the subject, title, and author to automatically display in the document when viewed and printed
you must paint them onto the document like any other text.

setAuthor, setTitle, setSubject have no visible effect

But if you are viewing this document dynamically

please look at File/Document Info

Figure 4-1: Setting document internal annotations

4.6 Encryption

About encrypting PDF files

Adobe's PDF standard allows you to do three related things to a PDF file when you encrypt it:
• Apply password protection to it, so a user must supply a valid password before being able to

read it,
• Encrypt the contents of the file to make it useless until it is decrypted, and
• Control whether the user can print, copy and paste or modify the document while viewing it.

The PDF security handler allows two different passwords to be specified for a document:
• The 'owner' password (aka the 'security password' or 'master password')
• The 'user' password (aka the 'open password')

When a user supplies either one of these passwords, the PDF file will be opened, decrypted and displayed on
screen.

If the owner password is supplied, then the file is opened with full control - you can do anything to it,
including changing the security settings and passwords, or re-encrypting it with a new password.

If the user password was the one that was supplied, you open it up in a more restricted mode. The restrictions
were put in place when the file was encrypted, and will either allow or deny the user permission to do the
following:

• Modifying the document's contents
• Copying text and graphics from the document
• Adding or modifying text annotations and interactive form fields
• Printing the document

Note that all password protected PDF files are encrypted, but not all encrypted PDFs are password protected.
If a document's user password is an empty string, there will be no prompt for the password when the file is
opened. If you only secure a document with the owner password, there will also not be a prompt for the
password when you open the file. If the owner and user passwords are set to the same string when encrypting
the PDF file, the document will always open with the user access privileges. This means that it is possible to
create a file which, for example, is impossible for anyone to print out, even the person who created it.

User Guide Chapter 4 Exposing PDF Special Capabilities

Page 58

Owner Password
set?

User Password
set?

Result

Y -
No password required when opening file.
Restrictions apply to everyone.

- Y
User password required when opening file.
Restrictions apply to everyone.

Y Y
A password required when opening file.
Restrictions apply only if user password supplied.

When a PDF file is encrypted, encryption is applied to all the strings and streams in the file. This prevents
people who don't have the password from simply removing the password from the PDF file to gain access to
it - it renders the file useless unless you actually have the password.

PDF's standard encryption methods use the MD5 message digest algorithm (as described in RFC 1321, The
MD5 Message-Digest Algorithm) and an encryption algorithm known as RC4. RC4 is a symmetric stream
cipher - the same algorithm is used both for encryption and decryption, and the algorithm does not change the
length of the data.

How To Use Encryption

Documents can be encrypted by passing an argument to the canvas object.

If the argument is a string object, it is used as the User password to the PDF.

The argument can also be an instance of the class
reportlab.lib.pdfencrypt.StandardEncryption, which allows more finegrained control over
encryption settings.

The StandardEncryption constructor takes the following arguments:

 def __init__(self, userPassword,
 ownerPassword=None,
 canPrint=1,
 canModify=1,
 canCopy=1,
 canAnnotate=1,
 strength=40):

The userPassword and ownerPassword parameters set the relevant password on the encrypted PDF.

The boolean flags canPrint, canModify, canCopy, canAnnotate determine wether a user can
perform the corresponding actions on the PDF when only a user password has been supplied.

If the user supplies the owner password while opening the PDF, all actions can be performed regardless of the
flags.

Example

To create a document named hello.pdf with a user password of 'rptlab' on which printing is not allowed, use
the following code:

from reportlab.pdfgen import canvas
from reportlab.lib import pdfencrypt

enc=pdfencrypt.StandardEncryption("rptlab",canPrint=0)

def hello(c):
 c.drawString(100,100,"Hello World")
c = canvas.Canvas("hello.pdf",encrypt=enc)
hello(c)
c.showPage()
c.save()

User Guide Chapter 4 Exposing PDF Special Capabilities

Page 59

4.7 Interactive Forms

Overview of Interactive Forms

The PDF standard allows for various kinds of interactive elements, the ReportLab toolkit currently supports
only a fraction of the possibilities and should be considered a work in progress. At present we allow choices
with checkbox, radio, choice & listbox widgets; text values can be entered with a textfield widget. All the
widgets are created by calling methods on the canvas.acroform property.

Example

This shows the basic mechanism of creating an interactive element on the current page.

 canvas.acroform.checkbox(
 name='CB0',
 tooltip='Field CB0',
 checked=True,
 x=72,y=72+4*36,
 buttonStyle='diamond',
 borderStyle='bevelled',
 borderWidth=2,
 borderColor=red,
 fillColor=green,
 textColor=blue,
 forceBorder=True)

NB note that the acroform canvas property is created automatically on demand and that there is only one form
allowd in a document.

Checkbox Usage

The canvas.acroform.checkbox method creates a checkbox widget on the current page. The value of the
checkbox is either YES or OFF. The arguments are

canvas.acroform.checkbox parameters

Parameter Meaning Default

name the parameter's name None

x the horizontal position on the page (absolute coordinates) 0

y the vertical position on the page (absolute coordinates) 0

size The outline dimensions size x size 20

checked if True the checkbox is initially checked False

buttonStyle the checkbox style (see below) 'check'

shape The outline of the widget (see below) 'square'

fillColor colour to be used to fill the widget None

textColor the colour of the symbol or text None

borderWidth as it says 1

borderColor the widget's border colour None

borderStyle The border style name 'solid'

tooltip The text to display when hovering over the widget None

annotationFlags blank separated string of annotation flags 'print'

fieldFlags Blank separated field flags (see below) 'required'

forceBorder when true a border force a border to be drawn False

relative if true obey the current canvas transform False

dashLen the dashline to be used if the borderStyle=='dashed' 3

User Guide Chapter 4 Exposing PDF Special Capabilities

Page 60

Radio Usage

The canvas.acroform.radio method creates a radio widget on the current page. The value of the radio is the
value of the radio group's selected value or OFF if none are selected. The arguments are

canvas.acroform.radio parameters

Parameter Meaning Default

name the radio's group (ie parameter) name None

value the radio's group name None

x the horizontal position on the page (absolute coordinates) 0

y the vertical position on the page (absolute coordinates) 0

size The outline dimensions size x size 20

selected if True this radio is the selected one in its group False

buttonStyle the checkbox style (see below) 'check'

shape The outline of the widget (see below) 'square'

fillColor colour to be used to fill the widget None

textColor the colour of the symbol or text None

borderWidth as it says 1

borderColor the widget's border colour None

borderStyle The border style name 'solid'

tooltip The text to display when hovering over the widget None

annotationFlags blank separated string of annotation flags 'print'

fieldFlags Blank separated field flags (see below) 'noToggleToOff required radio'

forceBorder when true a border force a border to be drawn False

relative if true obey the current canvas transform False

dashLen the dashline to be used if the borderStyle=='dashed' 3

Listbox Usage

The canvas.acroform.listbox method creates a listbox widget on the current page. The listbox contains a list
of options one or more of which (depending on fieldFlags) may be selected.

canvas.acroform.listbox parameters

Parameter Meaning Default

name the radio's group (ie parameter) name None

options List or tuple of avaiable options []

value Singleton or list of strings of selected options []

x the horizontal position on the page (absolute coordinates) 0

y the vertical position on the page (absolute coordinates) 0

width The widget width 120

height The widget height 36

fontName The name of the type 1 font to be used 'Helvetica'

fontSize The size of font to be used 12

fillColor colour to be used to fill the widget None

textColor the colour of the symbol or text None

borderWidth as it says 1

borderColor the widget's border colour None

borderStyle The border style name 'solid'

tooltip The text to display when hovering over the widget None

annotationFlags blank separated string of annotation flags 'print'

fieldFlags Blank separated field flags (see below) ''

User Guide Chapter 4 Exposing PDF Special Capabilities

Page 61

canvas.acroform.listbox parameters

Parameter Meaning Default

forceBorder when true a border force a border to be drawn False

relative if true obey the current canvas transform False

dashLen the dashline to be used if the borderStyle=='dashed' 3

Choice Usage

The canvas.acroform.choice method creates a dropdown widget on the current page. The dropdown contains
a list of options one or more of which (depending on fieldFlags) may be selected. If you add edit to the
fieldFlags then the result may be edited.

canvas.acroform.choice parameters

Parameter Meaning Default

name the radio's group (ie parameter) name None

options List or tuple of avaiable options []

value Singleton or list of strings of selected options []

x the horizontal position on the page (absolute coordinates) 0

y the vertical position on the page (absolute coordinates) 0

width The widget width 120

height The widget height 36

fontName The name of the type 1 font to be used 'Helvetica'

fontSize The size of font to be used 12

fillColor colour to be used to fill the widget None

textColor the colour of the symbol or text None

borderWidth as it says 1

borderColor the widget's border colour None

borderStyle The border style name 'solid'

tooltip The text to display when hovering over the widget None

annotationFlags blank separated string of annotation flags 'print'

fieldFlags Blank separated field flags (see below) 'combo'

forceBorder when true a border force a border to be drawn False

relative if true obey the current canvas transform False

dashLen the dashline to be used if the borderStyle=='dashed' 3

maxlen None or maximum length of the widget value None

Textfield Usage

The canvas.acroform.textfield method creates a textfield entry widget on the current page. The textfield may
be edited to change tha value of the widget

canvas.acroform.textfield parameters

Parameter Meaning Default

name the radio's group (ie parameter) name None

value Value of the text field ''

maxlen None or maximum length of the widget value 100

x the horizontal position on the page (absolute coordinates) 0

y the vertical position on the page (absolute coordinates) 0

width The widget width 120

height The widget height 36

fontName The name of the type 1 font to be used 'Helvetica'

User Guide Chapter 4 Exposing PDF Special Capabilities

Page 62

canvas.acroform.textfield parameters

Parameter Meaning Default

fontSize The size of font to be used 12

fillColor colour to be used to fill the widget None

textColor the colour of the symbol or text None

borderWidth as it says 1

borderColor the widget's border colour None

borderStyle The border style name 'solid'

tooltip The text to display when hovering over the widget None

annotationFlags blank separated string of annotation flags 'print'

fieldFlags Blank separated field flags (see below) ''

forceBorder when true a border force a border to be drawn False

relative if true obey the current canvas transform False

dashLen the dashline to be used if the borderStyle=='dashed' 3

Button styles

The button style argument indicates what style of symbol should appear in the button when it is selected.
There are several choices

 check
 cross
 circle
 star
 diamond

note that the document renderer can make some of these symbols wrong for their intended application.
Acrobat reader prefers to use its own rendering on top of what the specification says should be shown
(especially when the forms hihlighting features are used

Widget shape

The shape argument describes how the outline of the checkbox or radio widget should appear you can use

 circle
 square

The renderer may make its own decisions about how the widget should look; so Acrobat Reader prefers
circular outlines for radios.

Border style

The borderStyle argument changes the 3D appearance of the widget on the page alternatives are

 solid
 dashed
 inset
 bevelled
 underlined

fieldFlags Argument

The fieldFlags arguments can be an integer or a string containing blank separate tokens the values are shown
in the table below. For more information consult the PDF specification.

Field Flag Tokens and values

Token Meaning Value

readOnly The widget is read only 1<<0

User Guide Chapter 4 Exposing PDF Special Capabilities

Page 63

Field Flag Tokens and values

Token Meaning Value

required the widget is required 1<<1

noExport don't export the widget value 1<<2

noToggleToOff radios one only must be on 1<<14

radio added by the radio method 1<<15

pushButton if the button is a push button 1<<16

radiosInUnison radios with the same value toggle together 1<<25

multiline for multiline text widget 1<<12

password password textfield 1<<13

fileSelect file selection widget 1<<20

doNotSpellCheck as it says 1<<22

doNotScroll text fields do not scroll 1<<23

comb make a comb style text based on the maxlen value 1<<24

richText if rich text is used 1<<25

combo for choice fields 1<<17

edit if the choice is editable 1<<18

sort if the values should be sorted 1<<19

multiSelect if the choice allows multi-select 1<<21

commitOnSelChange not used by reportlab 1<<26

annotationFlags Argument

PDF widgets are annotations and have annotation properties these are shown in the table below

Annotation Flag Tokens and values

Token Meaning Value

invisible The widget is not shown 1<<0

hidden The widget is hidden 1<<1

print The widget will print 1<<2

nozoom The annotation will notscale with the rendered page 1<<3

norotate The widget won't rotate with the page 1<<4

noview Don't render the widget 1<<5

readonly Widget cannot be interacted with 1<<6

locked The widget cannot be changed 1<<7

togglenoview Teh widget may be viewed after some events 1<<8

lockedcontents The contents of the widget are fixed 1<<9

User Guide Chapter 4 Exposing PDF Special Capabilities

Page 64

Chapter 5 PLATYPUS - Page Layout and Typography
Using Scripts

5.1 Design Goals
Platypus stands for "Page Layout and Typography Using Scripts". It is a high level page layout library which
lets you programmatically create complex documents with a minimum of effort.

The design of Platypus seeks to separate "high level" layout decisions from the document content as much as
possible. Thus, for example, paragraphs are constructed using paragraph styles and pages are constructed
using page templates with the intention that hundreds of documents with thousands of pages can be
reformatted to different style specifications with the modifications of a few lines in a single shared file which
contains the paragraph styles and page layout specifications.

The overall design of Platypus can be thought of has having several layers, top down, these are

DocTemplates the outermost container for the document;

PageTemplates specifications for layouts of pages of various kinds;

Frames specifications of regions in pages that can contain flowing text or graphics.

Flowables text or graphic elements that should be "flowed into the document (i.e. things like images,
paragraphs and tables, but not things like page footers or fixed page graphics).

pdfgen.Canvas the lowest level which ultimately receives the painting of the document from the other
layers.

DocTemplate

PageTemplate

two column

PageTemplate

chapter page

PageTemplate

title page

le
ft

F
ra

m
e

rig
ht

 F
ra

m
e

flowable 157

flowable 156

flowable 155 First Flowable

Chapter 6: Lubricants
College Life

Figure 5-1: Illustration of DocTemplate structure

The illustration above graphically illustrates the concepts of DocTemplates, PageTemplates and
Flowables. It is deceptive, however, because each of the PageTemplates actually may specify the
format for any number of pages (not just one as might be inferred from the diagram).

DocTemplates contain one or more PageTemplates each of which contain one or more Frames.
Flowables are things which can be flowed into a Frame e.g. a Paragraph or a Table.

To use platypus you create a document from a DocTemplate class and pass a list of Flowables to its
build method. The document build method knows how to process the list of flowables into something
reasonable.

User Guide Chapter 5 PLATYPUS - Page Layout and Typography Using Scripts

Page 65

Internally the DocTemplate class implements page layout and formatting using various events. Each of the
events has a corresponding handler method called handle_XXX where XXX is the event name. A typical
event is frameBegin which occurs when the machinery begins to use a frame for the first time.

A Platypus story consists of a sequence of basic elements called Flowables and these elements drive the
data driven Platypus formatting engine. To modify the behavior of the engine a special kind of flowable,
ActionFlowables, tell the layout engine to, for example, skip to the next column or change to another
PageTemplate.

5.2 Getting started
Consider the following code sequence which provides a very simple "hello world" example for Platypus.

from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.rl_config import defaultPageSize
from reportlab.lib.units import inch
PAGE_HEIGHT=defaultPageSize[1]; PAGE_WIDTH=defaultPageSize[0]
styles = getSampleStyleSheet()

First we import some constructors, some paragraph styles and other conveniences from other modules.

Title = "Hello world"
pageinfo = "platypus example"
def myFirstPage(canvas, doc):
 canvas.saveState()
 canvas.setFont('Times-Bold',16)
 canvas.drawCentredString(PAGE_WIDTH/2.0, PAGE_HEIGHT-108, Title)
 canvas.setFont('Times-Roman',9)
 canvas.drawString(inch, 0.75 * inch, "First Page / %s" % pageinfo)
 canvas.restoreState()

We define the fixed features of the first page of the document with the function above.

def myLaterPages(canvas, doc):
 canvas.saveState()
 canvas.setFont('Times-Roman',9)
 canvas.drawString(inch, 0.75 * inch, "Page %d %s" % (doc.page, pageinfo))
 canvas.restoreState()

Since we want pages after the first to look different from the first we define an alternate layout for the fixed
features of the other pages. Note that the two functions above use the pdfgen level canvas operations to
paint the annotations for the pages.

def go():
 doc = SimpleDocTemplate("phello.pdf")
 Story = [Spacer(1,2*inch)]
 style = styles["Normal"]
 for i in range(100):
 bogustext = ("This is Paragraph number %s. " % i) *20
 p = Paragraph(bogustext, style)
 Story.append(p)
 Story.append(Spacer(1,0.2*inch))
 doc.build(Story, onFirstPage=myFirstPage, onLaterPages=myLaterPages)

Finally, we create a story and build the document. Note that we are using a "canned" document template here
which comes pre-built with page templates. We are also using a pre-built paragraph style. We are only using
two types of flowables here -- Spacers and Paragraphs. The first Spacer ensures that the Paragraphs
skip past the title string.

To see the output of this example program run the module tools/docco/examples.py (from the
ReportLab source distribution) as a "top level script". The script interpretation python examples.py
will generate the Platypus output phello.pdf.

User Guide Chapter 5 PLATYPUS - Page Layout and Typography Using Scripts

Page 66

5.3 Flowables
Flowables are things which can be drawn and which have wrap, draw and perhaps split methods.
Flowable is an abstract base class for things to be drawn and an instance knows its size and draws in its
own coordinate system (this requires the base API to provide an absolute coordinate system when the
Flowable.draw method is called). To get an instance use f=Flowable().

It should be noted that the Flowable class is an abstract class and is normally only used as a base class.

To illustrate the general way in which Flowables are used we show how a derived class Paragraph is
used and drawn on a canvas. Paragraphs are so important they will get a whole chapter to themselves.

 from reportlab.lib.styles import getSampleStyleSheet
 from reportlab.platypus import Paragraph
 from reportlab.pdfgen.canvas import Canvas
 styleSheet = getSampleStyleSheet()
 style = styleSheet['BodyText']
 P=Paragraph('This is a very silly example',style)
 canv = Canvas('doc.pdf')
 aW = 460 # available width and height
 aH = 800
 w,h = P.wrap(aW, aH) # find required space
 if w<=aW and h<=aH:
 P.drawOn(canv,0,aH)
 aH = aH - h # reduce the available height
 canv.save()
 else:
 raise ValueError, "Not enough room"

Flowable User Methods

 Flowable.draw()

This will be called to ask the flowable to actually render itself. The Flowable class does not implement
draw. The calling code should ensure that the flowable has an attribute canv which is the
pdfgen.Canvas which should be drawn to an that the Canvas is in an appropriate state (as regards
translations rotations, etc). Normally this method will only be called internally by the drawOn method.
Derived classes must implement this method.

 Flowable.drawOn(canvas,x,y)

This is the method which controlling programs use to render the flowable to a particular canvas. It handles the
translation to the canvas coordinate (x,y) and ensuring that the flowable has a canv attribute so that the draw
method (which is not implemented in the base class) can render in an absolute coordinate frame.

 Flowable.wrap(availWidth, availHeight)

This will be called by the enclosing frame before objects are asked their size, drawn or whatever. It returns
the size actually used.

