
MultiMarkdown v6 Quick Start Guide
Fletcher T. Penney

October 13, 2017

Contents

Introduction 2

Performance 2

Parse Tree 3

Features 4

Abbreviations (Or Acronyms) 4

Citations 5

CriticMarkup 5

Embedded Images 5

Emph and Strong 5

EPUB 3 Support 5

Fenced Code Blocks 6

Footnotes 6

Glossary Terms 6

HTML Comments 7

Internationalization 7

LaTeX Changes 7

Metadata 9

Output Formats 9

Raw Source 10

Table of Contents 10

Tables 11

Transclusion 11

Future Steps 11

Glossary 13

Abbreviations 13

multimarkdown v6 quick start guide 2

Introduction

Version: 6.2.2
This document serves as a description of MultiMarkdown (MMD)

v6, as well as a sample document to demonstrate the various fea-
tures. Specifically, differences from MMD v5 will be pointed out.

Performance

A big motivating factor leading to the development of MMD v6

was performance. When MMD first migrated from Perl to C (based
on peg- markdown1), it was among the fastest Markdown parsers 1 https://github.com/jgm/peg-

markdownavailable. That was many years ago, and the “competition” has made
a great deal of progress since that time.

When developing MMD v6, one of my goals was to keep MMD
at least in the ballpark of the fastest processors. Of course, being the
fastest would be fantastic, but I was more concerned with ensuring
that the code was easily understood, and easily updated with new
features in the future.

MMD v3 – v5 used a PEG to handle the parsing. This made it
easy to understand the relationship between the MMD grammar
and the parsing code, since they were one and the same. However,
the parsing code generated by the parsers was not particularly fast,
and was prone to troublesome edge cases with terrible performance
characteristics.

The first step in MMD v6 parsing is to break the source text into
a series of tokens, which may consist of plain text, whitespace, or
special characters such as ‘*’, ‘[’, etc. This chain of tokens is then used
to perform the actual parsing.

MMD v6 divides the parsing into two separate phases, which
actually fits more with Markdown’s design philosophically.

1. Block parsing consists of identifying the “type” of each line of the
source text, and grouping the lines into blocks (e.g. paragraphs,
lists, blockquotes, etc.) Some blocks are a single line (e.g. ATX
headers), and others can be many lines long. The block parsing in
MMD v6 is handled by a parser generated by lemon2. This parser 2 http://www.hwaci.com/sw/lemon/

allows the block structure to be more readily understood by non-
programmers, but the generated parser is still fast.

2. Span parsing consists of identifying Markdown/MMD structures
that occur inside of blocks, such as links, images, strong, emph,
etc. Most of these structures require matching pairs of tokens to
specify where the span starts and where it ends. Most of these
spans allow arbitrary levels of nesting as well. This made parsing

https://github.com/jgm/peg-markdown
https://github.com/jgm/peg-markdown
https://github.com/jgm/peg-markdown
http://www.hwaci.com/sw/lemon/
http://www.hwaci.com/sw/lemon/

multimarkdown v6 quick start guide 3

them correctly in the PEG-based code difficult and slow. MMD
v6 uses a different approach that is accurate and has good perfor-
mance characteristics even with edge cases. Basically, it keeps a
stack of each “opening” token as it steps through the token chain.
When a “closing” token is found, it is paired with the most re-
cent appropriate opener on the stack. Any tokens in between the
opener and closer are removed, as they are not able to be matched
any more. To avoid unnecessary searches for non- existent open-
ers, the parser keeps track of which opening tokens have been
discovered. This allows the parser to continue moving forwards
without having to go backwards and re-parse any previously vis-
ited tokens.

