T
- specifies the type of the inheriting class in order to avoid
otherwise necessary type castsS
- specifies the result type of all rotation short-cut methods (see
IRotatable
)public abstract class AbstractRectangleBasedGeometry<T extends AbstractRectangleBasedGeometry<?,?>,S extends IGeometry> extends java.lang.Object implements ITranslatable<T>, IScalable<T>, IRotatable<S>
Abstract superclass of geometries that are defined by means of their upper left coordinate (x, y) and a given width and height.
The type parameter T
specifies the type of the inheriting class.
This is to be able to return the correct type, so that a type cast is
unnecessary.
The type parameter S
specifies the result type of all rotation
short-cut methods. See IRotatable
for more information.
Constructor and Description |
---|
AbstractRectangleBasedGeometry(double x,
double y,
double width,
double height)
Constructs a new
AbstractRectangleBasedGeometry with the given
position and size. |
Modifier and Type | Method and Description |
---|---|
java.lang.Object |
clone()
Overridden with public visibility as recommended within
Cloneable
. |
T |
expand(double h,
double v)
Expands the horizontal and vertical sides of this
AbstractRectangleBasedGeometry with the values provided as input,
and returns this for convenience. |
T |
expand(double left,
double top,
double right,
double bottom)
Expands this
AbstractRectangleBasedGeometry by the given amounts,
and returns this for convenience. |
Rectangle |
getBounds()
|
Point |
getCenter()
Returns the center
Point of this
AbstractRectangleBasedGeometry . |
T |
getExpanded(double h,
double v)
Returns a new expanded
AbstractRectangleBasedGeometry , where the
sides are incremented by the horizontal and vertical values provided. |
T |
getExpanded(double left,
double top,
double right,
double bottom)
Creates and returns a new
AbstractRectangleBasedGeometry with the
bounds of this AbstractRectangleBasedGeometry expanded by the
given insets. |
double |
getHeight()
Returns the height of this
AbstractRectangleBasedGeometry . |
Point |
getLocation()
Returns a
Point specifying the x and y coordinates of this
AbstractRectangleBasedGeometry . |
T |
getScaled(double factor)
Scales a copy of the calling object by the given factor relative to its
center
Point . |
T |
getScaled(double factorX,
double factorY)
Scales a copy of the calling object by the given factors relative to its
center
Point . |
T |
getScaled(double factor,
double centerX,
double centerY)
Scales a copy of the calling object by the given factor relative to the
given center
Point (cx, cy). |
T |
getScaled(double factorX,
double factorY,
double centerX,
double centerY)
Scales a copy of the calling object by the given factors relative to the
given center
Point (cx, cy). |
T |
getScaled(double factorX,
double factorY,
Point center)
Scales a copy of the calling object by the given factors relative to the
given center
Point . |
T |
getScaled(double factor,
Point center)
Scales a copy of the calling object by the given factor relative to the
given center
Point . |
T |
getShrinked(double h,
double v)
Returns a new
AbstractRectangleBasedGeometry , where the sides are
shrinked by the horizontal and vertical values supplied. |
T |
getShrinked(double left,
double top,
double right,
double bottom)
Returns a new
AbstractRectangleBasedGeometry shrinked by the
specified insets. |
Dimension |
getSize()
Returns a
Dimension that records the width and height of this
AbstractRectangleBasedGeometry . |
IGeometry |
getTransformed(AffineTransform t)
|
T |
getTranslated(double dx,
double dy)
Translates a copy of this object by the given values in x and y
direction.