 Flowable.split(self, availWidth, availheight):

This will be called by more sophisticated frames when wrap fails. Stupid flowables should return [] meaning
that they are unable to split. Clever flowables should split themselves and return a list of flowables. It is up to
the client code to ensure that repeated attempts to split are avoided. If the space is sufficient the split method
should return [self]. Otherwise the flowable should rearrange itself and return a list [f0,...] of flowables
which will be considered in order. The implemented split method should avoid changing self as this will
allow sophisticated layout mechanisms to do multiple passes over a list of flowables.

5.4 Guidelines for flowable positioning
Two methods, which by default return zero, provide guidance on vertical spacing of flowables:

User Guide Chapter 5 PLATYPUS - Page Layout and Typography Using Scripts

Page 67

 Flowable.getSpaceAfter(self):
 Flowable.getSpaceBefore(self):

These methods return how much space should follow or precede the flowable. The space doesn't belong to the
flowable itself i.e. the flowable's draw method shouldn't consider it when rendering. Controlling programs
will use the values returned in determining how much space is required by a particular flowable in context.

All flowables have an hAlign property: ('LEFT', 'RIGHT', 'CENTER' or 'CENTRE'). For
paragraphs, which fill the full width of the frame, this has no effect. For tables, images or other objects which
are less than the width of the frame, this determines their horizontal placement.

The chapters which follow will cover the most important specific types of flowables: Paragraphs and Tables.

5.5 Frames
Frames are active containers which are themselves contained in PageTemplates. Frames have a
location and size and maintain a concept of remaining drawable space. The command

 Frame(x1, y1, width,height, leftPadding=6, bottomPadding=6,
 rightPadding=6, topPadding=6, id=None, showBoundary=0)

creates a Frame instance with lower left hand corner at coordinate (x1,y1) (relative to the canvas at use
time) and with dimensions width x height. The Padding arguments are positive quantities used to
reduce the space available for drawing. The id argument is an identifier for use at runtime e.g. 'LeftColumn'
or 'RightColumn' etc. If the showBoundary argument is non-zero then the boundary of the frame will get
drawn at run time (this is useful sometimes).

Frame User Methods

 Frame.addFromList(drawlist, canvas)

consumes Flowables from the front of drawlist until the frame is full. If it cannot fit one object, raises
an exception.

 Frame.split(flowable,canv)

Asks the flowable to split using up the available space and return the list of flowables.

 Frame.drawBoundary(canvas)

draws the frame boundary as a rectangle (primarily for debugging).

Using Frames

Frames can be used directly with canvases and flowables to create documents. The
Frame.addFromList method handles the wrap & drawOn calls for you. You don't need all of the
Platypus machinery to get something useful into PDF.

from reportlab.pdfgen.canvas import Canvas
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.lib.units import inch
from reportlab.platypus import Paragraph, Frame
styles = getSampleStyleSheet()
styleN = styles['Normal']
styleH = styles['Heading1']
story = []

#add some flowables
story.append(Paragraph("This is a Heading",styleH))
story.append(Paragraph("This is a paragraph in <i>Normal</i> style.",
 styleN))
c = Canvas('mydoc.pdf')
f = Frame(inch, inch, 6*inch, 9*inch, showBoundary=1)
f.addFromList(story,c)
c.save()

User Guide Chapter 5 PLATYPUS - Page Layout and Typography Using Scripts

Page 68

5.6 Documents and Templates
The BaseDocTemplate class implements the basic machinery for document formatting. An instance of the
class contains a list of one or more PageTemplates that can be used to describe the layout of information
on a single page. The build method can be used to process a list of Flowables to produce a PDF
document.

The BaseDocTemplate class

 BaseDocTemplate(self, filename,
 pagesize=defaultPageSize,
 pageTemplates=[],
 showBoundary=0,
 leftMargin=inch,
 rightMargin=inch,
 topMargin=inch,
 bottomMargin=inch,
 allowSplitting=1,
 title=None,
 author=None,
 _pageBreakQuick=1,
 encrypt=None)

creates a document template suitable for creating a basic document. It comes with quite a lot of internal
machinery, but no default page templates. The required filename can be a string, the name of a file to
receive the created PDF document; alternatively it can be an object which has a write method such as a
BytesIO or file or socket.

The allowed arguments should be self explanatory, but showBoundary controls whether or not Frame
boundaries are drawn which can be useful for debugging purposes. The allowSplitting argument
determines whether the builtin methods should try to split individual Flowables across Frames. The
_pageBreakQuick argument determines whether an attempt to do a page break should try to end all the
frames on the page or not, before ending the page. The encrypt argument determines wether or not and how
the document is encrypted. By default, the document is not encrypted. If encrypt is a string object, it is
used as the user password for the pdf. If encrypt is an instance of
reportlab.lib.pdfencrypt.StandardEncryption, this object is used to encrypt the pdf. This
allows more finegrained control over the encryption settings.

User BaseDocTemplate Methods

These are of direct interest to client programmers in that they are normally expected to be used.

 BaseDocTemplate.addPageTemplates(self,pageTemplates)

This method is used to add one or a list of PageTemplates to an existing documents.

 BaseDocTemplate.build(self, flowables, filename=None, canvasmaker=canvas.Canvas)

This is the main method which is of interest to the application programmer. Assuming that the document
instance is correctly set up the build method takes the story in the shape of the list of flowables (the
flowables argument) and loops through the list forcing the flowables one at a time through the formatting
machinery. Effectively this causes the BaseDocTemplate instance to issue calls to the instance
handle_XXX methods to process the various events.

User Virtual BaseDocTemplate Methods

These have no semantics at all in the base class. They are intended as pure virtual hooks into the layout
machinery. Creators of immediately derived classes can override these without worrying about affecting the
properties of the layout engine.

 BaseDocTemplate.afterInit(self)

This is called after initialisation of the base class; a derived class could overide the method to add default
PageTemplates.

User Guide Chapter 5 PLATYPUS - Page Layout and Typography Using Scripts

Page 69

 BaseDocTemplate.afterPage(self)

This is called after page processing, and immediately after the afterDrawPage method of the current page
template. A derived class could use this to do things which are dependent on information in the page such as
the first and last word on the page of a dictionary.

 BaseDocTemplate.beforeDocument(self)

This is called before any processing is done on the document, but after the processing machinery is ready. It
can therefore be used to do things to the instance's pdfgen.canvas and the like.

 BaseDocTemplate.beforePage(self)

This is called at the beginning of page processing, and immediately before the beforeDrawPage method of the
current page template. It could be used to reset page specific information holders.

 BaseDocTemplate.filterFlowables(self,flowables)

This is called to filter flowables at the start of the main handle_flowable method. Upon return if flowables[0]
has been set to None it is discarded and the main method returns immediately.

 BaseDocTemplate.afterFlowable(self, flowable)

Called after a flowable has been rendered. An interested class could use this hook to gather information about
what information is present on a particular page or frame.

BaseDocTemplate Event handler Methods

These methods constitute the greater part of the layout engine. Programmers shouldn't have to call or override
these methods directly unless they are trying to modify the layout engine. Of course, the experienced
programmer who wants to intervene at a particular event, XXX, which does not correspond to one of the
virtual methods can always override and call the base method from the drived class version. We make this
easy by providing a base class synonym for each of the handler methods with the same name prefixed by an
underscore '_'.

 def handle_pageBegin(self):
 doStuff()
 BaseDocTemplate.handle_pageBegin(self)
 doMoreStuff()

 #using the synonym
 def handle_pageEnd(self):
 doStuff()
 self._handle_pageEnd()
 doMoreStuff()

Here we list the methods only as an indication of the events that are being handled. Interested programmers
can take a look at the source.

 handle_currentFrame(self,fx)
 handle_documentBegin(self)
 handle_flowable(self,flowables)
 handle_frameBegin(self,*args)
 handle_frameEnd(self)
 handle_nextFrame(self,fx)
 handle_nextPageTemplate(self,pt)
 handle_pageBegin(self)
 handle_pageBreak(self)
 handle_pageEnd(self)

Using document templates can be very easy; SimpleDoctemplate is a class derived from
BaseDocTemplate which provides its own PageTemplate and Frame setup.

from reportlab.lib.styles import getSampleStyleSheet
from reportlab.lib.pagesizes import letter
from reportlab.platypus import Paragraph, SimpleDocTemplate
styles = getSampleStyleSheet()

User Guide Chapter 5 PLATYPUS - Page Layout and Typography Using Scripts

Page 70

styleN = styles['Normal']
styleH = styles['Heading1']
story = []

#add some flowables
story.append(Paragraph("This is a Heading",styleH))
story.append(Paragraph("This is a paragraph in <i>Normal</i> style.",
 styleN))
doc = SimpleDocTemplate('mydoc.pdf',pagesize = letter)
doc.build(story)

PageTemplates

The PageTemplate class is a container class with fairly minimal semantics. Each instance contains a list of
Frames and has methods which should be called at the start and end of each page.

PageTemplate(id=None,frames=[],onPage=_doNothing,onPageEnd=_doNothing)

is used to initialize an instance, the frames argument should be a list of Frames whilst the optional
onPage and onPageEnd arguments are callables which should have signature def
XXX(canvas,document) where canvas and document are the canvas and document being drawn.
These routines are intended to be used to paint non-flowing (i.e. standard) parts of pages. These attribute
functions are exactly parallel to the pure virtual methods PageTemplate.beforPage and
PageTemplate.afterPage which have signature beforPage(self,canvas,document). The
methods allow class derivation to be used to define standard behaviour, whilst the attributes allow instance
changes. The id argument is used at run time to perform PageTemplate switching so
id='FirstPage' or id='TwoColumns' are typical.

User Guide Chapter 5 PLATYPUS - Page Layout and Typography Using Scripts

Page 71

Chapter 6 Paragraphs
The reportlab.platypus.Paragraph class is one of the most useful of the Platypus Flowables; it
can format fairly arbitrary text and provides for inline font style and colour changes using an XML style
markup. The overall shape of the formatted text can be justified, right or left ragged or centered. The XML
markup can even be used to insert greek characters or to do subscripts.

The following text creates an instance of the Paragraph class:

Paragraph(text, style, bulletText=None)

The text argument contains the text of the paragraph; excess white space is removed from the text at the
ends and internally after linefeeds. This allows easy use of indented triple quoted text in Python scripts. The
bulletText argument provides the text of a default bullet for the paragraph. The font and other properties
for the paragraph text and bullet are set using the style argument.

The style argument should be an instance of class ParagraphStyle obtained typically using

from reportlab.lib.styles import ParagraphStyle

this container class provides for the setting of multiple default paragraph attributes in a structured way. The
styles are arranged in a dictionary style object called a stylesheet which allows for the styles to be
accessed as stylesheet['BodyText']. A sample style sheet is provided.

from reportlab.lib.styles import getSampleStyleSheet
stylesheet=getSampleStyleSheet()
normalStyle = stylesheet['Normal']

The options which can be set for a Paragraph can be seen from the ParagraphStyle defaults. The
values with leading underscore ('_') are derived from the defaults in module reportlab.rl_config
which are derived from module reportlab.rl_settings.

class ParagraphStyle

class ParagraphStyle(PropertySet):
 defaults = {
 'fontName':_baseFontName,
 'fontSize':10,
 'leading':12,
 'leftIndent':0,
 'rightIndent':0,
 'firstLineIndent':0,
 'alignment':TA_LEFT,
 'spaceBefore':0,
 'spaceAfter':0,
 'bulletFontName':_baseFontName,
 'bulletFontSize':10,
 'bulletIndent':0,
 'textColor': black,
 'backColor':None,
 'wordWrap':None,
 'borderWidth': 0,
 'borderPadding': 0,
 'borderColor': None,
 'borderRadius': None,
 'allowWidows': 1,
 'allowOrphans': 0,
 'textTransform':None,
 'endDots':None,
 'splitLongWords':1,
 'underlineWidth': _baseUnderlineWidth,
 'bulletAnchor': 'start',
 'justifyLastLine': 0,
 'justifyBreaks': 0,
 'spaceShrinkage': _spaceShrinkage,
 'strikeWidth': _baseStrikeWidth, #stroke width
 'underlineOffset': _baseUnderlineOffset, #fraction of fontsize to offset underlines
 'underlineGap': _baseUnderlineGap, #gap for double/triple underline
 'strikeOffset': _baseStrikeOffset, #fraction of fontsize to offset strikethrough

User Guide Chapter 6 Paragraphs

Page 72

 'strikeGap': _baseStrikeGap, #gap for double/triple strike
 'linkUnderline': _platypus_link_underline,
 #'underlineColor': None,
 #'strikeColor': None,
 'hyphenationLang': _hyphenationLang,
 'uriWasteReduce': _uriWasteReduce,
 'embeddedHyphenation': _embeddedHyphenation,
 }

6.1 Using Paragraph Styles
The Paragraph and ParagraphStyle classes together handle most common formatting needs. The
following examples draw paragraphs in various styles, and add a bounding box so that you can see exactly
what space is taken up.

You are hereby charged that on the
28th day of May, 1970, you did willfully,
unlawfully, and with malice of
forethought, publish an alleged
English-Hungarian phrase book with
intent to cause a breach of the peace.
How do you plead?

alignment = 0
allowOrphans = 0
allowWidows = 1
backColor = None
borderColor = None
borderPadding = 0
borderRadius = None
borderWidth = 0
bulletAnchor = start
bulletFontName = Helvetica
bulletFontSize = 10
bulletIndent = 0
embeddedHyphenation = 0
endDots = None
firstLineIndent = 0
fontName = Helvetica
fontSize = 10
hyphenationLang =
justifyBreaks = 0
justifyLastLine = 0
leading = 12
leftIndent = 0
linkUnderline = 0
rightIndent = 0
spaceAfter = 0
spaceBefore = 0
spaceShrinkage = 0.05
splitLongWords = 1
strikeColor = None
strikeGap = 1
strikeOffset = 0.25*F
strikeWidth =
textColor = Color(0,0,0,1)
textTransform = None
underlineColor = None
underlineGap = 1
underlineOffset = -0.125*F
underlineWidth =
uriWasteReduce = 0
wordWrap = None

Figure 6-1: The default ParagraphStyle

The two attributes spaceBefore and spaceAfter do what they say, except at the top or bottom of a
frame. At the top of a frame, spaceBefore is ignored, and at the bottom, spaceAfter is ignored. This
means that you could specify that a 'Heading2' style had two inches of space before when it occurs in
mid-page, but will not get acres of whitespace at the top of a page. These two attributes should be thought of
as 'requests' to the Frame and are not part of the space occupied by the Paragraph itself.

User Guide Chapter 6 Paragraphs

Page 73

The fontSize and fontName tags are obvious, but it is important to set the leading. This is the spacing
between adjacent lines of text; a good rule of thumb is to make this 20% larger than the point size. To get
double-spaced text, use a high leading. If you set autoLeading(default "off") to "min"(use
observed leading even if smaller than specified) or "max"(use the larger of observed and specified) then an
attempt is made to determine the leading on a line by line basis. This may be useful if the lines contain
different font sizes etc.

The figure below shows space before and after and an increased leading:

You are hereby charged that on the

28th day of May, 1970, you did willfully,

unlawfully, and with malice of

forethought, publish an alleged

English-Hungarian phrase book with

intent to cause a breach of the peace.

How do you plead?

alignment = 0
allowOrphans = 0
allowWidows = 1
backColor = None
borderColor = None
borderPadding = 0
borderRadius = None
borderWidth = 0
bulletAnchor = start
bulletFontName = Helvetica
bulletFontSize = 10
bulletIndent = 0
embeddedHyphenation = 0
endDots = None
firstLineIndent = 0
fontName = Helvetica
fontSize = 10
hyphenationLang =
justifyBreaks = 0
justifyLastLine = 0
leading = 16
leftIndent = 0
linkUnderline = 0
rightIndent = 0
spaceAfter = 6
spaceBefore = 6
spaceShrinkage = 0.05
splitLongWords = 1
strikeColor = None
strikeGap = 1
strikeOffset = 0.25*F
strikeWidth =
textColor = Color(0,0,0,1)
textTransform = None
underlineColor = None
underlineGap = 1
underlineOffset = -0.125*F
underlineWidth =
uriWasteReduce = 0
wordWrap = None

Figure 6-2: Space before and after and increased leading

The attribute borderPadding adjusts the padding between the paragraph and the border of its background.
This can either be a single value or a tuple containing 2 to 4 values. These values are applied the same way as
in Cascading Style Sheets (CSS). If a single value is given, that value is applied to all four sides. If more than
one value is given, they are applied in clockwise order to the sides starting at the top. If two or three values
are given, the missing values are taken from the opposite side(s). Note that in the following example the
yellow box is drawn by the paragraph itself.

User Guide Chapter 6 Paragraphs

Page 74

You are hereby charged that on the
28th day of May, 1970, you did willfully,
unlawfully, and with malice of
forethought, publish an alleged
English-Hungarian phrase book with
intent to cause a breach of the peace.
How do you plead?

alignment = 0
allowOrphans = 0
allowWidows = 1
backColor = #FFFF00
borderColor = #000000
borderPadding = (7, 2, 20)
borderRadius = None
borderWidth = 1
bulletAnchor = start
bulletFontName = Helvetica
bulletFontSize = 10
bulletIndent = 0
embeddedHyphenation = 0
endDots = None
firstLineIndent = 0
fontName = Helvetica
fontSize = 10
hyphenationLang =
justifyBreaks = 0
justifyLastLine = 0
leading = 12
leftIndent = 0
linkUnderline = 0
rightIndent = 0
spaceAfter = 0
spaceBefore = 0
spaceShrinkage = 0.05
splitLongWords = 1
strikeColor = None
strikeGap = 1
strikeOffset = 0.25*F
strikeWidth =
textColor = Color(0,0,0,1)
textTransform = None
underlineColor = None
underlineGap = 1
underlineOffset = -0.125*F
underlineWidth =
uriWasteReduce = 0
wordWrap = None

Figure 6-3: Variable padding

The leftIndent and rightIndent attributes do exactly what you would expect; firstLineIndent
is added to the leftIndent of the first line. If you want a straight left edge, remember to set
firstLineIndent equal to 0.

User Guide Chapter 6 Paragraphs

Page 75

You are hereby
charged that on the 28th day
of May, 1970, you did
willfully, unlawfully, and with
malice of forethought,
publish an alleged
English-Hungarian phrase
book with intent to cause a
breach of the peace. How do
you plead?

alignment = 0
allowOrphans = 0
allowWidows = 1
backColor = None
borderColor = None
borderPadding = 0
borderRadius = None
borderWidth = 0
bulletAnchor = start
bulletFontName = Helvetica
bulletFontSize = 10
bulletIndent = 0
embeddedHyphenation = 0
endDots = None
firstLineIndent = 24
fontName = Helvetica
fontSize = 10
hyphenationLang =
justifyBreaks = 0
justifyLastLine = 0
leading = 12
leftIndent = 24
linkUnderline = 0
rightIndent = 24
spaceAfter = 0
spaceBefore = 0
spaceShrinkage = 0.05
splitLongWords = 1
strikeColor = None
strikeGap = 1
strikeOffset = 0.25*F
strikeWidth =
textColor = Color(0,0,0,1)
textTransform = None
underlineColor = None
underlineGap = 1
underlineOffset = -0.125*F
underlineWidth =
uriWasteReduce = 0
wordWrap = None

Figure 6-4: one third inch indents at left and right, two thirds on first line

Setting firstLineIndent equal to a negative number, leftIndent much higher, and using a different
font (we'll show you how later!) can give you a definition list:.