The result of this redesigned MMD parser is that it can parse short
documents more quickly than CommonMark3, and takes only 15% 3 http://commonmark.org/

– 20% longer to parse long documents. I have not delved too deeply
into this, but I presume that CommonMark has a bit more “set-up”
time that becomes expensive when parsing a short document (e.g.
a paragraph or two). But this cost becomes negligible when parsing
longer documents (e.g. file sizes of 1 MB). So depending on your use
case, CommonMark may well be faster than MMD, but we’re talk-
ing about splitting hairs here. . . . Recent comparisons show MMD v6

taking approximately 4.37 seconds to parse a 108 MB file (approxi-
mately 24.8 MB/second), and CommonMark took 3.72 seconds for
the same file (29.2 MB/second). For comparison, MMD v5.4 took
approximately 94 second for the same file (1.15 MB/second).

For a more realistic file of approx 28 kb (the source of the Mark-
down Syntax web page), both MMD and CommonMark parse it too
quickly to accurately measure. In fact, it requires a file consisting of
the original file copied 32 times over (0.85 MB) before /usr/bin/env

time reports a time over the minimum threshold of 0.01 seconds for
either program.

There is still potentially room for additional optimization in MMD.
However, even if I can’t close the performance gap with Common-
Mark on longer files, the additional features of MMD compared with
Markdown in addition to the increased legibility of the source code
of MMD (in my biased opinion anyway) make this project worth-
while.

Parse Tree

MMD v6 performs its parsing in the following steps:

1. Start with a null-terminated string of source text (C style string)

2. Lex string into token chain

http://commonmark.org/
http://commonmark.org/

multimarkdown v6 quick start guide 4

3. Parse token chain into blocks

4. Parse tokens within each block into span level structures (e.g.
strong, emph, etc.)

5. Export the token tree into the desired output format (e.g. HTML,
LaTeX, etc.) and return the resulting C style string

OR

6. Use the resulting token tree for your own purposes.

The token tree (AST) includes starting offsets and length of each
token, allowing you to use MMD as part of a syntax highlighter.
MMD v5 did not have this functionality in the public version, in
part because the PEG parsers used did not provide reliable offset
positions, requiring a great deal of effort when I adapted MMD for
use in MultiMarkdown Composer4. 4 http://multimarkdown.com/

These steps are managed using the mmd_engine “object”. An in-
dividual mmd_engine cannot be used by multiple threads simultane-
ously, so if libMultiMarkdown is to be used in a multithreaded pro-
gram, a separate mmd_engine should be created for each thread. Al-
ternatively, just use the slightly more abstracted mmd_convert_string()

function that handles creating and destroying the mmd_engine auto-
matically.

Features

Abbreviations (Or Acronyms)

This file includes the use of MMD as an abbreviation for MultiMark-
down. The abbreviation will be expanded on the first use, and the
shortened form will be used on subsequent occurrences.

Abbreviations can be specified using inline or reference syntax.
The inline variant requires that the abbreviation be wrapped in
parentheses and immediately follows the >.

[>MMD] is an abbreviation. So is [>(MD) Markdown].

[>MMD]: MultiMarkdown

There is also a “shortcut” method for abbreviations that is simi-
lar to the approach used in prior versions of MMD. You specify the
definition for the abbreviation in the usual manner, but MMD will
automatically identify each instance where the abbreviation is used
and substitute it automatically. In this case, the abbreviation is lim-
ited to a more basic character set which includes letters, numbers,
periods, and hyphens, but not much else. For more complex abbrevi-
ations, you must explicitly mark uses of the abbreviation.

http://multimarkdown.com/
http://multimarkdown.com/

multimarkdown v6 quick start guide 5

Citations

Citations can be specified using an inline syntax, just like inline foot-
notes. If you wish to use BibTeX, then configure the bibtex metadata
(required) and the biblio style metadata (optional).

The HTML output for citations now uses parentheses instead of
brackets, e.g. (1) instead of [1].