User Guide Chapter 6 Paragraphs

Page 76

Judge Pickles: You are
hereby charged that on the
28th day of May, 1970, you did
willfully, unlawfully, and with
malice of forethought, publish
an alleged English-Hungarian
phrase book with intent to
cause a breach of the peace.
How do you plead?

alignment = 0
allowOrphans = 0
allowWidows = 1
backColor = None
borderColor = None
borderPadding = 0
borderRadius = None
borderWidth = 0
bulletAnchor = start
bulletFontName = Helvetica
bulletFontSize = 10
bulletIndent = 0
embeddedHyphenation = 0
endDots = None
firstLineIndent = 0
fontName = Helvetica
fontSize = 10
hyphenationLang =
justifyBreaks = 0
justifyLastLine = 0
leading = 12
leftIndent = 36
linkUnderline = 0
rightIndent = 0
spaceAfter = 0
spaceBefore = 0
spaceShrinkage = 0.05
splitLongWords = 1
strikeColor = None
strikeGap = 1
strikeOffset = 0.25*F
strikeWidth =
textColor = Color(0,0,0,1)
textTransform = None
underlineColor = None
underlineGap = 1
underlineOffset = -0.125*F
underlineWidth =
uriWasteReduce = 0
wordWrap = None

Figure 6-5: Definition Lists

There are four possible values of alignment, defined as constants in the module reportlab.lib.enums.
These are TA_LEFT, TA_CENTER or TA_CENTRE, TA_RIGHT and TA_JUSTIFY, with values of 0, 1, 2
and 4 respectively. These do exactly what you would expect.

Set wordWrap to 'CJK' to get Asian language linewrapping. For normal western text you can change the
way the line breaking algorithm handles widows and orphans with the allowWidows and allowOrphans
values. Both should normally be set to 0, but for historical reasons we have allowed widows. The default
color of the text can be set with textColor and the paragraph background colour can be set with
backColor. The paragraph's border properties may be changed using borderWidth, borderPadding,
borderColor and borderRadius.

The textTransform attribute can be None, 'uppercase' or 'lowercase' to get the obvious result and
'capitalize' to get initial letter capitalization.

Attribute endDots can be None, a string, or an object with attributes text and optional fontName, fontSize,
textColor, backColor and dy(y offset) to specify trailing matter on the last line of left/right justified
paragraphs.

The splitLongWords attribute can be set to a false value to avoid splitting very long words.

Attribute bulletAnchor can be 'start', 'middle', 'end' or 'numeric' to control where the bullet is anchored.

User Guide Chapter 6 Paragraphs

Page 77

The justifyBreaks attribute controls whether lines deliberately broken with a
 tag should be
justified

Attribute spaceShrinkage is a fractional number specifiying by how much the space of a paragraph line
may be shrunk in order to make it fit; typically it is something like 0.05

The underlineWidth, underlineOffset, underlineGap & underlineColor attributes
control the underline behaviour when the <u> or a linking tag is used. Those tags can have override values of
these attributes. The attribute value for width & offset is a fraction * Letter where letter can be one
of P, L, f or F representing fontSize proportions. P uses the fontsize at the tag, F is the maximum fontSize in
the tag, f is the initial fontsize inside the tag. L means the global (paragrpah style) font size. strikeWidth,
strikeOffset, strikeGap & strikeColor attributes do the same for strikethrough lines.

Attribute linkUnderline controls whether link tags are automatically underlined.

If the pyphen python module is installed attribute hyphenationLang controls which language will be
used to hyphenate words without explicit embedded hyphens.

If embeddedHyphenation is set then attempts will be made to split words with embedded hyphens.

Attribute uriWasteReduce controls how we attempt to split long uri's. It is the fraction of a line that we
regard as too much waste. The default in module reportlab.rl_settings is 0.5 which means that we
will try and split a word that looks like a uri if we would waste at least half of the line.

Currently the hyphenation and uri splitting are turned off by default. You need to modify the default settings
by using the file ~/.rl_settings or adding a module reportlab_settings.py to the python path.
Suitable values are

 hyphenationLanguage='en_GB'
 embeddedHyphenation=1
 uriWasteReduce=0.3

6.2 Paragraph XML Markup Tags
XML markup can be used to modify or specify the overall paragraph style, and also to specify intra-
paragraph markup.

The outermost < para > tag

The paragraph text may optionally be surrounded by <para attributes....> </para> tags. The attributes if any of
the opening <para> tag affect the style that is used with the Paragraph text and/or bulletText.

Attribute Synonyms

alignment align, alignment

allowOrphans allowOrphans, alloworphans

allowWidows allowWidows, allowwidows

autoLeading autoLeading, autoleading

backColor backColor, backcolor, bg, bgcolor

borderColor borderColor, bordercolor

borderPadding borderPadding, borderpadding

borderRadius borderRadius, borderradius

borderWidth borderWidth, borderwidth

bulletAnchor banchor, bulletAnchor, bulletanchor

bulletColor bcolor, bulletColor, bulletcolor

bulletFontName bfont, bulletFontName, bulletfontname

bulletFontSize bfontsize, bulletFontSize, bulletfontsize

bulletIndent bindent, bulletIndent, bulletindent

bulletOffsetY boffsety, bulletOffsetY, bulletoffsety

embeddedHyphenation embeddedHyphenation, embeddedhyphenation

User Guide Chapter 6 Paragraphs

Page 78

endDots endDots, enddots

firstLineIndent findent, firstLineIndent, firstlineindent

fontName face, font, fontName, fontname

fontSize fontSize, fontsize, size

hyphenationLang hyphenationLang, hyphenationLanguage, hyphenationlang

hyphenationMinWordLength hyphenationMinWordLength, hyphenationminwordlength

hyphenationOverflow hyphenationOverflow, hyphenationoverflow

justifyBreaks justifyBreaks, justifybreaks

justifyLastLine justifyLastLine, justifylastline

leading leading

leftIndent leftIndent, leftindent, lindent

rightIndent rightIndent, rightindent, rindent

spaceAfter spaceAfter, spacea, spaceafter

spaceBefore spaceBefore, spaceb, spacebefore

spaceShrinkage spaceShrinkage, spaceshrinkage

splitLongWords splitLongWords, splitlongwords

strikeColor strikeColor, strikecolor

strikeGap strikeGap, strikegap

strikeOffset strikeOffset, strikeoffset

strikeWidth strikeWidth, strikewidth

textColor color, fg, textColor, textcolor

textTransform textTransform, texttransform

underlineColor underlineColor, underlinecolor

underlineGap underlineGap, underlinegap

underlineOffset underlineOffset, underlineoffset

underlineWidth underlineWidth, underlinewidth

uriWasteReduce uriWasteReduce, uriwastereduce

wordWrap wordWrap, wordwrap

Table 6-2 - Synonyms for style attributes

Some useful synonyms have been provided for our Python attribute names, including lowercase versions, and
the equivalent properties from the HTML standard where they exist. These additions make it much easier to
build XML-printing applications, since much intra-paragraph markup may not need translating. The table
below shows the allowed attributes and synonyms in the outermost paragraph tag.

6.3 Intra-paragraph markup

You are hereby charged
that on the 28th day of May,
1970, you did willfully,
unlawfully, and <i>with malice of
forethought</i>, publish an
alleged English-Hungarian phrase
book with intent to cause a
breach of the peace. <u>How do
you plead</u>?

You are hereby charged that on the
28th day of May, 1970, you did
willfully, unlawfully, and with malice
of forethought, publish an alleged
English-Hungarian phrase book with
intent to cause a breach of the peace.
How do you plead?

Figure 6-6: Simple bold and italic tags

User Guide Chapter 6 Paragraphs

Page 79

This <a href="#MYANCHOR"
color="blue">is a link to an
anchor tag ie here. This
<link href="#MYANCHOR"
color="blue"
fontName="Helvetica">is another
link to</link> the same anchor
tag.

This is a link to an anchor tag ie here.
This is another link to the same
anchor tag.

Figure 6-7: anchors and links

The link tag can be used as a reference, but not as an anchor. The a and link hyperlink tags have additional
attributes fontName, fontSize, color & backColor attributes. The hyperlink reference can have a scheme of
http:(external webpage), pdf:(different pdf document) or document:(same pdf document); a missing scheme
is treated as document as is the case when the reference starts with # (in which case the anchor should omit
it). Any other scheme is treated as some kind of URI.

You are hereby
charged that on the 28th
day of May, 1970, you did
willfully, unlawfully,
<strike>and with malice of
forethought</strike>,

publish an alleged
English-Hungarian phrase book
with intent to cause a breach of
the peace. How do you plead?

You are hereby charged that on the
28th day of May, 1970, you did
willfully, unlawfully, and with malice
of forethought,
publish an alleged English-Hungarian
phrase book with intent to cause a
breach of the peace. How do you
plead?

Figure 6-8: Strong, strike, and break tags

The tag

The tag can be used to change the font name, size and text color for any substring within the
paragraph. Legal attributes are size, face, name (which is the same as face), color, and fg (which is
the same as color). The name is the font family name, without any 'bold' or 'italic' suffixes. Colors may be
HTML color names or a hex string encoded in a variety of ways; see reportlab.lib.colors for the
formats allowed.

<font face="times"
color="red">You are hereby
charged that on the 28th
day of May, 1970, you did
willfully, unlawfully, and with malice of
forethought, publish an
alleged English-Hungarian phrase
book with intent to cause a
breach of the peace. How do you
plead?

You are hereby charged that on the
28th day of May, 1970, you did
willfully, unlawfully, and with
malice of forethought, publish
an alleged English-Hungarian phrase
book with intent to cause a breach of
the peace. How do you plead?

Figure 6-9: The font tag

Superscripts and Subscripts

Superscripts and subscripts are supported with the

User Guide Chapter 6 Paragraphs

Page 80

Equation (α):
<greek>e</greek> <super rise=9
size=6><greek>ip</greek></super>
= -1

Equation (α): ε
ιπ

 = -1

Figure 6-10: Greek letters and superscripts

Inline Images

We can embed images in a paragraph with the tag which has attributes src, width, height whose
meanings are obvious. The valign attribute may be set to a css like value from "baseline", "sub", "super",
"top", "text-top", "middle", "bottom", "text-bottom"; the value may also be a numeric percentage or an
absolute value.

<para autoLeading="off"
fontSize=12>This
<img src="../images/testimg.gif"
valign="top"/> is aligned
top.

 This
 <img
src="../images/testimg.gif"
valign="bottom"/> is aligned
bottom.

 This
 <img
src="../images/testimg.gif"
valign="middle"/> is aligned
middle.

 This
 <img
src="../images/testimg.gif"
valign="-4"/> is aligned
-4.

 This
 <img
src="../images/testimg.gif"
valign="+4"/> is aligned
+4.

 This
 <img
src="../images/testimg.gif"
width="10"/> has width
10.

 </para>

This is aligned top.

This is aligned
bottom.

This is aligned
middle.

This is aligned -4.

This is aligned +4.

This has width 10.

Figure 6-11: Inline images

The src attribute can refer to a remote location eg
src="https://www.reportlab.com/images/logo.gif". By default we set
rl_config.trustedShemes to ['https','http', 'file', 'data', 'ftp'] and
rl_config.trustedHosts=None the latter meaning no-restriction. You can modify these variables
using one of the override files eg reportlab_settings.py or ~/.reportlab_settings. Or as
comma separated strings in the environment variables RL_trustedSchemes & RL_trustedHosts.
Note that the trustedHosts values may contain glob wild cars so *.reportlab.com will match the obvious
domains.
NB use of trustedHosts and or trustedSchemes may not control behaviour & actions when URI patterns are
detected by the viewer application.

The <u> & <strike> tags

These tags can be used to carry out explicit underlineing or strikethroughs. These tags have attributes width,
offset, color, gap & kind. The kind attribute controls how many lines will be drawn (default
kind=1) and when kind>1 the gap attribute controls the disatnce between lines.

User Guide Chapter 6 Paragraphs

Page 81

The <nobr> tag

If hyphenation is in operation the <nobr> tag suppresses it so
<nobr>averylongwordthatwontbebroken</nobr> won't be broken.

Numbering Paragraphs and Lists

The <seq> tag provides comprehensive support for numbering lists, chapter headings and so on. It acts as an
interface to the Sequencer class in reportlab.lib.sequencer. These are used to number headings
and figures throughout this document. You may create as many separate 'counters' as you wish, accessed with
the id attribute; these will be incremented by one each time they are accessed. The seqreset tag resets a
counter. If you want it to resume from a number other than 1, use the syntax <seqreset id="mycounter"
base="42">. Let's have a go:

<seq id="spam"/>, <seq
id="spam"/>, <seq id="spam"/>.
Reset<seqreset id="spam"/>. <seq
id="spam"/>, <seq id="spam"/>,
<seq id="spam"/>.

1, 2, 3. Reset. 1, 2, 3.

Figure 6-12: Basic sequences

You can save specifying an ID by designating a counter ID as the default using the <seqdefault
id="Counter"> tag; it will then be used whenever a counter ID is not specified. This saves some typing,
especially when doing multi-level lists; you just change counter ID when stepping in or out a level.

<seqdefault
id="spam"/>Continued... <seq/>,
<seq/>, <seq/>, <seq/>, <seq/>,
<seq/>, <seq/>.

Continued... 4, 5, 6, 7, 8, 9, 10.

Figure 6-13: The default sequence

Finally, one can access multi-level sequences using a variation of Python string formatting and the
template attribute in a <seq> tags. This is used to do the captions in all of the figures, as well as the level
two headings. The substring %(counter)s extracts the current value of a counter without incrementing it;
appending a plus sign as in %(counter)s increments the counter. The figure captions use a pattern like the
one below:

Figure <seq template="%(Chapter)
s-%(FigureNo+)s"/> - Multi-level
templates

Figure 6-1 - Multi-level templates

Figure 6-14: Multi-level templates

We cheated a little - the real document used 'Figure', but the text above uses 'FigureNo' - otherwise we would
have messed up our numbering!

6.4 Bullets and Paragraph Numbering
In addition to the three indent properties, some other parameters are needed to correctly handle bulleted and
numbered lists. We discuss this here because you have now seen how to handle numbering. A paragraph may
have an optional bulletText argument passed to its constructor; alternatively, bullet text may be placed in
a tag at its head. This text will be drawn on the first line of the paragraph, with its x origin determined by the
bulletIndent attribute of the style, and in the font given in the bulletFontName attribute. The
"bullet" may be a single character such as (doh!) a bullet, or a fragment of text such as a number in some
numbering sequence, or even a short title as used in a definition list. Fonts may offer various bullet characters
but we suggest first trying the Unicode bullet (•), which may be written as •, • or (in utf8)
\xe2\x80\xa2):

User Guide Chapter 6 Paragraphs

Page 82

Attribute Synonyms

bulletAnchor anchor, bulletAnchor, bulletanchor

bulletColor bulletColor, bulletcolor, color, fg

bulletFontName bulletFontName, bulletfontname, face, font

bulletFontSize bulletFontSize, bulletfontsize, fontsize, size

bulletIndent bulletIndent, bulletindent, indent

bulletOffsetY bulletOffsetY, bulletoffsety, offsety

Table 6-3 - <bullet> attributes & synonyms

The <bullet> tag is only allowed once in a given paragraph and its use overrides the implied bullet style and
bulletText specified in the Paragraph creation.

• this is a bullet point. Spam
spam spam spam spam spam
spam spam spam spam spam
spam spam spam spam spam
spam spam spam spam spam
spam

alignment = 0
allowOrphans = 0
allowWidows = 1
backColor = None
borderColor = None
borderPadding = 0
borderRadius = None
borderWidth = 0
bulletAnchor = start
bulletFontName = Symbol
bulletFontSize = 10
bulletIndent = 18
embeddedHyphenation = 0
endDots = None
firstLineIndent = 0
fontName = Times-Roman
fontSize = 10
hyphenationLang =
justifyBreaks = 0
justifyLastLine = 0
leading = 12
leftIndent = 54
linkUnderline = 0
rightIndent = 0
spaceAfter = 0
spaceBefore = 0
spaceShrinkage = 0.05
splitLongWords = 1
strikeColor = None
strikeGap = 1
strikeOffset = 0.25*F
strikeWidth =
textColor = Color(0,0,0,1)
textTransform = None
underlineColor = None
underlineGap = 1
underlineOffset = -0.125*F
underlineWidth =
uriWasteReduce = 0
wordWrap = None

Figure 6-15: Basic use of bullet points

Exactly the same technique is used for numbers, except that a sequence tag is used. It is also possible to put a
multi-character string in the bullet; with a deep indent and bold bullet font, you can make a compact
definition list.

User Guide Chapter 6 Paragraphs

Page 83

Chapter 7 Tables and TableStyles
The Table and LongTable classes derive from the Flowable class and are intended as a simple textual
gridding mechanisms. The longTable class uses a greedy algorithm when calculating column widths and is
intended for long tables where speed counts. Table cells can hold anything which can be converted to a
Python string or Flowables (or lists of Flowables).

Our present tables are a trade-off between efficient drawing and specification and functionality. We assume
the reader has some familiarity with HTML tables. In brief, they have the following characteristics:

• They can contain anything convertible to a string; flowable objects such as other tables; or entire
sub-stories

• They can work out the row heights to fit the data if you don't supply the row height. (They can
also work out the widths, but generally it is better for a designer to set the width manually, and it
draws faster).

• They can split across pages if needed (see the canSplit attribute). You can specify that a number
of rows at the top and bottom should be repeated after the split (e.g. show the headers again on
page 2,3,4...)

• They have a simple and powerful notation for specifying shading and gridlines which works
well with financial or database tables, where you don't know the number of rows up front. You
can easily say 'make the last row bold and put a line above it'

• The style and data are separated, so you can declare a handful of table styles and use them for a
family of reports. Styes can also 'inherit', as with paragraphs.

There is however one main limitation compared to an HTML table. They define a simple rectangular grid.
There is no simple row or column spanning; if you need to span cells, you must nest tables inside table cells
instead or use a more complex scheme in which the lead cell of a span contains the actual contents.

Tables are created by passing the constructor an optional sequence of column widths, an optional sequence
of row heights, and the data in row order. Drawing of the table can be controlled by using a TableStyle
instance. This allows control of the color and weight of the lines (if any), and the font, alignment and padding
of the text. A primitive automatic row height and or column width calculation mechanism is provided for.

7.1 Table User Methods
These are the main methods which are of interest to the client programmer.

Table(data, colWidths=None, rowHeights=None, style=None, splitByRow=1,
repeatRows=0, repeatCols=0, rowSplitRange=None, spaceBefore=None,
spaceAfter=None, cornerRadii=None)

The data argument is a sequence of sequences of cell values each of which should be convertible to a string
value using the str function or should be a Flowable instance (such as a Paragraph) or a list (or tuple) of
such instances. If a cell value is a Flowable or list of Flowables these must either have a determined
width or the containing column must have a fixed width. The first row of cell values is in data[0] i.e. the
values are in row order. The i, jth. cell value is in data[i][j]. Newline characters '\n' in cell values
are treated as line split characters and are used at draw time to format the cell into lines.

The other arguments are fairly obvious, the colWidths argument is a sequence of numbers or possibly
None, representing the widths of the columns. The number of elements in colWidths determines the
number of columns in the table. A value of None means that the corresponding column width should be
calculated automatically.

The rowHeights argument is a sequence of numbers or possibly None, representing the heights of the
rows. The number of elements in rowHeights determines the number of rows in the table. A value of
None means that the corresponding row height should be calculated automatically.

The style argument can be an initial style for the table.

The splitByRow argument is only needed for tables both too tall and too wide to fit in the current context.
In this case you must decide whether to 'tile' down and across, or across and then down. This parameter is a
Boolean indicating that the Table should split itself by row before attempting to split itself by column when

User Guide Chapter 7 Tables and TableStyles

Page 84

too little space is available in the current drawing area and the caller wants the Table to split. Splitting a
Table by column is currently not implemented, so setting splitByRow to False will result in a
NotImplementedError.

The repeatRows argument specifies the number or a tuple of leading rows that should be repeated when
the Table is asked to split itself. If it is a tuple it should specify which of the leading rows should be
repeated; this allows for cases where the first appearance of the table hsa more leading rows than later split
parts. The repeatCols argument is currently ignored as a Table cannot be split by column.

The rowSplitRange argument may be used to control the splitting of the table to a subset of its rows; that
can be to prevent splitting too close to the beginning or end of the table.

The spaceBefore & spaceAfter arguments may be used to put extra space before or after the table
when renedered in a platypus story.

The style argument can be an initial style for the table.

The cornerRadii argument can be a list of the top left, top right, bottom left and bottom right radii. A
positive non-zero radius indicates that the corner should be rounded. This argument will override any
ROUNDEDCORNERS command in the argument style list (ie it has pririty).

Table.setStyle(tblStyle)

This method applies a particular instance of class TableStyle (discussed below) to the Table instance.
This is the only way to get tables to appear in a nicely formatted way.

Successive uses of the setStyle method apply the styles in an additive fashion. That is, later applications
override earlier ones where they overlap.

7.2 TableStyle
This class is created by passing it a sequence of commands, each command is a tuple identified by its first
element which is a string; the remaining elements of the command tuple represent the start and stop cell
coordinates of the command and possibly thickness and colors, etc.

7.3 TableStyle User Methods

TableStyle(commandSequence)

The creation method initializes the TableStyle with the argument command sequence as an example:

 LIST_STYLE = TableStyle(
 [('LINEABOVE', (0,0), (-1,0), 2, colors.green),
 ('LINEABOVE', (0,1), (-1,-1), 0.25, colors.black),
 ('LINEBELOW', (0,-1), (-1,-1), 2, colors.green),
 ('ALIGN', (1,1), (-1,-1), 'RIGHT')]
)

TableStyle.add(commandSequence)

This method allows you to add commands to an existing TableStyle, i.e. you can build up
TableStyles in multiple statements.

 LIST_STYLE.add('BACKGROUND', (0,0), (-1,0), colors.Color(0,0.7,0.7))

TableStyle.getCommands()

This method returns the sequence of commands of the instance.

 cmds = LIST_STYLE.getCommands()

User Guide Chapter 7 Tables and TableStyles

Page 85

7.4 TableStyle Commands
The commands passed to TableStyles come in three main groups which affect the table background,
draw lines, or set cell styles.

The first element of each command is its identifier, the second and third arguments determine the cell
coordinates of the box of cells which are affected with negative coordinates counting backwards from the
limit values as in Python indexing. The coordinates are given as (column, row) which follows the spreadsheet
'A1' model, but not the more natural (for mathematicians) 'RC' ordering. The top left cell is (0, 0) the bottom
right is (-1, -1). Depending on the command various extra (???) occur at indices beginning at 3 on.

TableStyle Cell Formatting Commands

The cell formatting commands all begin with an identifier, followed by the start and stop cell definitions and
the perhaps other arguments. the cell formatting commands are:

FONT - takes fontname, optional fontsize and optional leading.
FONTNAME (or FACE) - takes fontname.
FONTSIZE (or SIZE) - takes fontsize in points; leading may get out of sync.
LEADING - takes leading in points.
TEXTCOLOR - takes a color name or (R,G,B) tuple.
ALIGNMENT (or ALIGN) - takes one of LEFT, RIGHT and CENTRE (or CENTER) or DECIMAL.
LEFTPADDING - takes an integer, defaults to 6.
RIGHTPADDING - takes an integer, defaults to 6.
BOTTOMPADDING - takes an integer, defaults to 3.
TOPPADDING - takes an integer, defaults to 3.
BACKGROUND - takes a color defined by an object, string name or numeric tuple/list,
 or takes a list/tuple describing a desired gradient fill which should
 contain three elements of the form [DIRECTION, startColor, endColor]
 where DIRECTION is either VERTICAL or HORIZONTAL.
ROWBACKGROUNDS - takes a list of colors to be used cyclically.
COLBACKGROUNDS - takes a list of colors to be used cyclically.
VALIGN - takes one of TOP, MIDDLE or the default BOTTOM

This sets the background cell color in the relevant cells. The following example shows the BACKGROUND,
and TEXTCOLOR commands in action:

data= [['00', '01', '02', '03', '04'],
 ['10', '11', '12', '13', '14'],
 ['20', '21', '22', '23', '24'],
 ['30', '31', '32', '33', '34']]
t=Table(data)
t.setStyle(TableStyle([('BACKGROUND',(1,1),(-2,-2),colors.green),
 ('TEXTCOLOR',(0,0),(1,-1),colors.red)]))

produces

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

To see the effects of the alignment styles we need some widths and a grid, but it should be easy to see where
the styles come from.

data= [['00', '01', '02', '03', '04'],
 ['10', '11', '12', '13', '14'],
 ['20', '21', '22', '23', '24'],
 ['30', '31', '32', '33', '34']]
t=Table(data,5*[0.4*inch], 4*[0.4*inch])
t.setStyle(TableStyle([('ALIGN',(1,1),(-2,-2),'RIGHT'),
 ('TEXTCOLOR',(1,1),(-2,-2),colors.red),
 ('VALIGN',(0,0),(0,-1),'TOP'),
 ('TEXTCOLOR',(0,0),(0,-1),colors.blue),
 ('ALIGN',(0,-1),(-1,-1),'CENTER'),
 ('VALIGN',(0,-1),(-1,-1),'MIDDLE'),
 ('TEXTCOLOR',(0,-1),(-1,-1),colors.green),
 ('INNERGRID', (0,0), (-1,-1), 0.25, colors.black),

User Guide Chapter 7 Tables and TableStyles

Page 86

 ('BOX', (0,0), (-1,-1), 0.25, colors.black),
]))

produces

00
01 02 03 04

10
11 12 13 14

20
21 22 23 24

30 31 32 33 34

TableStyle Line Commands

Line commands begin with the identifier, the start and stop cell coordinates and always follow this with the
thickness (in points) and color of the desired lines. Colors can be names, or they can be specified as a (R, G,
B) tuple, where R, G and B are floats and (0, 0, 0) is black. The line command names are: GRID, BOX,
OUTLINE, INNERGRID, LINEBELOW, LINEABOVE, LINEBEFORE and LINEAFTER. BOX and
OUTLINE are equivalent, and GRID is the equivalent of applying both BOX and INNERGRID.

We can see some line commands in action with the following example.

data= [['00', '01', '02', '03', '04'],
 ['10', '11', '12', '13', '14'],
 ['20', '21', '22', '23', '24'],
 ['30', '31', '32', '33', '34']]
t=Table(data,style=[('GRID',(1,1),(-2,-2),1,colors.green),
 ('BOX',(0,0),(1,-1),2,colors.red),
 ('LINEABOVE',(1,2),(-2,2),1,colors.blue),
 ('LINEBEFORE',(2,1),(2,-2),1,colors.pink),
])

produces

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

Line commands cause problems for tables when they split; the following example shows a table being split in
various positions

data= [['00', '01', '02', '03', '04'],
 ['10', '11', '12', '13', '14'],
 ['20', '21', '22', '23', '24'],
 ['30', '31', '32', '33', '34']]
t=Table(data,style=[
 ('GRID',(0,0),(-1,-1),0.5,colors.grey),
 ('GRID',(1,1),(-2,-2),1,colors.green),
 ('BOX',(0,0),(1,-1),2,colors.red),
 ('BOX',(0,0),(-1,-1),2,colors.black),
 ('LINEABOVE',(1,2),(-2,2),1,colors.blue),
 ('LINEBEFORE',(2,1),(2,-2),1,colors.pink),
 ('BACKGROUND', (0, 0), (0, 1), colors.pink),
 ('BACKGROUND', (1, 1), (1, 2), colors.lavender),
 ('BACKGROUND', (2, 2), (2, 3), colors.orange),
])

produces

00 01 02 03 04

10 11 12 13 14

User Guide Chapter 7 Tables and TableStyles

Page 87

20 21 22 23 24

30 31 32 33 34

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

When unsplit and split at the first or second row.

Complex Cell Values

As mentioned above we can have complicated cell values including Paragraphs, Images and other
Flowables or lists of the same. To see this in operation consider the following code and the table it
produces. Note that the Image has a white background which will obscure any background you choose for
the cell. To get better results you should use a transparent background.

I = Image('../images/replogo.gif')
I.drawHeight = 1.25*inch*I.drawHeight / I.drawWidth
I.drawWidth = 1.25*inch
P0 = Paragraph('''
 A para<i>graph</i>
 <super>1</super>''',
 styleSheet["BodyText"])
P = Paragraph('''
 <para align=center spaceb=3>The ReportLab Left
 Logo
 Image</para>''',
 styleSheet["BodyText"])
data= [['A', 'B', 'C', P0, 'D'],
 ['00', '01', '02', [I,P], '04'],
 ['10', '11', '12', [P,I], '14'],
 ['20', '21', '22', '23', '24'],
 ['30', '31', '32', '33', '34']]

t=Table(data,style=[('GRID',(1,1),(-2,-2),1,colors.green),
 ('BOX',(0,0),(1,-1),2,colors.red),
 ('LINEABOVE',(1,2),(-2,2),1,colors.blue),
 ('LINEBEFORE',(2,1),(2,-2),1,colors.pink),
 ('BACKGROUND', (0, 0), (0, 1), colors.pink),
 ('BACKGROUND', (1, 1), (1, 2), colors.lavender),
 ('BACKGROUND', (2, 2), (2, 3), colors.orange),
 ('BOX',(0,0),(-1,-1),2,colors.black),
 ('GRID',(0,0),(-1,-1),0.5,colors.black),
 ('VALIGN',(3,0),(3,0),'BOTTOM'),
 ('BACKGROUND',(3,0),(3,0),colors.limegreen),
 ('BACKGROUND',(3,1),(3,1),colors.khaki),
 ('ALIGN',(3,1),(3,1),'CENTER'),
 ('BACKGROUND',(3,2),(3,2),colors.beige),
 ('ALIGN',(3,2),(3,2),'LEFT'),
])

t._argW[3]=1.5*inch

produces

A B C A paragraph 1 D

User Guide Chapter 7 Tables and TableStyles

Page 88

00 01 02
The ReportLab Left

Logo Image 04

10 11 12

The ReportLab Left
Logo Image

14

20 21 22 23 24

30 31 32 33 34

TableStyle Span Commands

Our Table classes support the concept of spanning, but it isn't specified in the same way as html. The style
specification

SPAN, (sc,sr), (ec,er)

indicates that the cells in columns sc - ec and rows sr - er should be combined into a super cell with
contents determined by the cell (sc, sr). The other cells should be present, but should contain empty
strings or you may get unexpected results.

data= [['Top\nLeft', '', '02', '03', '04'],
 ['', '', '12', '13', '14'],
 ['20', '21', '22', 'Bottom\nRight', ''],
 ['30', '31', '32', '', '']]
t=Table(data,style=[
 ('GRID',(0,0),(-1,-1),0.5,colors.grey),
 ('BACKGROUND',(0,0),(1,1),colors.palegreen),
 ('SPAN',(0,0),(1,1)),
 ('BACKGROUND',(-2,-2),(-1,-1), colors.pink),
 ('SPAN',(-2,-2),(-1,-1)),
])

produces

Top
Left

02 03 04

12 13 14

20 21 22
Bottom
Right30 31 32

notice that we don't need to be conservative with our GRID command. The spanned cells are not drawn
through.

TableStyle Miscellaneous Commands

To control Table splitting the NOSPLIT command may be used The style specification

NOSPLIT, (sc,sr), (ec,er)

demands that the cells in columns sc - ec and rows sr - er may not be split.

User Guide Chapter 7 Tables and TableStyles

Page 89

To control Table corner rounding the ROUNDEDCORNERS command may be used The style specification

ROUNDEDCORNERS, [tl, tr, bl, br]

specifies the radii of the top left, top right, bottom left and bottom right. A value of 0 indicates a square
corner. replace the whole array by None to turn off all rounding.
Borders at a rounded corner are curved by an octant.

Special TableStyle Indeces

In any style command the first row index may be set to one of the special strings 'splitlast' or
'splitfirst' to indicate that the style should be used only for the last row of a split table, or the first row
of a continuation. This allows splitting tables with nicer effects around the split.

User Guide Chapter 7 Tables and TableStyles

Page 90

Chapter 8 Programming Flowables
The following flowables let you conditionally evaluate and execute expressions and statements at wrap time:

8.1 DocAssign(self, var, expr, life='forever')
Assigns a variable of name var to the expression expr. E.g.:

DocAssign('i',3)

8.2 DocExec(self, stmt, lifetime='forever')
Executes the statement stmt. E.g.:

DocExec('i-=1')

8.3 DocPara(self, expr, format=None, style=None,
klass=None, escape=True)

Creates a paragraph with the value of expr as text. If format is specified it should use %(__expr__)s for string
interpolation of the expression expr (if any). It may also use %(name)s interpolations for other variables in the
namespace. E.g.:

DocPara('i',format='The value of i is %(__expr__)d',style=normal)

8.4 DocAssert(self, cond, format=None)
Raises an AssertionError containing the format string if cond evaluates as False.

DocAssert(val, 'val is False')

8.5 DocIf(self, cond, thenBlock, elseBlock=[])
If cond evaluates as True, this flowable is replaced by the thenBlock elsethe elseBlock.

DocIf('i>3',Paragraph('The value of i is larger than 3',normal),\
 Paragraph('The value of i is not larger than 3',normal))

8.6 DocWhile(self, cond, whileBlock)
Runs the whileBlock while cond evaluates to True. E.g.:

DocAssign('i',5)
DocWhile('i',[DocPara('i',format='The value of i is %(__expr__)d',style=normal),DocExec('i-=1')])

This example produces a set of paragraphs of the form:

The value of i is 5
The value of i is 4
The value of i is 3
The value of i is 2
The value of i is 1

User Guide Chapter 8 Programming Flowables

Page 91

Chapter 9 Other Useful Flowables

9.1 Preformatted(text, style, bulletText=None,
dedent=0, maxLineLength=None, splitChars=None,
newLineChars=None)

Creates a preformatted paragraph which does no wrapping, line splitting or other manipulations. No XML
style tags are taken account of in the text. If dedent is non zero dedent common leading spaces will be
removed from the front of each line.

Defining a maximum line length

You can use the property maxLineLength to define a maximum line length. If a line length exceeds this
maximum value, the line will be automatically splitted.

The line will be split on any single character defined in splitChars. If no value is provided for this
property, the line will be split on any of the following standard characters: space, colon, full stop, semi-colon,
coma, hyphen, forward slash, back slash, left parenthesis, left square bracket and left curly brace

Characters can be automatically inserted at the beginning of each line that has been created. You can set the
property newLineChars to the characters you want to use.

from reportlab.lib.styles import getSampleStyleSheet
stylesheet=getSampleStyleSheet()
normalStyle = stylesheet['Code']
text='''
class XPreformatted(Paragraph):
 def __init__(self, text, style, bulletText = None, frags=None, caseSensitive=1):
 self.caseSensitive = caseSensitive
 if maximumLineLength and text:
 text = self.stopLine(text, maximumLineLength, splitCharacters)
 cleaner = lambda text, dedent=dedent: ''.join(_dedenter(text or '',dedent))
 self._setup(text, style, bulletText, frags, cleaner)
'''
t=Preformatted(text,normalStyle,maxLineLength=60, newLineChars='> ')

produces
class XPreformatted(Paragraph):
 def __init__(self, text, style, bulletText = None,
> frags=None, caseSensitive=1):
 self.caseSensitive = caseSensitive
 if maximumLineLength and text:
 text = self.stopLine(text, maximumLineLength,
> splitCharacters)
 cleaner = lambda text, dedent=dedent: ''.join(
> _dedenter(text or '',dedent))
 self._setup(text, style, bulletText, frags, cleaner)

9.2 XPreformatted(text, style, bulletText=None,
dedent=0, frags=None)

This is a non rearranging form of the Paragraph class; XML tags are allowed in text and have the same
meanings as for the Paragraph class. As for Preformatted, if dedent is non zero dedent common
leading spaces will be removed from the front of each line.

from reportlab.lib.styles import getSampleStyleSheet
stylesheet=getSampleStyleSheet()
normalStyle = stylesheet['Code']
text='''

 This is a non rearranging form of the Paragraph class;
 XML tags are allowed in <i>text</i> and have the same

 meanings as for the Paragraph class.
 As for Preformatted, if dedent is non zero dedent

User Guide Chapter 9 Other Useful Flowables

Page 92

 common leading spaces will be removed from the
 front of each line.
 You can have &amp; style entities as well for & < > and ".

'''
t=XPreformatted(text,normalStyle,dedent=3)

produces
This is a non rearranging form of the Paragraph class;
XML tags are allowed in text and have the same

 meanings as for the Paragraph class.
As for Preformatted, if dedent is non zero dedent
 common leading spaces will be removed from the
front of each line.
You can have & style entities as well for & < > and ".

9.3 Image(filename, width=None, height=None)
Create a flowable which will contain the image defined by the data in file filename which can be filepath,
file like object or an instance of a reportlab.graphics.shapes.Drawing. The default PDF image
type jpeg is supported and if the PIL extension to Python is installed the other image types can also be
handled. If width and or height are specified then they determine the dimension of the displayed image in
points. If either dimension is not specified (or specified as None) then the corresponding pixel dimension of
the image is assumed to be in points and used.

Image("lj8100.jpg")

will display as

whereas

im = Image("lj8100.jpg", width=2*inch, height=2*inch)
im.hAlign = 'CENTER'

produces

User Guide Chapter 9 Other Useful Flowables

Page 93

9.4 Spacer(width, height)
This does exactly as would be expected; it adds a certain amount of space into the story. At present this only
works for vertical space.

9.5 PageBreak()
This Flowable represents a page break. It works by effectively consuming all vertical space given to it.
This is sufficient for a single Frame document, but would only be a frame break for multiple frames so the
BaseDocTemplate mechanism detects pageBreaks internally and handles them specially.

9.6 CondPageBreak(height)
This Flowable attempts to force a Frame break if insufficient vertical space remains in the current Frame.
It is thus probably wrongly named and should probably be renamed as CondFrameBreak.

9.7 KeepTogether(flowables)
This compound Flowable takes a list of Flowables and attempts to keep them in the same Frame. If the
total height of the Flowables in the list flowables exceeds the current frame's available space then all
the space is used and a frame break is forced.