CriticMarkup

MMD v6 has improved support for CriticMarkup5, both in terms of 5 http://criticmarkup.com/

parsing, and in terms of support for each output format. You can
insert text, delete text, substitute one thingfor another, highlight text,
and in the text. leave commentsleave comments

If you don’t specify any command line options, then MMD will
apply special formatting to the CriticMarkup formatting as in the
preceding paragraph. Alternatively, you can use the -a\-accept or
-r\-reject options to cause MMD to accept or reject, respectively,
the proposed changes within the CM markup. When doing this, CM
will work across blank lines. Without either of these two options,
then CriticMarkup that spans a blank line is not recogniz

T formats).

Embedded Images

Supported export formats (odt, epub, bundle, bundlezip) include
images inside the export document:

• Local images are embedded automatically

• Images stored on remote servers are embedded if libCurl6 is prop- 6 https://curl.haxx.se/libcurl/

erly installed when MMD is compiled. This is true f

ed as such. I working on options for this for the future.

Emph and Strong

The basics of emphasis and strong emphasis are unchanged, but the
parsing engine has been improved to be more accurate, particularly
in various edge cases where proper parsing can be difficult.

EPUB 3 Support

MMD v6 now provides support for direct creation of EPUB 3
7 files. 7 https://en.wikipedia.org/wiki/EPUB

Previously a separate tool was required to create EPUB files from
MMD. It’s now built- in. Currently, EPUB 3 files are built using
the usual HTML 5 output. No extra CSS is applied, so the default

http://criticmarkup.com/
http://criticmarkup.com/
https://curl.haxx.se/libcurl/
https://curl.haxx.se/libcurl/
https://en.wikipedia.org/wiki/EPUB
https://en.wikipedia.org/wiki/EPUB

multimarkdown v6 quick start guide 6

from the reader will be used. Images are not yet supported, but are
planned for the future.

EPUB files can be highly customized with other tools, and I rec-
ommend doing that for production quality files. For example, ap-
parently performance is improved when the content is divided into
multiple files (e.g. one file per chapter). MMD creates EPUB 3 files
using a single file. Tools like Sigil8 are useful for improving your 8 https://sigil-ebook.com/

EPUB files, and I recommend doing that.
Not all EPUB readers support v3 files. I don’t plan on adding sup-

port for older versions of the EPUB format, but other tools can con-
vert to other document formats you need. Same goes for Amazon’s
ebook formats – the Calibre9 program can also be used to intercon- 9 https://calibre-ebook.com/

vert between formats.
NOTE: Because EPUB documents are binary files, MMD only

creates them when run in batch mode (using the -b\-batch options).
Otherwise, it simply outputs the HTML 5 file that would serve as the
primary content for the EPUB.

Fenced Code Blocks

Fenced code blocks are fundamentally the same as MMD v5, except:

1. The leading and trailing fences can be 3, 4, or 5 backticks in
length. That should be sufficient to account for complex docu-
ments without requiring a more complex parser.

2. If there is no trailing fence, then everything after the leading fence
is considered to be part of the code block.

Footnotes

The HTML output for footnotes now uses superscripts instead of
brackets, e.g. ¹ instead of [1].

Glossary Terms

If there are terms in your document you wish to define in a glossary
at the end of your document, you can define them using the glossary
syntax.

Glossary terms can be specified using inline or reference syn-
tax. The inline variant requires that the abbreviation be wrapped in
parentheses and immediately follows the ?.

[?(glossary) The glossary collects information about important

terms used in your document] is a glossary term.

https://sigil-ebook.com/
https://sigil-ebook.com/
https://calibre-ebook.com/
https://calibre-ebook.com/

multimarkdown v6 quick start guide 7

[?glossary] is also a glossary term.

[?glossary]: The glossary collects information about important

terms used in your document

Much like abbreviations, there is also a “shortcut” method that is
similar to the approach used in prior versions of MMD. You specify
the definition for the glossary term in the usual manner, but MMD
will automatically identify each instance where the term is used and
substitute it automatically. In this case, the term is limited to a more
basic character set which includes letters, numbers, periods, and
hyphens, but not much else. For more complex glossary terms, you
must explicitly mark uses of the term.