9.8 TableOfContents()
A table of contents can be generated by using the TableOfContents flowable. The following steps are
needed to add a table of contents to your document:

Create an instance of TableOfContents. Override the level styles (optional) and add the object to the
story:

toc = TableOfContents()
PS = ParagraphStyle
toc.levelStyles = [
 PS(fontName='Times-Bold', fontSize=14, name='TOCHeading1',
 leftIndent=20, firstLineIndent=-20, spaceBefore=5, leading=16),
 PS(fontSize=12, name='TOCHeading2',
 leftIndent=40, firstLineIndent=-20, spaceBefore=0, leading=12),
 PS(fontSize=10, name='TOCHeading3',
 leftIndent=60, firstLineIndent=-20, spaceBefore=0, leading=12),
 PS(fontSize=10, name='TOCHeading4',
 leftIndent=100, firstLineIndent=-20, spaceBefore=0, leading=12),
]
story.append(toc)

Entries to the table of contents can be done either manually by calling the addEntry method on the
TableOfContents object or automatically by sending a 'TOCEntry' notification in the
afterFlowable method of the DocTemplate you are using. The data to be passed to notify is a list
of three or four items countaining a level number, the entry text, the page number and an optional destination
key which the entry should point to. This list will usually be created in a document template's method like
afterFlowable(), making notification calls using the notify() method with appropriate data like this:

def afterFlowable(self, flowable):
 """Detect Level 1 and 2 headings, build outline,
 and track chapter title."""
 if isinstance(flowable, Paragraph):
 txt = flowable.getPlainText()
 if style == 'Heading1':
 # ...
 self.notify('TOCEntry', (0, txt, self.page))
 elif style == 'Heading2':
 # ...
 key = 'h2-%s' % self.seq.nextf('heading2')
 self.canv.bookmarkPage(key)
 self.notify('TOCEntry', (1, txt, self.page, key))
 # ...

User Guide Chapter 9 Other Useful Flowables

Page 94

This way, whenever a paragraph of style 'Heading1' or 'Heading2' is added to the story, it will appear
in the table of contents. Heading2 entries will be clickable because a bookmarked key has been supplied.

Finally you need to use the multiBuild method of the DocTemplate because tables of contents need
several passes to be generated:

doc.multiBuild(story)

Below is a simple but working example of a document with a table of contents:

from reportlab.lib.styles import ParagraphStyle as PS
from reportlab.platypus import PageBreak
from reportlab.platypus.paragraph import Paragraph
from reportlab.platypus.doctemplate import PageTemplate, BaseDocTemplate
from reportlab.platypus.tableofcontents import TableOfContents
from reportlab.platypus.frames import Frame
from reportlab.lib.units import cm

class MyDocTemplate(BaseDocTemplate):

 def __init__(self, filename, **kw):
 self.allowSplitting = 0
 BaseDocTemplate.__init__(self, filename, **kw)
 template = PageTemplate('normal', [Frame(2.5*cm, 2.5*cm, 15*cm, 25*cm, id='F1')])
 self.addPageTemplates(template)

 def afterFlowable(self, flowable):
 "Registers TOC entries."
 if flowable.__class__.__name__ == 'Paragraph':
 text = flowable.getPlainText()
 style = flowable.style.name
 if style == 'Heading1':
 self.notify('TOCEntry', (0, text, self.page))
 if style == 'Heading2':
 self.notify('TOCEntry', (1, text, self.page))

h1 = PS(name = 'Heading1',
 fontSize = 14,
 leading = 16)

h2 = PS(name = 'Heading2',
 fontSize = 12,
 leading = 14,
 leftIndent = delta)

Build story.
story = []
toc = TableOfContents()
For conciseness we use the same styles for headings and TOC entries
toc.levelStyles = [h1, h2]
story.append(toc)
story.append(PageBreak())
story.append(Paragraph('First heading', h1))
story.append(Paragraph('Text in first heading', PS('body')))
story.append(Paragraph('First sub heading', h2))
story.append(Paragraph('Text in first sub heading', PS('body')))
story.append(PageBreak())
story.append(Paragraph('Second sub heading', h2))
story.append(Paragraph('Text in second sub heading', PS('body')))
story.append(Paragraph('Last heading', h1))

doc = MyDocTemplate('mintoc.pdf')
doc.multiBuild(story)

9.9 SimpleIndex()
An index can be generated by using the SimpleIndex flowable. The following steps are needed to add an
index to your document:

Use the index tag in paragraphs to index terms:

story = []

User Guide Chapter 9 Other Useful Flowables

Page 95

...

story.append('The third <index item="word" />word of this paragraph is indexed.')

Create an instance of SimpleIndex and add it to the story where you want it to appear:

index = SimpleIndex(dot=' . ', headers=headers)
story.append(index)

The parameters which you can pass into the SimpleIndex constructor are explained in the reportlab reference.
Now, build the document by using the canvas maker returned by SimpleIndex.getCanvasMaker():

doc.build(story, canvasmaker=index.getCanvasMaker())

To build an index with multiple levels, pass a comma-separated list of items to the item attribute of an index
tag:

<index item="terma,termb,termc" />
<index item="terma,termd" />

terma will respresent the top-most level and termc the most specific term. termd and termb will appear in the
same level inside terma.

If you need to index a term containing a comma, you will need to escape it by doubling it. To avoid the
ambiguity of three consecutive commas (an escaped comma followed by a list separator or a list separator
followed by an escaped comma?) introduce a space in the right position. Spaces at the beginning or end of
terms will be removed.

<index item="comma(,,), ,, ,... " />

This indexes the terms "comma (,)", "," and "...".

9.10 ListFlowable(),ListItem()
Use these classes to make ordered and unordered lists. Lists can be nested.

ListFlowable() will create an ordered list, which can contain any flowable. The class has a number of
parameters to change font, colour, size, style and position of list numbers, or of bullets in unordered lists. The
type of numbering can also be set to use lower or upper case letters ('A,B,C' etc.) or Roman numerals (capitals
or lowercase) using the bulletType property. To change the list to an unordered type, set bulletType='bullet'.

Items within a ListFlowable() list can be changed from their default appearance by wrapping them in a
ListItem() class and setting its properties.

The following will create an ordered list, and set the third item to an unordered sublist.

from reportlab.platypus import ListFlowable, ListItem
from reportlab.lib.styles import getSampleStyleSheet
styles = getSampleStyleSheet()
style = styles["Normal"]
t = ListFlowable(
[
Paragraph("Item no.1", style),
ListItem(Paragraph("Item no. 2", style),bulletColor="green",value=7),
ListFlowable(
 [
 Paragraph("sublist item 1", style),
 ListItem(Paragraph('sublist item 2', style),bulletColor='red',value='square')
],
 bulletType='bullet',
 start='square',
),
Paragraph("Item no.4", style),
],
bulletType='i'
)

produces

i Item no.1

User Guide Chapter 9 Other Useful Flowables

Page 96

vii Item no. 2
viii ■ sublist item 1

■ sublist item 2
ix Item no.4

To cope with nesting the start parameter can be set to a list of possible starts; for ul acceptable starts are
any unicode character or specific names known to flowables.py eg bulletchar, circle, square,
disc, diamond, diamondwx, rarrowhead, sparkle, squarelrs or blackstar. For ol the
start can be any character from '1iaAI' to indicate different number styles.

9.11 BalancedColumns()
Use the BalancedColumns class to make a flowable that splits its content flowables into two or more
roughly equal sized columns. Effectively n frames are synthesized to take the content and the flowable tries
to balance the content between them. The created frames will be split when the total height is too large and
the split will maintain the balance.

from reportlab.platypus.flowables import BalancedColumns
from reportlab.platypus.frames import ShowBoundaryValue
F = [
 list of flowables........
]
story.append(
 Balanced(
 F, #the flowables we are balancing
 nCols = 2, #the number of columns
 needed = 72,#the minimum space needed by the flowable
 spacBefore = 0,
 spaceAfter = 0,
 showBoundary = None, #optional boundary showing
 leftPadding=None, #these override the created frame
 rightPadding=None, #paddings if specified else the
 topPadding=None, #default frame paddings
 bottomPadding=None, #are used
 innerPadding=None, #the gap between frames if specified else
 #use max(leftPadding,rightPadding)
 name='', #for identification purposes when stuff goes awry
 endSlack=0.1, #height disparity allowance ie 10% of available height
)
)

User Guide Chapter 9 Other Useful Flowables

Page 97

Chapter 10 Writing your own Flowable Objects
Flowables are intended to be an open standard for creating reusable report content, and you can easily create
your own objects. We hope that over time we will build up a library of contributions, giving reportlab users a
rich selection of charts, graphics and other "report widgets" they can use in their own reports. This section
shows you how to create your own flowables.
we should put the Figure class in the standard library, as it is a very useful base.

10.1 A very simple Flowable
Recall the hand function from the pdfgen section of this user guide which generated a drawing of a hand as
a closed figure composed from Bezier curves.

Figure 10-1: a hand

To embed this or any other drawing in a Platypus flowable we must define a subclass of Flowable with at
least a wrap method and a draw method.

from reportlab.platypus.flowables import Flowable
from reportlab.lib.colors import tan, green
class HandAnnotation(Flowable):
 '''A hand flowable.'''
 def __init__(self, xoffset=0, size=None, fillcolor=tan, strokecolor=green):
 from reportlab.lib.units import inch
 if size is None: size=4*inch
 self.fillcolor, self.strokecolor = fillcolor, strokecolor
 self.xoffset = xoffset
 self.size = size
 # normal size is 4 inches
 self.scale = size/(4.0*inch)
 def wrap(self, *args):
 return (self.xoffset, self.size)
 def draw(self):
 canvas = self.canv
 canvas.setLineWidth(6)
 canvas.setFillColor(self.fillcolor)
 canvas.setStrokeColor(self.strokecolor)
 canvas.translate(self.xoffset+self.size,0)
 canvas.rotate(90)
 canvas.scale(self.scale, self.scale)
 hand(canvas, debug=0, fill=1)

The wrap method must provide the size of the drawing -- it is used by the Platypus mainloop to decide
whether this element fits in the space remaining on the current frame. The draw method performs the

User Guide Chapter 10 Writing your own Flowable Objects

Page 98

drawing of the object after the Platypus mainloop has translated the (0,0) origin to an appropriate location
in an appropriate frame.

Below are some example uses of the HandAnnotation flowable.

The default.

Just one inch high.

One inch high and shifted to the left with blue and cyan.

10.2 Modifying a Built in Flowable
To modify an existing flowable, you should create a derived class and override the methods you need to
change to get the desired behaviour

As an example to create a rotated image you need to override the wrap and draw methods of the existing
Image class

class RotatedImage(Image):
 def wrap(self,availWidth,availHeight):
 h, w = Image.wrap(self,availHeight,availWidth)
 return w, h
 def draw(self):
 self.canv.rotate(90)

User Guide Chapter 10 Writing your own Flowable Objects

Page 99

 Image.draw(self)
I = RotatedImage('../images/replogo.gif')
I.hAlign = 'CENTER'

produces

User Guide Chapter 10 Writing your own Flowable Objects

Page 100

Chapter 11 Graphics

11.1 Introduction
ReportLab Graphics is one of the sub-packages to the ReportLab library. It started off as a stand-alone set of
programs, but is now a fully integrated part of the ReportLab toolkit that allows you to use its powerful
charting and graphics features to improve your PDF forms and reports.

11.2 General Concepts
In this section we will present some of the more fundamental principles of the graphics library, which will
show-up later in various places.

Drawings and Renderers

A Drawing is a platform-independent description of a collection of shapes. It is not directly associated with
PDF, Postscript or any other output format. Fortunately, most vector graphics systems have followed the
Postscript model and it is possible to describe shapes unambiguously.

A drawing contains a number of primitive Shapes. Normal shapes are those widely known as rectangles,
circles, lines, etc. One special (logic) shape is a Group, which can hold other shapes and apply a
transformation to them. Groups represent composites of shapes and allow to treat the composite as if it were a
single shape. Just about anything can be built up from a small number of basic shapes.

The package provides several Renderers which know how to draw a drawing into different formats. These
include PDF (renderPDF), Postscript (renderPS), and bitmap output (renderPM). The bitmap renderer uses
Raph Levien's libart rasterizer and Fredrik Lundh's Python Imaging Library (PIL). The SVG renderer makes
use of Python's standard library XML modules, so you don't need to install the XML-SIG's additional
package named PyXML. If you have the right extensions installed, you can generate drawings in bitmap form
for the web as well as vector form for PDF documents, and get "identical output".

The PDF renderer has special "privileges" - a Drawing object is also a Flowable and, hence, can be placed
directly in the story of any Platypus document, or drawn directly on a Canvas with one line of code. In
addition, the PDF renderer has a utility function to make a one-page PDF document quickly.

The SVG renderer is special as it is still pretty experimental. The SVG code it generates is not really
optimised in any way and maps only the features available in ReportLab Graphics (RLG) to SVG. This means
there is no support for SVG animation, interactivity, scripting or more sophisticated clipping, masking or
graduation shapes. So, be careful, and please report any bugs you find!

Coordinate System

The Y-direction in our X-Y coordinate system points from the bottom up. This is consistent with PDF,
Postscript and mathematical notation. It also appears to be more natural for people, especially when working
with charts. Note that in other graphics models (such as SVG) the Y-coordinate points down. For the SVG
renderer this is actually no problem as it will take your drawings and flip things as needed, so your SVG
output looks just as expected.

The X-coordinate points, as usual, from left to right. So far there doesn't seem to be any model advocating the
opposite direction - at least not yet (with interesting exceptions, as it seems, for Arabs looking at time series
charts...).

Getting Started

Let's create a simple drawing containing the string "Hello World" and some special characters, displayed on
top of a coloured rectangle. After creating it we will save the drawing to a standalone PDF file.

 from reportlab.lib import colors
 from reportlab.graphics.shapes import *

User Guide Chapter 11 Graphics

Page 101

 d = Drawing(400, 200)
 d.add(Rect(50, 50, 300, 100, fillColor=colors.yellow))
 d.add(String(150,100, 'Hello World', fontSize=18, fillColor=colors.red))
 d.add(String(180,86, 'Special characters \
 \xc2\xa2\xc2\xa9\xc2\xae\xc2\xa3\xce\xb1\xce\xb2',
 fillColor=colors.red))

 from reportlab.graphics import renderPDF
 renderPDF.drawToFile(d, 'example1.pdf', 'My First Drawing')

This will produce a PDF file containing the following graphic:

Hello World

Special characters ¢©®£αβ

Figure 11-1: 'Hello World'

Each renderer is allowed to do whatever is appropriate for its format, and may have whatever API is needed.
If it refers to a file format, it usually has a drawToFile function, and that's all you need to know about the
renderer. Let's save the same drawing in Encapsulated Postscript format:

 from reportlab.graphics import renderPS
 renderPS.drawToFile(d, 'example1.eps')

This will produce an EPS file with the identical drawing, which may be imported into publishing tools such as
Quark Express. If we wanted to generate the same drawing as a bitmap file for a website, say, all we need to
do is write code like this:

 from reportlab.graphics import renderPM
 renderPM.drawToFile(d, 'example1.png', 'PNG')

Many other bitmap formats, like GIF, JPG, TIFF, BMP and PPN are genuinely available, making it unlikely
you'll need to add external postprocessing steps to convert to the final format you need.

To produce an SVG file containing the identical drawing, which may be imported into graphical editing tools
such as Illustrator all we need to do is write code like this:

 from reportlab.graphics import renderSVG
 renderSVG.drawToFile(d, 'example1.svg')

Attribute Verification

Python is very dynamic and lets us execute statements at run time that can easily be the source for unexpected
behaviour. One subtle 'error' is when assigning to an attribute that the framework doesn't know about because
the used attribute's name contains a typo. Python lets you get away with it (adding a new attribute to an
object, say), but the graphics framework will not detect this 'typo' without taking special counter-measures.

There are two verification techniques to avoid this situation. The default is for every object to check every
assignment at run time, such that you can only assign to 'legal' attributes. This is what happens by default. As

User Guide Chapter 11 Graphics

Page 102

this imposes a small performance penalty, this behaviour can be turned off when you need it to be.

>>> r = Rect(10,10,200,100, fillColor=colors.red)
>>>
>>> r.fullColor = colors.green # note the typo
>>> r.x = 'not a number' # illegal argument type
>>> del r.width # that should confuse it

These statements would be caught by the compiler in a statically typed language, but Python lets you get
away with it. The first error could leave you staring at the picture trying to figure out why the colors were
wrong. The second error would probably become clear only later, when some back-end tries to draw the
rectangle. The third, though less likely, results in an invalid object that would not know how to draw itself.

>>> r = shapes.Rect(10,10,200,80)
>>> r.fullColor = colors.green
Traceback (most recent call last):
 File "<interactive input>", line 1, in ?
 File "C:\code\users\andy\graphics\shapes.py", line 254, in __setattr__
 validateSetattr(self,attr,value) #from reportlab.lib.attrmap
 File "C:\code\users\andy\lib\attrmap.py", line 74, in validateSetattr
 raise AttributeError, "Illegal attribute '%s' in class %s" % (name, obj.__class__.__name__)
AttributeError: Illegal attribute 'fullColor' in class Rect
>>>

This imposes a performance penalty, so this behaviour can be turned off when you need it to be. To do this,
you should use the following lines of code before you first import reportlab.graphics.shapes:

>>> import reportlab.rl_config
>>> reportlab.rl_config.shapeChecking = 0
>>> from reportlab.graphics import shapes
>>>

Once you turn off shapeChecking, the classes are actually built without the verification hook; code
should get faster, then. Currently the penalty seems to be about 25% on batches of charts, so it is hardly worth
disabling. However, if we move the renderers to C in future (which is eminently possible), the remaining 75%
would shrink to almost nothing and the saving from verification would be significant.

Each object, including the drawing itself, has a verify() method. This either succeeds, or raises an
exception. If you turn off automatic verification, then you should explicitly call verify() in testing when
developing the code, or perhaps once in a batch process.

Property Editing

A cornerstone of the reportlab/graphics which we will cover below is that you can automatically document
widgets. This means getting hold of all of their editable properties, including those of their subcomponents.

Another goal is to be able to create GUIs and config files for drawings. A generic GUI can be built to show all
editable properties of a drawing, and let you modify them and see the results. The Visual Basic or Delphi
development environment are good examples of this kind of thing. In a batch charting application, a file could
list all the properties of all the components in a chart, and be merged with a database query to make a batch of
charts.

To support these applications we have two interfaces, getProperties and setProperties, as well as
a convenience method dumpProperties. The first returns a dictionary of the editable properties of an
object; the second sets them en masse. If an object has publicly exposed 'children' then one can recursively set
and get their properties too. This will make much more sense when we look at Widgets later on, but we need
to put the support into the base of the framework.

>>> r = shapes.Rect(0,0,200,100)
>>> import pprint
>>> pprint.pprint(r.getProperties())
{'fillColor': Color(0.00,0.00,0.00),
 'height': 100,
 'rx': 0,
 'ry': 0,
 'strokeColor': Color(0.00,0.00,0.00),
 'strokeDashArray': None,

User Guide Chapter 11 Graphics

Page 103

 'strokeLineCap': 0,
 'strokeLineJoin': 0,
 'strokeMiterLimit': 0,
 'strokeWidth': 1,
 'width': 200,
 'x': 0,
 'y': 0}
>>> r.setProperties({'x':20, 'y':30, 'strokeColor': colors.red})
>>> r.dumpProperties()
fillColor = Color(0.00,0.00,0.00)
height = 100
rx = 0
ry = 0
strokeColor = Color(1.00,0.00,0.00)
strokeDashArray = None
strokeLineCap = 0
strokeLineJoin = 0
strokeMiterLimit = 0
strokeWidth = 1
width = 200
x = 20
y = 30
>>>

Note: pprint is the standard Python library module that allows you to 'pretty print' output over multiple
lines rather than having one very long line.

These three methods don't seem to do much here, but as we will see they make our widgets framework much
more powerful when dealing with non-primitive objects.

Naming Children

You can add objects to the Drawing and Group objects. These normally go into a list of contents.
However, you may also give objects a name when adding them. This allows you to refer to and possibly
change any element of a drawing after constructing it.

>>> d = shapes.Drawing(400, 200)
>>> s = shapes.String(10, 10, 'Hello World')
>>> d.add(s, 'caption')
>>> s.caption.text
'Hello World'
>>>

Note that you can use the same shape instance in several contexts in a drawing; if you choose to use the same
Circle object in many locations (e.g. a scatter plot) and use different names to access it, it will still be a
shared object and the changes will be global.

This provides one paradigm for creating and modifying interactive drawings.

11.3 Charts
The motivation for much of this is to create a flexible chart package. This section presents a treatment of the
ideas behind our charting model, what the design goals are and what components of the chart package already
exist.

Design Goals

Here are some of the design goals:

Make simple top-level use really simple

It should be possible to create a simple chart with minimum lines of code, yet have it 'do the right
things' with sensible automatic settings. The pie chart snippets above do this. If a real chart has many
subcomponents, you still should not need to interact with them unless you want to customize what
they do.

Allow precise positioning

User Guide Chapter 11 Graphics

Page 104

An absolute requirement in publishing and graphic design is to control the placing and style of every
element. We will try to have properties that specify things in fixed sizes and proportions of the
drawing, rather than having automatic resizing. Thus, the 'inner plot rectangle' will not magically
change when you make the font size of the y labels bigger, even if this means your labels can spill
out of the left edge of the chart rectangle. It is your job to preview the chart and choose sizes and
spaces which will work.

Some things do need to be automatic. For example, if you want to fit N bars into a 200 point space
and don't know N in advance, we specify bar separation as a percentage of the width of a bar rather
than a point size, and let the chart work it out. This is still deterministic and controllable.

Control child elements individually or as a group

We use smart collection classes that let you customize a group of things, or just one of them. For
example you can do this in our experimental pie chart:

d = Drawing(400,200)
pc = Pie()
pc.x = 150
pc.y = 50
pc.data = [10,20,30,40,50,60]
pc.labels = ['a','b','c','d','e','f']
pc.slices.strokeWidth=0.5
pc.slices[3].popout = 20
pc.slices[3].strokeWidth = 2
pc.slices[3].strokeDashArray = [2,2]
pc.slices[3].labelRadius = 1.75
pc.slices[3].fontColor = colors.red
d.add(pc, '')

pc.slices[3] actually lazily creates a little object which holds information about the slice in question;
this will be used to format a fourth slice at draw-time if there is one.

Only expose things you should change

It would be wrong from a statistical viewpoint to let you directly adjust the angle of one of the pie
slices in the above example, since that is determined by the data. So not everything will be exposed
through the public properties. There may be 'back doors' to let you violate this when you really need
to, or methods to provide advanced functionality, but in general properties will be orthogonal.

Composition and component based

Charts are built out of reusable child widgets. A Legend is an easy-to-grasp example. If you need a
specialized type of legend (e.g. circular colour swatches), you should subclass the standard Legend
widget. Then you could either do something like...

c = MyChartWithLegend()
c.legend = MyNewLegendClass() # just change it
c.legend.swatchRadius = 5 # set a property only relevant to the new one
c.data = [10,20,30] # and then configure as usual...

...or create/modify your own chart or drawing class which creates one of these by default. This is
also very relevant for time series charts, where there can be many styles of x axis.

Top level chart classes will create a number of such components, and then either call methods or set
private properties to tell them their height and position - all the stuff which should be done for you
and which you cannot customise. We are working on modelling what the components should be and
will publish their APIs here as a consensus emerges.

Multiples

A corollary of the component approach is that you can create diagrams with multiple charts, or
custom data graphics. Our favourite example of what we are aiming for is the weather report in our
gallery contributed by a user; we'd like to make it easy to create such drawings, hook the building
blocks up to their legends, and feed that data in a consistent way.

(If you want to see the image, it is available on our website here)

User Guide Chapter 11 Graphics

Page 105

https://www.reportlab.com/media/imadj/data/RLIMG_e5e5cb85cc0a555f5433528ac38c5884.PDF

Overview

A chart or plot is an object which is placed on a drawing; it is not itself a drawing. You can thus control where
it goes, put several on the same drawing, or add annotations.

Charts have two axes; axes may be Value or Category axes. Axes in turn have a Labels property which lets
you configure all text labels or each one individually. Most of the configuration details which vary from chart
to chart relate to axis properties, or axis labels.

Objects expose properties through the interfaces discussed in the previous section; these are all optional and
are there to let the end user configure the appearance. Things which must be set for a chart to work, and
essential communication between a chart and its components, are handled through methods.

You can subclass any chart component and use your replacement instead of the original provided you
implement the essential methods and properties.

11.4 Labels
A label is a string of text attached to some chart element. They are used on axes, for titles or alongside axes,
or attached to individual data points. Labels may contain newline characters, but only one font.

The text and 'origin' of a label are typically set by its parent object. They are accessed by methods rather than
properties. Thus, the X axis decides the 'reference point' for each tickmark label and the numeric or date text
for each label. However, the end user can set properties of the label (or collection of labels) directly to affect
its position relative to this origin and all of its formatting.

from reportlab.graphics import shapes
from reportlab.graphics.charts.textlabels import Label

d = Drawing(200, 100)

mark the origin of the label
d.add(Circle(100,90, 5, fillColor=colors.green))

lab = Label()
lab.setOrigin(100,90)
lab.boxAnchor = 'ne'
lab.angle = 45
lab.dx = 0
lab.dy = -20
lab.boxStrokeColor = colors.green
lab.setText('Some
Multi-Line
Label')

d.add(lab)

Som
e

M
ult

i-L
ine

Lab
el

Figure 11-2: Label example

In the drawing above, the label is defined relative to the green blob. The text box should have its north-east
corner ten points down from the origin, and be rotated by 45 degrees about that corner.

At present labels have the following properties, which we believe are sufficient for all charts we have seen to
date:

Property Meaning

User Guide Chapter 11 Graphics

Page 106

dx The label's x displacement.

dy The label's y displacement.

angle The angle of rotation (counterclockwise) applied to the label.

boxAnchor The label's box anchor, one of 'n', 'e', 'w', 's', 'ne', 'nw', 'se', 'sw'.

textAnchor The place where to anchor the label's text, one of 'start', 'middle', 'end'.

boxFillColor The fill color used in the label's box.

boxStrokeColor The stroke color used in the label's box.

boxStrokeWidth The line width of the label's box.

fontName The label's font name.

fontSize The label's font size.

leading The leading value of the label's text lines.

x The X-coordinate of the reference point.

y The Y-coordinate of the reference point.

width The label's width.

height The label's height.

Table 11-4 - Label properties

To see many more examples of Label objects with different combinations of properties, please have a look
into the ReportLab test suite in the folder tests, run the script test_charts_textlabels.py and
look at the PDF document it generates!

11.5 Axes
We identify two basic kinds of axes - Value and Category ones. Both come in horizontal and vertical flavors.
Both can be subclassed to make very specific kinds of axis. For example, if you have complex rules for which
dates to display in a time series application, or want irregular scaling, you override the axis and make a new
one.

Axes are responsible for determining the mapping from data to image coordinates; transforming points on
request from the chart; drawing themselves and their tickmarks, gridlines and axis labels.

This drawing shows two axes, one of each kind, which have been created directly without reference to any
chart:

User Guide Chapter 11 Graphics

Page 107

Beer Wine Meat

Cannelloni

10

20

30

40

Figure 11-3: Two isolated axes

Here is the code that created them:

from reportlab.graphics import shapes
from reportlab.graphics.charts.axes import XCategoryAxis,YValueAxis

drawing = Drawing(400, 200)

data = [(10, 20, 30, 40), (15, 22, 37, 42)]

xAxis = XCategoryAxis()
xAxis.setPosition(75, 75, 300)
xAxis.configure(data)
xAxis.categoryNames = ['Beer', 'Wine', 'Meat', 'Cannelloni']
xAxis.labels.boxAnchor = 'n'
xAxis.labels[3].dy = -15
xAxis.labels[3].angle = 30
xAxis.labels[3].fontName = 'Times-Bold'

yAxis = YValueAxis()
yAxis.setPosition(50, 50, 125)
yAxis.configure(data)

drawing.add(xAxis)
drawing.add(yAxis)

Remember that, usually, you won't have to create axes directly; when using a standard chart, it comes with
ready-made axes. The methods are what the chart uses to configure it and take care of the geometry.
However, we will talk through them in detail below. The orthogonally dual axes to those we describe have
essentially the same properties, except for those refering to ticks.

XCategoryAxis class

A Category Axis doesn't really have a scale; it just divides itself into equal-sized buckets. It is simpler than a
value axis. The chart (or programmer) sets its location with the method setPosition(x, y, length).
The next stage is to show it the data so that it can configure itself. This is easy for a category axis - it just
counts the number of data points in one of the data series. The reversed attribute (if 1) indicates that the
categories should be reversed. When the drawing is drawn, the axis can provide some help to the chart with
its scale() method, which tells the chart where a given category begins and ends on the page. We have not
yet seen any need to let people override the widths or positions of categories.

An XCategoryAxis has the following editable properties:

Property Meaning

User Guide Chapter 11 Graphics

Page 108

visible

Should the axis be drawn at all? Sometimes you don't want
to display one or both axes, but they still need to be there as
they manage the scaling of points.

strokeColor Color of the axis

strokeDashArray
Whether to draw axis with a dash and, if so, what kind.
Defaults to None

strokeWidth Width of axis in points

tickUp
How far above the axis should the tick marks protrude?
(Note that making this equal to chart height gives you a gridline)

tickDown How far below the axis should the tick mark protrude?

categoryNames
Either None, or a list of strings. This should have the
same length as each data series.

labels

A collection of labels for the tick marks. By default the 'north'
of each text label (i.e top centre) is positioned 5 points down
from the centre of each category on the axis. You may redefine
any property of the whole label group or of any one label. If
categoryNames=None, no labels are drawn.

title

Not Implemented Yet. This needs to be like a label, but also
lets you set the text directly. It would have a default
location below the axis.

Table 11-5 - XCategoryAxis properties

YValueAxis

The left axis in the diagram is a YValueAxis. A Value Axis differs from a Category Axis in that each point
along its length corresponds to a y value in chart space. It is the job of the axis to configure itself, and to
convert Y values from chart space to points on demand to assist the parent chart in plotting.

setPosition(x, y, length) and configure(data) work exactly as for a category axis. If you
have not fully specified the maximum, minimum and tick interval, then configure() results in the axis
choosing suitable values. Once configured, the value axis can convert y data values to drawing space with the
scale() method. Thus:

>>> yAxis = YValueAxis()
>>> yAxis.setPosition(50, 50, 125)
>>> data = [(10, 20, 30, 40),(15, 22, 37, 42)]
>>> yAxis.configure(data)
>>> yAxis.scale(10) # should be bottom of chart
50.0
>>> yAxis.scale(40) # should be near the top
167.1875
>>>

By default, the highest data point is aligned with the top of the axis, the lowest with the bottom of the axis,
and the axis choose 'nice round numbers' for its tickmark points. You may override these settings with the
properties below.

Property Meaning

visible

Should the axis be drawn at all? Sometimes you don't want
to display one or both axes, but they still need to be there as
they manage the scaling of points.

strokeColor Color of the axis

strokeDashArray
Whether to draw axis with a dash and, if so, what kind.
Defaults to None

User Guide Chapter 11 Graphics

Page 109

strokeWidth Width of axis in points

tickLeft
How far to the left of the axis should the tick marks protrude?
(Note that making this equal to chart height gives you a gridline)

tickRight How far to the right of the axis should the tick mark protrude?

valueMin

The y value to which the bottom of the axis should correspond.
Default value is None in which case the axis sets it to the lowest
actual data point (e.g. 10 in the example above). It is common to set
this to zero to avoid misleading the eye.

valueMax

The y value to which the top of the axis should correspond.
Default value is None in which case the axis sets it to the highest
actual data point (e.g. 42 in the example above). It is common to set
this to a 'round number' so data bars do not quite reach the top.

valueStep

The y change between tick intervals. By default this is
None, and the chart tries to pick 'nice round numbers' which are
just wider than the minimumTickSpacing below.

valueSteps A list of numbers at which to place ticks.

minimumTickSpacing

This is used when valueStep is set to None, and ignored
otherwise. The designer specified that tick marks should be no
closer than X points apart (based, presumably, on considerations
of the label font size and angle). The chart tries values of the
type 1,2,5,10,20,50,100... (going down below 1 if necessary) until
it finds an interval which is greater than the desired spacing, and
uses this for the step.

labelTextFormat

This determines what goes in the labels. Unlike a category
axis which accepts fixed strings, the labels on a ValueAxis are
supposed to be numbers. You may provide either a 'format string'
like '%0.2f' (show two decimal places), or an arbitrary function
which accepts a number and returns a string. One use for the
latter is to convert a timestamp to a readable year-month-day
format.

title

Not Implemented Yet. This needs to be like a label, but also
lets you set the text directly. It would have a default
location below the axis.

Table 11-6 - YValueAxis properties

The valueSteps property lets you explicitly specify the tick mark locations, so you don't have to follow
regular intervals. Hence, you can plot month ends and month end dates with a couple of helper functions, and
without needing special time series chart classes. The following code show how to create a simple
XValueAxis with special tick intervals. Make sure to set the valueSteps attribute before calling the
configure method!

from reportlab.graphics.shapes import Drawing
from reportlab.graphics.charts.axes import XValueAxis

drawing = Drawing(400, 100)

data = [(10, 20, 30, 40)]

xAxis = XValueAxis()
xAxis.setPosition(75, 50, 300)
xAxis.valueSteps = [10, 15, 20, 30, 35, 40]
xAxis.configure(data)
xAxis.labels.boxAnchor = 'n'

drawing.add(xAxis)

User Guide Chapter 11 Graphics

Page 110

10 15 20 30 35 40

Figure 11-4: An axis with non-equidistant tick marks

In addition to these properties, all axes classes have three properties describing how to join two of them to
each other. Again, this is interesting only if you define your own charts or want to modify the appearance of
an existing chart using such axes. These properties are listed here only very briefly for now, but you can find
a host of sample functions in the module reportlab/graphics/axes.py which you can examine...

One axis is joined to another, by calling the method joinToAxis(otherAxis, mode, pos) on the
first axis, with mode and pos being the properties described by joinAxisMode and joinAxisPos,
respectively. 'points' means to use an absolute value, and 'value' to use a relative value (both
indicated by the the joinAxisPos property) along the axis.

Property Meaning

joinAxis Join both axes if true.

joinAxisMode Mode used for connecting axis ('bottom', 'top', 'left', 'right', 'value', 'points', None).

joinAxisPos Position at which to join with other axis.

Table 11-7 - Axes joining properties

11.6 Bar Charts
This describes our current VerticalBarChart class, which uses the axes and labels above. We think it is
step in the right direction but is is far from final. Note that people we speak to are divided about 50/50 on
whether to call this a 'Vertical' or 'Horizontal' bar chart. We chose this name because 'Vertical' appears next to
'Bar', so we take it to mean that the bars rather than the category axis are vertical.

As usual, we will start with an example:

Jan-99
Feb-99

Mar-9
9

Apr-9
9

May-99
Jun-99

Jul-99
Aug-99

0

10

20

30

40

50

Figure 11-5: Simple bar chart with two data series

User Guide Chapter 11 Graphics

Page 111

 # code to produce the above chart

 from reportlab.graphics.shapes import Drawing
 from reportlab.graphics.charts.barcharts import VerticalBarChart

 drawing = Drawing(400, 200)

 data = [
 (13, 5, 20, 22, 37, 45, 19, 4),
 (14, 6, 21, 23, 38, 46, 20, 5)
]

 bc = VerticalBarChart()
 bc.x = 50
 bc.y = 50
 bc.height = 125
 bc.width = 300
 bc.data = data
 bc.strokeColor = colors.black

 bc.valueAxis.valueMin = 0
 bc.valueAxis.valueMax = 50
 bc.valueAxis.valueStep = 10

 bc.categoryAxis.labels.boxAnchor = 'ne'
 bc.categoryAxis.labels.dx = 8
 bc.categoryAxis.labels.dy = -2
 bc.categoryAxis.labels.angle = 30
 bc.categoryAxis.categoryNames = ['Jan-99','Feb-99','Mar-99',
 'Apr-99','May-99','Jun-99','Jul-99','Aug-99']

 drawing.add(bc)

Most of this code is concerned with setting up the axes and labels, which we have already covered. Here are
the top-level properties of the VerticalBarChart class:

Property Meaning

data

This should be a "list of lists of numbers" or "list of
tuples of numbers". If you have just one series, write it as
data = [(10,20,30,42),]

x, y, width, height

These define the inner 'plot rectangle'. We
highlighted this with a yellow border above. Note that it is
your job to place the chart on the drawing in a way which leaves
room for all the axis labels and tickmarks. We specify this 'inner
rectangle' because it makes it very easy to lay out multiple charts
in a consistent manner.

strokeColor

Defaults to None. This will draw a border around the
plot rectangle, which may be useful in debugging. Axes will
overwrite this.

fillColor

Defaults to None. This will fill the plot rectangle with
a solid color. (Note that we could implement dashArray etc.
as for any other solid shape)

useAbsolute

Defaults to 0. If 1, the three properties below are
absolute values in points (which means you can make a chart
where the bars stick out from the plot rectangle); if 0,
they are relative quantities and indicate the proportional
widths of the elements involved.

barWidth As it says. Defaults to 10.

groupSpacing

Defaults to 5. This is the space between each group of
bars. If you have only one series, use groupSpacing and not
barSpacing to split them up. Half of the groupSpacing is used
before the first bar in the chart, and another half at the end.

User Guide Chapter 11 Graphics

Page 112

barSpacing

Defaults to 0. This is the spacing between bars in each
group. If you wanted a little gap between green and red bars in
the example above, you would make this non-zero.

barLabelFormat

Defaults to None. As with the YValueAxis, if you supply
a function or format string then labels will be drawn next to each bar
showing the numeric value. They are positioned automatically
above the bar for positive values and below for negative ones.

barLabels

A collection of labels used to format all bar labels. Since
this is a two-dimensional array, you may explicitly format the
third label of the second series using this syntax:
 chart.barLabels[(1,2)].fontSize = 12

valueAxis
The value axis, which may be formatted as described
previously.

categoryAxis
The category axis, which may be formatted as described
previously.

title

Not Implemented Yet. This needs to be like a label, but also
lets you set the text directly. It would have a default
location below the axis.

Table 11-8 - VerticalBarChart properties

From this table we deduce that adding the following lines to our code above should double the spacing
between bar groups (the groupSpacing attribute has a default value of five points) and we should also see
some tiny space between bars of the same group (barSpacing).

 bc.groupSpacing = 10
 bc.barSpacing = 2.5

And, in fact, this is exactly what we can see after adding these lines to the code above. Notice how the width
of the individual bars has changed as well. This is because the space added between the bars has to be 'taken'
from somewhere as the total chart width stays unchanged.

Jan-99
Feb-99

Mar-9
9

Apr-9
9

May-99
Jun-99

Jul-99
Aug-99

0

10

20

30

40

50

Figure 11-6: Like before, but with modified spacing

Bars labels are automatically displayed for negative values below the lower end of the bar for positive values
above the upper end of the other ones.