HTML Comments

Previously, HTML Comments were used by MultiMarkdown to in-
clude raw text for inclusion in the output file. This was useful, but
limited, as it could only work for one output format at a time.

HTML Comments are now only included in HTML output, but
not in any other format since they would cause errors.

Take a look at the HTML Comments.text file in the test suite for a
better understanding of comment blocks vs comment spans, and how
they are parsed.

Internationalization

MMD v6 includes support for substituting certain text phrases in
other languages. This only affects the HTML format.

LaTeX Changes

LaTeX support is slightly different than in prior versions of MMD. It
is designed to be a bit more consistent, and easier for basic use.

The previous approach used two types of metadata:

• latex input – this uses the name of a latex file that will be used
in a \input{file} command. This key can be used multiple times
(the only metadata key that worked this way), and all the basic
metadata is written to the LaTeX file in order.

• latex footer – this file worked the same way as latex input, but
was inserted at the end of the file

In practice, one typically needs to be able to insert \input com-
mands at only a few key places in the final document:

multimarkdown v6 quick start guide 8

1. At the very beginning

2. After metadata, and before the body of the document

3. After the body of the document

MMD 6 standardizes the metadata to use 3 new keys:

1. latex leader – this specifies a file that will be used at the very
beginning of the document.

2. latex begin – this comes after metadata, and before the body of
the document. This will usually include the \begin{document}

command, hence the name.

3. latex footer – this comes after the body of the document.

You can use these 3 keys to replace the old latex input metadata
keys, as long as you pay attention as to which is which. If you used
more than three include statements, you may have to combine your
latex files to fit into the new system.

In addition, there is a new shortcut key – latex config. This al-
lows you to specify a “document name” that is used to automatically
identify the corresponding latex leader, latex begin, and latex

footer files. For example, using latex config: artice is the same
as using:

latex leader: mmd6-article-leader

latex begin: mmd6-article-begin

latex footer: mmd6-article-footer

Using the new system will require migrating your old configura-
tion to the new naming convention, but once done I believe it should
me much more intuitive to use.

The LaTeX support files included with the MMD v6 repository
support the use of the following latex config values by default:

• article

• tufte-book

• tufte-handout

NOTE: You do have to install the MMD support files into the
proper location for your system. I would like to make this easier, but
haven’t found the best configuration yet.

multimarkdown v6 quick start guide 9

Metadata

Metadata in MMD v6 includes new support for LaTeX – the latex

config key allows you to automatically setup of multiple latex

include files at once. The default setups that I use would typically
consist of one LaTeX file to be included at the top of the file, one to
be included right at the beginning of the document, and one to be
included at the end of the document. If you want to specify the latex
files separately, you can use latex leader, latex begin, and latex

footer.
There are new metadata keys for controlling internationalization:

• language – specify the content language for a document, using
the two letter code for the language (e.g. en for English). Where
possible, this will also set the default quotes language.

• quotes language – specify which variant of smart quotes to
use. Valid options are dutch, french, german, germanguillemets,
swedish, nl, fr, de, sv. Anything else defaults to English.

Additionally, the MMD Header and MMD Footer metadata work
slightly differently. In v5, these fields were used to list names of files
that should be transcluded before and after the main body. In v6,
these fields represent the actual text to be inserted. If you want them
to reference separate files, use the transclusion functionality:

Title: Some Title

MMD Header: This is *MMD* text.

MMD Footer: {{footer.txt}}

Output Formats

MultiMarkdown 6 supports the following output formats, using the
-t command-line argument:

• html – (Default) create HTML 5

• latex – create LaTeX10 for conversion to PDF using high quality 10 https://en.wikipedia.org/wiki/LaTeX

typography

• beamer and memoir – two additional LaTeX variants for creating
slide presentations and longer documents, respectively

• mmd – output the MMD text before converting to another format,
but after performing transclusion. This format is not generally
needed.