Stacked bars are also supported for vertical bar graphs. You enable this layout for your chart by setting the
style attribute to 'stacked' on the categoryAxis.

User Guide Chapter 11 Graphics

Page 113

 bc.categoryAxis.style = 'stacked'

Here is an example of the previous chart values arranged in the stacked style.

Jan-99
Feb-99

Mar-9
9

Apr-9
9

May-99
Jun-99

Jul-99
Aug-99

0

20

40

60

80

100

Figure 11-7: Stacking bars on top of each other.

11.7 Line Charts
We consider "Line Charts" to be essentially the same as "Bar Charts", but with lines instead of bars. Both
share the same pair of Category/Value axes pairs. This is in contrast to "Line Plots", where both axes are
Value axes.

The following code and its output shall serve as a simple example. More explanation will follow. For the time
being you can also study the output of running the tool reportlab/lib/graphdocpy.py withough any
arguments and search the generated PDF document for examples of Line Charts.

from reportlab.graphics.charts.linecharts import HorizontalLineChart

drawing = Drawing(400, 200)

data = [
 (13, 5, 20, 22, 37, 45, 19, 4),
 (5, 20, 46, 38, 23, 21, 6, 14)
]

lc = HorizontalLineChart()
lc.x = 50
lc.y = 50
lc.height = 125
lc.width = 300
lc.data = data
lc.joinedLines = 1
catNames = 'Jan Feb Mar Apr May Jun Jul Aug'.split(' ')
lc.categoryAxis.categoryNames = catNames
lc.categoryAxis.labels.boxAnchor = 'n'
lc.valueAxis.valueMin = 0
lc.valueAxis.valueMax = 60
lc.valueAxis.valueStep = 15
lc.lines[0].strokeWidth = 2
lc.lines[1].strokeWidth = 1.5
drawing.add(lc)

User Guide Chapter 11 Graphics

Page 114

Jan Feb Mar Apr May Jun Jul Aug
0

15

30

45

60

Figure 11-8: HorizontalLineChart sample

Property Meaning

data Data to be plotted, list of (lists of) numbers.

x, y, width, height
Bounding box of the line chart.
Note that x and y do NOT specify the centre but the bottom left corner

valueAxis The value axis, which may be formatted as described previously.

categoryAxis The category axis, which may be formatted as described previously.

strokeColor
Defaults to None. This will draw a border around the plot rectangle,
which may be useful in debugging. Axes will overwrite this.

fillColor Defaults to None. This will fill the plot rectangle with a solid color.

lines.strokeColor Color of the line.

lines.strokeWidth Width of the line.

lineLabels

A collection of labels used to format all line labels. Since
this is a two-dimensional array, you may explicitly format the
third label of the second line using this syntax:
 chart.lineLabels[(1,2)].fontSize = 12

lineLabelFormat

Defaults to None. As with the YValueAxis, if you supply
a function or format string then labels will be drawn next
to each line showing the numeric value. You can also set it
to 'values' to display the values explicity defined in lineLabelArray.

lineLabelArray

Explicit array of line label values, must match size of data if present.
These labels values will be displayed only if the property
lineLabelFormat above is set to 'values'.

Table 11-9 - HorizontalLineChart properties

11.8 Line Plots
Below we show a more complex example of a Line Plot that also uses some experimental features like line
markers placed at each data point.

from reportlab.graphics.charts.lineplots import LinePlot
from reportlab.graphics.widgets.markers import makeMarker

User Guide Chapter 11 Graphics

Page 115

drawing = Drawing(400, 200)

data = [
 ((1,1), (2,2), (2.5,1), (3,3), (4,5)),
 ((1,2), (2,3), (2.5,2), (3.5,5), (4,6))
]

lp = LinePlot()
lp.x = 50
lp.y = 50
lp.height = 125
lp.width = 300
lp.data = data
lp.joinedLines = 1
lp.lines[0].symbol = makeMarker('FilledCircle')
lp.lines[1].symbol = makeMarker('Circle')
lp.lineLabelFormat = '%2.0f'
lp.strokeColor = colors.black
lp.xValueAxis.valueMin = 0
lp.xValueAxis.valueMax = 5
lp.xValueAxis.valueSteps = [1, 2, 2.5, 3, 4, 5]
lp.xValueAxis.labelTextFormat = '%2.1f'
lp.yValueAxis.valueMin = 0
lp.yValueAxis.valueMax = 7
lp.yValueAxis.valueSteps = [1, 2, 3, 5, 6]

drawing.add(lp)

1.0 2.0 2.5 3.0 4.0 5.0

1

2

3

5

6

 1

 2

 1

 3

 5

 2

 3

 2

 5

 6

Figure 11-9: LinePlot sample

Property Meaning

data Data to be plotted, list of (lists of) numbers.

x, y, width, height
Bounding box of the line chart.
Note that x and y do NOT specify the centre but the bottom left corner

xValueAxis The vertical value axis, which may be formatted as described previously.

yValueAxis The horizontal value axis, which may be formatted as described previously.

strokeColor
Defaults to None. This will draw a border around the plot rectangle,
which may be useful in debugging. Axes will overwrite this.

strokeWidth Defaults to None. Width of the border around the plot rectangle.

fillColor Defaults to None. This will fill the plot rectangle with a solid color.

lines.strokeColor Color of the line.

User Guide Chapter 11 Graphics

Page 116

lines.strokeWidth Width of the line.

lines.symbol

Marker used for each point.
You can create a new marker using the function makeMarker().
For example to use a circle, the function call would be makeMarker('Circle')

lineLabels

A collection of labels used to format all line labels. Since
this is a two-dimensional array, you may explicitly format the
third label of the second line using this syntax:
 chart.lineLabels[(1,2)].fontSize = 12

lineLabelFormat

Defaults to None. As with the YValueAxis, if you supply
a function or format string then labels will be drawn next
to each line showing the numeric value. You can also set it
to 'values' to display the values explicity defined in lineLabelArray.

lineLabelArray

Explicit array of line label values, must match size of data if present.
These labels values will be displayed only if the property
lineLabelFormat above is set to 'values'.

Table 11-10 - LinePlot properties

11.9 Pie Charts
As usual, we will start with an example:

from reportlab.graphics.charts.piecharts import Pie
d = Drawing(200, 100)

pc = Pie()
pc.x = 65
pc.y = 15
pc.width = 70
pc.height = 70
pc.data = [10,20,30,40,50,60]
pc.labels = ['a','b','c','d','e','f']

pc.slices.strokeWidth=0.5
pc.slices[3].popout = 10
pc.slices[3].strokeWidth = 2
pc.slices[3].strokeDashArray = [2,2]
pc.slices[3].labelRadius = 1.75
pc.slices[3].fontColor = colors.red
d.add(pc)

a

b

c

de

f

Figure 11-10: A bare bones pie chart

User Guide Chapter 11 Graphics

Page 117

Properties are covered below. The pie has a 'slices' collection and we document wedge properties in the same
table.

Property Meaning

data A list or tuple of numbers

x, y, width, height

Bounding box of the pie.
Note that x and y do NOT specify the centre but the bottom left
corner, and that width and height do not have to be equal;
pies may be elliptical and slices will be drawn correctly.

labels

None, or a list of strings.
Make it None if you don't want labels around the edge of the pie.
Since it is impossible to know the size of slices, we generally
discourage placing labels in or around pies; it is much better
to put them in a legend alongside.

startAngle
Where is the start angle of the first pie slice?
The default is '90' which is twelve o'clock.

direction
Which direction do slices progress in?
The default is 'clockwise'.

sideLabels
This creates a chart with the labels in two columns,
one on either side.

sideLabelsOffset
This is a fraction of the width of the pie that defines the horizontal
distance between the pie and the columns of labels.

simpleLabels
Default is 1. Set to 0 to enable the use of customizable labels
and of properties prefixed by label_ in the collection slices.

slices
Collection of slices.
This lets you customise each wedge, or individual ones. See below

slices.strokeWidth Border width for wedge

slices.strokeColor Border color

slices.strokeDashArray Solid or dashed line configuration

slices.popout
How far out should the slice(s) stick from the centre of the pie?
Default is zero.

slices.fontName Name of the label font

slices.fontSize Size of the label font

slices.fontColor Color of the label text

slices.labelRadius

This controls the anchor point for a text label.
It is a fraction of the radius; 0.7 will place the text inside the
pie, 1.2 will place it slightly outside. (note that if we add labels,
we will keep this to specify their anchor point)

Table 11-11 - Pie properties

Customizing Labels

Each slide label can be customized individually by changing the properties prefixed by label_ in the
collection slices. For example pc.slices[2].label_angle = 10 changes the angle of the third
label.

Before being able to use these customization properties, you need to disable simple labels with:
pc.simplesLabels = 0

User Guide Chapter 11 Graphics

Page 118

Property Meaning

label_dx X Offset of the label

label_dy Y Offset of the label

label_angle
Angle of the label, default (0) is horizontal, 90 is vertical,
180 is upside down

label_boxAnchor Anchoring point of the label

label_boxStrokeColor Border color for the label box

label_boxStrokeWidth Border width for the label box

label_boxFillColor Filling color of the label box

label_strokeColor Border color for the label text

label_strokeWidth Border width for the label text

label_text Text of the label

label_width Width of the label

label_maxWidth Maximum width the label can grow to

label_height Height of the label

label_textAnchor Maximum height the label can grow to

label_visible True if the label is to be drawn

label_topPadding Padding at top of box

label_leftPadding Padding at left of box

label_rightPadding Padding at right of box

label_bottomPadding Padding at bottom of box

label_simple_pointer Set to 1 for simple pointers

label_pointer_strokeColor Color of indicator line

label_pointer_strokeWidth Width of indicator line

Table 11-12 - Pie.slices label customization properties

Side Labels

If the sideLabels attribute is set to true, then the labels of the slices are placed in two columns, one on either
side of the pie and the start angle of the pie will be set automatically. The anchor of the right hand column is
set to 'start' and the anchor of the left hand column is set to 'end'. The distance from the edge of the pie from
the edge of either column is decided by the sideLabelsOffset attribute, which is a fraction of the width of the
pie. If xradius is changed, the pie can overlap the labels, and so we advise leaving xradius as None. There is
an example below.

User Guide Chapter 11 Graphics

Page 119

example1

example2

example3

example4

example5

example6

Figure 11-11: An example of a piechart with sideLabels =1

If you have sideLabels set to True, then some of the attributes become redundant, such as pointerLabelMode.
Also sideLabelsOffset only changes the piechart if sideLabels is set to true.

Some issues

The pointers can cross if there are too many slices.

example1

example2
example3

example4
example5
example6
example7
example8
example9

example10
example11
example12
example13
example14
example15

example16
example17
example18 example19

example20
example21
example22
example23
example24
example25
example26
example27
example28

Figure 11-12: An example of pointers crossing

Also the labels can overlap despite checkLabelOverlap if they correspond to slices that are not adjacent.

User Guide Chapter 11 Graphics

Page 120

example1
example2
example3
example4
example5

example6

example7

example8
example9
example10
example11
example12
example13

example14example15

example16

Figure 11-13: An example of labels overlapping

11.10 Legends
Various preliminary legend classes can be found but need a cleanup to be consistent with the rest of the
charting model. Legends are the natural place to specify the colors and line styles of charts; we propose that
each chart is created with a legend attribute which is invisible. One would then do the following to specify
colors:

myChart.legend.defaultColors = [red, green, blue]

One could also define a group of charts sharing the same legend:

myLegend = Legend()
myLegend.defaultColor = [red, green.....] #yuck!
myLegend.columns = 2
etc.
chart1.legend = myLegend
chart2.legend = myLegend
chart3.legend = myLegend

Does this work? Is it an acceptable complication over specifying chart colors directly?

Remaining Issues

There are several issues that are almost solved, but for which is is a bit too early to start making them really
public. Nevertheless, here is a list of things that are under way:

• Color specification - right now the chart has an undocumented property defaultColors,
which provides a list of colors to cycle through, such that each data series gets its own color.
Right now, if you introduce a legend, you need to make sure it shares the same list of colors.
Most likely, this will be replaced with a scheme to specify a kind of legend containing attributes
with different values for each data series. This legend can then also be shared by several charts,
but need not be visible itself.

• Additional chart types - when the current design will have become more stable, we expect to
add variants of bar charts to deal with percentile bars as well as the side-by-side variant seen
here.

Outlook

It will take some time to deal with the full range of chart types. We expect to finalize bars and pies first and to
produce trial implementations of more general plots, thereafter.

User Guide Chapter 11 Graphics

Page 121

X-Y Plots

Most other plots involve two value axes and directly plotting x-y data in some form. The series can be plotted
as lines, marker symbols, both, or custom graphics such as open-high-low-close graphics. All share the
concepts of scaling and axis/title formatting. At a certain point, a routine will loop over the data series and 'do
something' with the data points at given x-y locations. Given a basic line plot, it should be very easy to derive
a custom chart type just by overriding a single method - say, drawSeries().

Marker customisation and custom shapes

Well known plotting packages such as excel, Mathematica and Excel offer ranges of marker types to add to
charts. We can do better - you can write any kind of chart widget you want and just tell the chart to use it as
an example.

Combination plots

Combining multiple plot types is really easy. You can just draw several charts (bar, line or whatever) in the
same rectangle, suppressing axes as needed. So a chart could correlate a line with Scottish typhoid cases over
a 15 year period on the left axis with a set of bars showing inflation rates on the right axis. If anyone can
remind us where this example came from we'll attribute it, and happily show the well-known graph as an
example.

Interactive editors

One principle of the Graphics package is to make all 'interesting' properties of its graphic components
accessible and changeable by setting apropriate values of corresponding public attributes. This makes it very
tempting to build a tool like a GUI editor that that helps you with doing that interactively.

ReportLab has built such a tool using the Tkinter toolkit that loads pure Python code describing a drawing
and records your property editing operations. This "change history" is then used to create code for a subclass
of that chart, say, that can be saved and used instantly just like any other chart or as a new starting point for
another interactive editing session.

This is still work in progress, though, and the conditions for releasing this need to be further elaborated.

Misc.

This has not been an exhaustive look at all the chart classes. Those classes are constantly being worked on. To
see exactly what is in the current distribution, use the graphdocpy.py utility. By default, it will run on
reportlab/graphics, and produce a full report. (If you want to run it on other modules or packages,
graphdocpy.py -h prints a help message that will tell you how.)

This is the tool that was mentioned in the section on 'Documenting Widgets'.

11.11 Shapes
This section describes the concept of shapes and their importance as building blocks for all output generated
by the graphics library. Some properties of existing shapes and their relationship to diagrams are presented
and the notion of having different renderers for different output formats is briefly introduced.

Available Shapes

Drawings are made up of Shapes. Absolutely anything can be built up by combining the same set of primitive
shapes. The module shapes.py supplies a number of primitive shapes and constructs which can be added
to a drawing. They are:

• Rect
• Circle
• Ellipse
• Wedge (a pie slice)
• Polygon
• Line

User Guide Chapter 11 Graphics

Page 122

• PolyLine
• String
• Group
• Path (not implemented yet, but will be added in the future)

The following drawing, taken from our test suite, shows most of the basic shapes (except for groups). Those
with a filled green surface are also called solid shapes (these are Rect, Circle, Ellipse, Wedge and
Polygon).

Basic Shapes

Figure 11-14: Basic shapes

Shape Properties

Shapes have two kinds of properties - some to define their geometry and some to define their style. Let's
create a red rectangle with 3-point thick green borders:

>>> from reportlab.graphics.shapes import Rect
>>> from reportlab.lib.colors import red, green
>>> r = Rect(5, 5, 200, 100)
>>> r.fillColor = red
>>> r.strokeColor = green
>>> r.strokeWidth = 3
>>>

Figure 11-15: red rectangle with green
border

Note: In future examples we will omit the import statements.

User Guide Chapter 11 Graphics

Page 123

All shapes have a number of properties which can be set. At an interactive prompt, we can use their
dumpProperties() method to list these. Here's what you can use to configure a Rect:

>>> r.dumpProperties()
fillColor = Color(1.00,0.00,0.00)
height = 100
rx = 0
ry = 0
strokeColor = Color(0.00,0.50,0.00)
strokeDashArray = None
strokeLineCap = 0
strokeLineJoin = 0
strokeMiterLimit = 0
strokeWidth = 3
width = 200
x = 5
y = 5
>>>

Shapes generally have style properties and geometry properties. x, y, width and height are part of the
geometry and must be provided when creating the rectangle, since it does not make much sense without those
properties. The others are optional and come with sensible defaults.

You may set other properties on subsequent lines, or by passing them as optional arguments to the
constructor. We could also have created our rectangle this way:

>>> r = Rect(5, 5, 200, 100,
 fillColor=red,
 strokeColor=green,
 strokeWidth=3)

Let's run through the style properties. fillColor is obvious. stroke is publishing terminology for the
edge of a shape; the stroke has a color, width, possibly a dash pattern, and some (rarely used) features for
what happens when a line turns a corner. rx and ry are optional geometric properties and are used to define
the corner radius for a rounded rectangle.

All the other solid shapes share the same style properties.

Lines

We provide single straight lines, PolyLines and curves. Lines have all the stroke* properties, but no
fillColor. Here are a few Line and PolyLine examples and the corresponding graphics output:

 Line(50,50, 300,100,
 strokeColor=colors.blue, strokeWidth=5)
 Line(50,100, 300,50,
 strokeColor=colors.red,
 strokeWidth=10,
 strokeDashArray=[10, 20])
 PolyLine([120,110, 130,150, 140,110, 150,150, 160,110,
 170,150, 180,110, 190,150, 200,110],
 strokeWidth=2,
 strokeColor=colors.purple)

User Guide Chapter 11 Graphics

Page 124

Figure 11-16: Line and PolyLine examples

Strings

The ReportLab Graphics package is not designed for fancy text layout, but it can place strings at desired
locations and with left/right/center alignment. Let's specify a String object and look at its properties:

>>> s = String(10, 50, 'Hello World')
>>> s.dumpProperties()
fillColor = Color(0.00,0.00,0.00)
fontName = Times-Roman
fontSize = 10
text = Hello World
textAnchor = start
x = 10
y = 50
>>>

Strings have a textAnchor property, which may have one of the values 'start', 'middle', 'end'. If this is set to
'start', x and y relate to the start of the string, and so on. This provides an easy way to align text.

Strings use a common font standard: the Type 1 Postscript fonts present in Acrobat Reader. We can thus use
the basic 14 fonts in ReportLab and get accurate metrics for them. We have recently also added support for
extra Type 1 fonts and the renderers all know how to render Type 1 fonts.

Here is a more fancy example using the code snippet below. Please consult the ReportLab User Guide to see
how non-standard like 'DarkGardenMK' fonts are being registered!

 d = Drawing(400, 200)
 for size in range(12, 36, 4):
 d.add(String(10+size*2, 10+size*2, 'Hello World',
 fontName='Times-Roman',
 fontSize=size))

 d.add(String(130, 120, 'Hello World',
 fontName='Courier',
 fontSize=36))

 d.add(String(150, 160, 'Hello World',
 fontName='DarkGardenMK',
 fontSize=36))

User Guide Chapter 11 Graphics

Page 125

Hello World
Hello WorldHello WorldHello WorldHello WorldHello World

Hello World
Hello World

Figure 11-17: fancy font example

Paths

Postscript paths are a widely understood concept in graphics. They are not implemented in
reportlab/graphics as yet, but they will be, soon.