• odt – OpenDocument text file, used by OpenOffice and compatible
word processors. Images are embedded inside the file package.

https://en.wikipedia.org/wiki/LaTeX
https://en.wikipedia.org/wiki/LaTeX

multimarkdown v6 quick start guide 10

• fodt – OpenDocument text variant using a single text (XML) file
instead of a compressed zip file. Images are not embedded in this
format.

• epub – EPUB 3 ebook format. Images and CSS are embedded in
the file package.

• bundle – [TextBundle] format consisting of Markdown/MultiMarkdown
text file and embedded images and CSS. Useful for sharing Mark-
down files and images between applications (on any OS, but espe-
cially on iOS)

• bundlezip – TextPack variant of the TextBundle format – the file
package is compressed to a single zip file (similar to EPUB and
ODor macOS builds.

Raw Source

In older versions of MultiMarkdown you could use an HTML com-
ment to pass raw LaTeX or other content to the final document. This
worked reasonably well, but was limited and didn’t work well when
exporting to multiple formats. It was time for something new.

MMD v6 offers a new feature to handle this. Code spans and code
blocks can be flagged as representing raw source:

foo ‘*bar*‘{=html}

‘‘‘{=latex}

foo
‘‘‘

The contents of the span/block will be passed through unchanged.
You can specify which output format is compatible with the speci-

fied source:

• html

• odt

• epub

• latex

• * – wildcard matches any output format

Table of Contents

By placing {{TOC}} in your document, you can insert an automati-
cally generated Table of Contents in your document. As of MMD v6,
the native Table of Contents functionality is used when exporting to
LaTeX or OpenDocument formats.

multimarkdown v6 quick start guide 11

Tables

Tables in MultiMarkdown-6 work basically the same as before, but a
caption, if present, must come after the body of the table, not before.

Transclusion

File transclusion works basically the same way – {{file}} is used
to indicate a file that needs to be transcluded. {{file.*}} allows
for wildcard transclusion. What’s different is that the way search
paths are handled is more flexible, though it may take a moment to
understand.

When you process a file with MMD, it uses that file’s directory as
the search path for included files. For example:

Directory Transcluded Filename Resolved Path

/foo/bar/ bat /foo/bar/bat

/foo/bar/ baz/bat /foo/bar/baz/bat

/foo/bar/ ../bat /foo/bat

This is the same as MMD v 5. What’s different is that when you
transclude a file, the search path stays the same as the “parent” file,
UNLESS you use the transclude base metadata to override it. The
simplest override is:

transclude base: .

This means that any transclusions within the file will be calculated
relative to the file, regardless of the original search path.

Alternatively you could specify that any transclusion happens
inside a subfolder:

transclude base: folder/

Or you can specify an absolute path:

transclude base: /some/path

This flexibility means that you can transclude different files based
on whether a file is being processed by itself or as part of a “parent”
file. This can be useful when a particular file can either be a stan-
dalone document, or a chapter inside a larger document.

Future Steps

Some features I plan to implement at some point:

multimarkdown v6 quick start guide 12

1. OPML export support is not available in v6. I plan on adding
improved support for this at some point. I was hoping to be able
to re-use the existing v6 parser but it might be simpler to use the
approach from v5 and earlier, which was to have a separate parser
tuned to only identify headers and “stuff between headers”.

multimarkdown v6 quick start guide 13

Glossary

AST Abstract Syntax Tree https://en.wikipedia.org/wiki/Abstract_syntax_tree
3

glossary The glossary collects information about important terms
used in your document. 6

PEG Parsing Expression Grammar https://en.wikipedia.org/wiki/
Parsing_expression_grammar 1–3

Abbreviations

MMD MultiMarkdown. 1–10

https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://en.wikipedia.org/wiki/Parsing_expression_grammar

	Introduction
	Performance
	Parse Tree
	Features
	Future Steps
	Glossary
	Abbreviations