Groups

Finally, we have Group objects. A group has a list of contents, which are other nodes. It can also apply a
transformation - its contents can be rotated, scaled or shifted. If you know the math, you can set the transform
directly. Otherwise it provides methods to rotate, scale and so on. Here we make a group which is rotated and
translated:

>>> g =Group(shape1, shape2, shape3)
>>> g.rotate(30)
>>> g.translate(50, 200)

Groups provide a tool for reuse. You can make a bunch of shapes to represent some component - say, a
coordinate system - and put them in one group called "Axis". You can then put that group into other groups,
each with a different translation and rotation, and you get a bunch of axis. It is still the same group, being
drawn in different places.

Let's do this with some only slightly more code:

 d = Drawing(400, 200)

 Axis = Group(
 Line(0,0,100,0), # x axis
 Line(0,0,0,50), # y axis
 Line(0,10,10,10), # ticks on y axis
 Line(0,20,10,20),
 Line(0,30,10,30),
 Line(0,40,10,40),
 Line(10,0,10,10), # ticks on x axis
 Line(20,0,20,10),
 Line(30,0,30,10),
 Line(40,0,40,10),
 Line(50,0,50,10),
 Line(60,0,60,10),
 Line(70,0,70,10),
 Line(80,0,80,10),
 Line(90,0,90,10),
 String(20, 35, 'Axes', fill=colors.black)
)

User Guide Chapter 11 Graphics

Page 126

 firstAxisGroup = Group(Axis)
 firstAxisGroup.translate(10,10)
 d.add(firstAxisGroup)

 secondAxisGroup = Group(Axis)
 secondAxisGroup.translate(150,10)
 secondAxisGroup.rotate(15)

 d.add(secondAxisGroup)

 thirdAxisGroup = Group(Axis,
 transform=mmult(translate(300,10),
 rotate(30)))
 d.add(thirdAxisGroup)

Axes Axes Axes

Figure 11-18: Groups examples

11.12 Widgets
We now describe widgets and how they relate to shapes. Using many examples it is shown how widgets make
reusable graphics components.

Shapes vs. Widgets

Up until now, Drawings have been 'pure data'. There is no code in them to actually do anything, except assist
the programmer in checking and inspecting the drawing. In fact, that's the cornerstone of the whole concept
and is what lets us achieve portability - a renderer only needs to implement the primitive shapes.

We want to build reusable graphic objects, including a powerful chart library. To do this we need to reuse
more tangible things than rectangles and circles. We should be able to write objects for other to reuse -
arrows, gears, text boxes, UML diagram nodes, even fully fledged charts.

The Widget standard is a standard built on top of the shapes module. Anyone can write new widgets, and we
can build up libraries of them. Widgets support the getProperties() and setProperties()
methods, so you can inspect and modify as well as document them in a uniform way.

• A widget is a reusable shape
• it can be initialized with no arguments when its draw() method is called it creates a primitive

Shape or a Group to represent itself
• It can have any parameters you want, and they can drive the way it is drawn
• it has a demo() method which should return an attractively drawn example of itself in a

200x100 rectangle. This is the cornerstone of the automatic documentation tools. The demo()
method should also have a well written docstring, since that is printed too!

User Guide Chapter 11 Graphics

Page 127

Widgets run contrary to the idea that a drawing is just a bundle of shapes; surely they have their own code?
The way they work is that a widget can convert itself to a group of primitive shapes. If some of its
components are themselves widgets, they will get converted too. This happens automatically during
rendering; the renderer will not see your chart widget, but just a collection of rectangles, lines and strings.
You can also explicitly 'flatten out' a drawing, causing all widgets to be converted to primitives.

Using a Widget

Let's imagine a simple new widget. We will use a widget to draw a face, then show how it was implemented.

>>> from reportlab.lib import colors
>>> from reportlab.graphics import shapes
>>> from reportlab.graphics import widgetbase
>>> from reportlab.graphics import renderPDF
>>> d = shapes.Drawing(200, 100)
>>> f = widgetbase.Face()
>>> f.skinColor = colors.yellow
>>> f.mood = "sad"
>>> d.add(f)
>>> renderPDF.drawToFile(d, 'face.pdf', 'A Face')

Figure 11-19: A sample widget

Let's see what properties it has available, using the setProperties() method we have seen earlier:

>>> f.dumpProperties()
eyeColor = Color(0.00,0.00,1.00)
mood = sad
size = 80
skinColor = Color(1.00,1.00,0.00)
x = 10
y = 10
>>>

One thing which seems strange about the above code is that we did not set the size or position when we made
the face. This is a necessary trade-off to allow a uniform interface for constructing widgets and documenting
them - they cannot require arguments in their __init__() method. Instead, they are generally designed to
fit in a 200 x 100 window, and you move or resize them by setting properties such as x, y, width and so on
after creation.

In addition, a widget always provides a demo() method. Simple ones like this always do something sensible
before setting properties, but more complex ones like a chart would not have any data to plot. The
documentation tool calls demo() so that your fancy new chart class can create a drawing showing what it
can do.

Here are a handful of simple widgets available in the module signsandsymbols.py:

User Guide Chapter 11 Graphics

Page 128

Figure 11-20: A few samples from
signsandsymbols.py

And this is the code needed to generate them as seen in the drawing above:

from reportlab.graphics.shapes import Drawing
from reportlab.graphics.widgets import signsandsymbols

d = Drawing(230, 230)

ne = signsandsymbols.NoEntry()
ds = signsandsymbols.DangerSign()
fd = signsandsymbols.FloppyDisk()
ns = signsandsymbols.NoSmoking()

ne.x, ne.y = 10, 10
ds.x, ds.y = 120, 10
fd.x, fd.y = 10, 120
ns.x, ns.y = 120, 120

d.add(ne)
d.add(ds)
d.add(fd)
d.add(ns)

Compound Widgets

Let's imagine a compound widget which draws two faces side by side. This is easy to build when you have
the Face widget.

>>> tf = widgetbase.TwoFaces()
>>> tf.faceOne.mood
'happy'
>>> tf.faceTwo.mood
'sad'
>>> tf.dumpProperties()
faceOne.eyeColor = Color(0.00,0.00,1.00)
faceOne.mood = happy
faceOne.size = 80
faceOne.skinColor = None
faceOne.x = 10
faceOne.y = 10
faceTwo.eyeColor = Color(0.00,0.00,1.00)
faceTwo.mood = sad
faceTwo.size = 80
faceTwo.skinColor = None

User Guide Chapter 11 Graphics

Page 129

faceTwo.x = 100
faceTwo.y = 10
>>>

The attributes 'faceOne' and 'faceTwo' are deliberately exposed so you can get at them directly. There could
also be top-level attributes, but there aren't in this case.

Verifying Widgets

The widget designer decides the policy on verification, but by default they work like shapes - checking every
assignment - if the designer has provided the checking information.

Implementing Widgets

We tried to make it as easy to implement widgets as possible. Here's the code for a Face widget which does
not do any type checking:

class Face(Widget):
 """This draws a face with two eyes, mouth and nose."""

 def __init__(self):
 self.x = 10
 self.y = 10
 self.size = 80
 self.skinColor = None
 self.eyeColor = colors.blue
 self.mood = 'happy'

 def draw(self):
 s = self.size # abbreviate as we will use this a lot
 g = shapes.Group()
 g.transform = [1,0,0,1,self.x, self.y]
 # background
 g.add(shapes.Circle(s * 0.5, s * 0.5, s * 0.5,
 fillColor=self.skinColor))
 # CODE OMITTED TO MAKE MORE SHAPES
 return g

We left out all the code to draw the shapes in this document, but you can find it in the distribution in
widgetbase.py.

By default, any attribute without a leading underscore is returned by setProperties. This is a deliberate policy
to encourage consistent coding conventions.

Once your widget works, you probably want to add support for verification. This involves adding a dictionary
to the class called _verifyMap, which map from attribute names to 'checking functions'. The
widgetbase.py module defines a bunch of checking functions with names like isNumber,
isListOfShapes and so on. You can also simply use None, which means that the attribute must be
present but can have any type. And you can and should write your own checking functions. We want to
restrict the "mood" custom attribute to the values "happy", "sad" or "ok". So we do this:

class Face(Widget):
 """This draws a face with two eyes. It exposes a
 couple of properties to configure itself and hides
 all other details"""
 def checkMood(moodName):
 return (moodName in ('happy','sad','ok'))
 _verifyMap = {
 'x': shapes.isNumber,
 'y': shapes.isNumber,
 'size': shapes.isNumber,
 'skinColor':shapes.isColorOrNone,
 'eyeColor': shapes.isColorOrNone,
 'mood': checkMood
 }

This checking will be performed on every attribute assignment; or, if config.shapeChecking is off,
whenever you call myFace.verify().

User Guide Chapter 11 Graphics

Page 130

Documenting Widgets

We are working on a generic tool to document any Python package or module; this is already checked into
ReportLab and will be used to generate a reference for the ReportLab package. When it encounters widgets, it
adds extra sections to the manual including:

• the doc string for your widget class
• the code snippet from your demo() method, so people can see how to use it
• the drawing produced by the demo() method
• the property dump for the widget in the drawing.

This tool will mean that we can have guaranteed up-to-date documentation on our widgets and charts, both on
the web site and in print; and that you can do the same for your own widgets, too!

Widget Design Strategies

We could not come up with a consistent architecture for designing widgets, so we are leaving that problem to
the authors! If you do not like the default verification strategy, or the way
setProperties/getProperties works, you can override them yourself.

For simple widgets it is recommended that you do what we did above: select non-overlapping properties,
initialize every property on __init__ and construct everything when draw() is called. You can instead
have __setattr__ hooks and have things updated when certain attributes are set. Consider a pie chart. If
you want to expose the individual slices, you might write code like this:

from reportlab.graphics.charts import piecharts
pc = piecharts.Pie()
pc.defaultColors = [navy, blue, skyblue] #used in rotation
pc.data = [10,30,50,25]
pc.slices[7].strokeWidth = 5

The last line is problematic as we have only created four slices - in fact we might not have created them yet.
Does pc.slices[7] raise an error? Is it a prescription for what should happen if a seventh wedge is
defined, used to override the default settings? We dump this problem squarely on the widget author for now,
and recommend that you get a simple one working before exposing 'child objects' whose existence depends
on other properties' values :-)

We also discussed rules by which parent widgets could pass properties to their children. There seems to be a
general desire for a global way to say that 'all slices get their lineWidth from the lineWidth of their parent'
without a lot of repetitive coding. We do not have a universal solution, so again leave that to widget authors.
We hope people will experiment with push-down, pull-down and pattern-matching approaches and come up
with something nice. In the meantime, we certainly can write monolithic chart widgets which work like the
ones in, say, Visual Basic and Delphi.

For now have a look at the following sample code using an early version of a pie chart widget and the output
it generates:

from reportlab.lib.colors import *
from reportlab.graphics import shapes,renderPDF
from reportlab.graphics.charts.piecharts import Pie

d = Drawing(400,200)
d.add(String(100,175,"Without labels", textAnchor="middle"))
d.add(String(300,175,"With labels", textAnchor="middle"))

pc = Pie()
pc.x = 25
pc.y = 50
pc.data = [10,20,30,40,50,60]
pc.slices[0].popout = 5
d.add(pc, 'pie1')

pc2 = Pie()
pc2.x = 150
pc2.y = 50
pc2.data = [10,20,30,40,50,60]
pc2.labels = ['a','b','c','d','e','f']
d.add(pc2, 'pie2')

User Guide Chapter 11 Graphics

Page 131

pc3 = Pie()
pc3.x = 275
pc3.y = 50
pc3.data = [10,20,30,40,50,60]
pc3.labels = ['a','b','c','d','e','f']
pc3.slices.labelRadius = 0.65
pc3.slices.fontName = "Helvetica-Bold"
pc3.slices.fontSize = 16
pc3.slices.fontColor = colors.yellow
d.add(pc3, 'pie3')

Without labels With labels

a
b

c

d
e

f a b
c

de

f

Figure 11-21: Some sample Pies

User Guide Chapter 11 Graphics

Page 132

Appendix A ReportLab Demos
In the subdirectories of reportlab/demos there are a number of working examples showing almost all
aspects of reportlab in use.

A.1 Odyssey
The three scripts odyssey.py, dodyssey.py and fodyssey.py all take the file odyssey.txt and produce PDF
documents. The included odyssey.txt is short; a longer and more testing version can be found at
ftp://ftp.reportlab.com/odyssey.full.zip.

Windows
cd reportlab\demos\odyssey
python odyssey.py
start odyssey.pdf

Linux
cd reportlab/demos/odyssey
python odyssey.py
acrord odyssey.pdf

Simple formatting is shown by the odyssey.py script. It runs quite fast, but all it does is gather the text and
force it onto the canvas pages. It does no paragraph manipulation at all so you get to see the XML < & > tags.

The scripts fodyssey.py and dodyssey.py handle paragraph formatting so you get to see colour changes etc.
Both scripts use the document template class and the dodyssey.py script shows the ability to do dual column
layout and uses multiple page templates.

A.2 Standard Fonts and Colors
In reportlab/demos/stdfonts the script stdfonts.py can be used to illustrate ReportLab's standard
fonts. Run the script using

cd reportlab\demos\stdfonts
python stdfonts.py

to produce two PDF documents, StandardFonts_MacRoman.pdf & StandardFonts_WinAnsi.pdf which show
the two most common built in font encodings.

The colortest.py script in reportlab/demos/colors demonstrates the different ways in which reportlab
can set up and use colors.

Try running the script and viewing the output document, colortest.pdf. This shows different color spaces and
a large selection of the colors which are named in the reportlab.lib.colors module.

A.3 Py2pdf
Dinu Gherman contributed this useful script which uses reportlab to produce nicely colorized PDF documents
from Python scripts including bookmarks for classes, methods and functions. To get a nice version of the
main script try

cd reportlab/demos/py2pdf
python py2pdf.py py2pdf.py
acrord py2pdf.pdf

i.e. we used py2pdf to produce a nice version of py2pdf.py in the document with the same rootname and a
.pdf extension.

The py2pdf.py script has many options which are beyond the scope of this simple introduction; consult the
comments at the start of the script.

User Guide Appendix A ReportLab Demos

Page 133

A.4 Gadflypaper
The Python script, gfe.py, in reportlab/demos/gadflypaper uses an inline style of document
preparation. The script almost entirely produced by Aaron Watters produces a document describing Aaron's
gadfly in memory database for Python. To generate the document use

cd reportlab\gadflypaper
python gfe.py
start gfe.pdf

everything in the PDF document was produced by the script which is why this is an inline style of document
production. So, to produce a header followed by some text the script uses functions header and p which
take some text and append to a global story list.

header("Conclusion")

p("""The revamped query engine design in Gadfly 2 supports
..........
and integration.""")

A.5 Pythonpoint
Andy Robinson has refined the pythonpoint.py script (in reportlab\demos\pythonpoint) until it is a
really useful script. It takes an input file containing an XML markup and uses an xmllib style parser to map
the tags into PDF slides. When run in its own directory pythonpoint.py takes as a default input the file
pythonpoint.xml and produces pythonpoint.pdf which is documentation for Pythonpoint! You can also see it
in action with an older paper

cd reportlab\demos\pythonpoint
python pythonpoint.py monterey.xml
start monterey.pdf

Not only is pythonpoint self documenting, but it also demonstrates reportlab and PDF. It uses many features
of reportlab (document templates, tables etc). Exotic features of PDF such as fadeins and bookmarks are also
shown to good effect. The use of an XML document can be contrasted with the inline style of the gadflypaper
demo; the content is completely separate from the formatting

User Guide Appendix A ReportLab Demos

Page 134

	Table of contents
	Chapter 1 Introduction
	1.1 About this document
	1.2 What is the ReportLab PDF Library?
	1.3 ReportLab's commercial software
	1.4 What is Python?
	1.5 Acknowledgements
	1.6 Installation and Setup
	1.7 Getting Involved
	1.8 Site Configuration
	1.9 Learning More About Python
	1.10 Goals of the 3.x release series

	Chapter 2 Graphics and Text with pdfgen
	2.1 Basic Concepts
	2.2 More about the Canvas
	2.3 Drawing Operations
	2.4 The tools: the "draw" operations
	2.5 The toolbox: the "state change" operations
	2.6 Other canvas methods.
	2.7 Coordinates (default user space)
	2.8 Colors
	2.9 Color space checking
	2.10 Color Overprinting
	2.11 Standard fonts and text objects
	2.12 Text object methods
	2.13 Paths and Lines
	2.14 Rectangles, circles, ellipses
	2.15 Bezier curves
	2.16 Path object methods
	2.17 Further Reading: The ReportLab Graphics Library

	Chapter 3 Fonts and encodings
	3.1 Unicode and UTF8 are the default input encodings
	3.2 Automatic output font substitution
	3.3 Using non-standard Type 1 fonts
	3.4 Standard Single-Byte Font Encodings
	3.5 TrueType Font Support
	3.6 Asian Font Support
	3.7 RenderPM tests

	Chapter 4 Exposing PDF Special Capabilities
	4.1 Forms
	4.2 Links and Destinations
	4.3 Outline Trees
	4.4 Page Transition Effects
	4.5 Internal File Annotations
	4.6 Encryption
	4.7 Interactive Forms

	Chapter 5 PLATYPUS - Page Layout and Typography Using Scripts
	5.1 Design Goals
	5.2 Getting started
	5.3 Flowables
	5.4 Guidelines for flowable positioning
	5.5 Frames
	5.6 Documents and Templates

	Chapter 6 Paragraphs
	6.1 Using Paragraph Styles
	6.2 Paragraph XML Markup Tags
	6.3 Intra-paragraph markup
	6.4 Bullets and Paragraph Numbering

	Chapter 7 Tables and TableStyles
	7.1 Table User Methods
	7.2 TableStyle
	7.3 TableStyle User Methods
	7.4 TableStyle Commands

	Chapter 8 Programming Flowables
	8.1 DocAssign(self, var, expr, life='forever')
	8.2 DocExec(self, stmt, lifetime='forever')
	8.3 DocPara(self, expr, format=None, style=None, klass=None, escape=True)
	8.4 DocAssert(self, cond, format=None)
	8.5 DocIf(self, cond, thenBlock, elseBlock=[])
	8.6 DocWhile(self, cond, whileBlock)

	Chapter 9 Other Useful Flowables
	9.1 Preformatted(text, style, bulletText=None, dedent=0, maxLineLength=None, splitChars=None, newLineChars=None)
	9.2 XPreformatted(text, style, bulletText=None, dedent=0, frags=None)
	9.3 Image(filename, width=None, height=None)
	9.4 Spacer(width, height)
	9.5 PageBreak()
	9.6 CondPageBreak(height)
	9.7 KeepTogether(flowables)
	9.8 TableOfContents()
	9.9 SimpleIndex()
	9.10 ListFlowable(),ListItem()
	9.11 BalancedColumns()

	Chapter 10 Writing your own Flowable Objects
	10.1 A very simple Flowable
	10.2 Modifying a Built in Flowable

	Chapter 11 Graphics
	11.1 Introduction
	11.2 General Concepts
	11.3 Charts
	11.4 Labels
	11.5 Axes
	11.6 Bar Charts
	11.7 Line Charts
	11.8 Line Plots
	11.9 Pie Charts
	11.10 Legends
	11.11 Shapes
	11.12 Widgets

	Appendix A ReportLab Demos
	A.1 Odyssey
	A.2 Standard Fonts and Colors
	A.3 Py2pdf
	A.4 Gadflypaper
	A.5 Pythonpoint