|
T |
getTranslated(Point pt)
Translates a copy of this object by the given
Point . |
double |
getWidth()
Returns the width of this
AbstractRectangleBasedGeometry . |
double |
getX()
Returns the x coordinate this
AbstractRectangleBasedGeometry . |
double |
getY()
Returns the y coordinate of this
AbstractRectangleBasedGeometry . |
int |
hashCode() |
T |
scale(double factor)
Scales the calling object by the given factor relative to its center
Point . |
T |
scale(double fx,
double fy)
Scales the calling object by the given factors relative to the given
center
Point . |
T |
scale(double factor,
double cx,
double cy)
Scales the calling object by the given factor relative to the given
center
Point (cx, cy). |
T |
scale(double fx,
double fy,
double cx,
double cy)
Scales the calling object by the given factors relative to the given
center
Point (cx, cy). |
T |
scale(double fx,
double fy,
Point center)
Scales the calling object by the given factors relative to the given
center
Point . |
T |
scale(double factor,
Point center)
Scales the calling object by the given factor relative to the given
center
Point . |
T |
setBounds(double x,
double y,
double w,
double h)
Sets the x, y, width, and height values of this
AbstractRectangleBasedGeometry to the given values. |
T |
setBounds(Point loc,
Dimension size)
Sets the x, y, width, and height values of this
AbstractRectangleBasedGeometry to the respective values specified
by the passed-in Point and the passed-in Dimension . |
T |
setBounds(Rectangle r)
Sets the x and y coordinates and the width and height of this
AbstractRectangleBasedGeometry to the respective values of the
given Rectangle . |
T |
setHeight(double height)
Sets the height of this
AbstractRectangleBasedGeometry to the
given value. |
T |
setLocation(double x,
double y)
Sets the x and y coordinates of this
AbstractRectangleBasedGeometry to the specified values. |
T |
setLocation(Point p)
Sets the x and y coordinates of this
AbstractRectangleBasedGeometry to the respective values of the
given Point . |
T |
setSize(Dimension d)
Sets the width and height of this
AbstractRectangleBasedGeometry
to the width and height of the given Dimension . |
T |
setSize(double w,
double h)
Sets the width and height of this
AbstractRectangleBasedGeometry
to the given values. |
T |
setWidth(double width)
Sets the width of this
AbstractRectangleBasedGeometry to the
passed-in value. |
T |
setX(double x)
Sets the x-coordinate of this
AbstractRectangleBasedGeometry to
the given value. |
T |
setY(double y)
Sets the y-coordinate of this
AbstractRectangleBasedGeometry to
the given value. |
T |
shrink(double h,
double v)
Shrinks the sides of this
AbstractRectangleBasedGeometry by the
horizontal and vertical values provided as input, and returns this
AbstractRectangleBasedGeometry for convenience. |
T |
shrink(double left,
double top,
double right,
double bottom)
Shrinks this
AbstractRectangleBasedGeometry by the specified
amounts. |
boolean |
touches(IGeometry g)
|
T |
translate(double dx,
double dy)
Translates the object by the given values in x and y direction.
|
T |
translate(Point p)
Translates the object by the given
Point . |
equals, finalize, getClass, notify, notifyAll, toString, wait, wait, wait
getRotatedCCW, getRotatedCCW, getRotatedCCW, getRotatedCW, getRotatedCW, getRotatedCW
public AbstractRectangleBasedGeometry(double x, double y, double width, double height)
AbstractRectangleBasedGeometry
with the given
position and size. If the width or height is negative, will use
0
instead.x
- The x-coordinate of this
AbstractRectangleBasedGeometry
y
- The y-coordinate of this
AbstractRectangleBasedGeometry
width
- the width of this AbstractRectangleBasedGeometry
height
- the height of this AbstractRectangleBasedGeometry
setX(double)
,
setY(double)
,
setWidth(double)
,
setHeight(double)
public T expand(double h, double v)
AbstractRectangleBasedGeometry
with the values provided as input,
and returns this
for convenience. The location of its center
is kept constant.h
- the horizontal incrementv
- the vertical incrementthis
for conveniencepublic T expand(double left, double top, double right, double bottom)
AbstractRectangleBasedGeometry
by the given amounts,
and returns this for convenience.left
- the amount to expand the left sidetop
- the amount to expand the top sideright
- the amount to expand the right sidebottom
- the amount to expand the bottom sidethis
for conveniencepublic Point getCenter()
Point
of this
AbstractRectangleBasedGeometry
.Point
of this
AbstractRectangleBasedGeometry
public T getExpanded(double h, double v)
AbstractRectangleBasedGeometry
, where the
sides are incremented by the horizontal and vertical values provided. The
center of the AbstractRectangleBasedGeometry
is maintained
constant.h
- The horizontal incrementv
- The vertical incrementAbstractRectangleBasedGeometry
public T getExpanded(double left, double top, double right, double bottom)
AbstractRectangleBasedGeometry
with the
bounds of this AbstractRectangleBasedGeometry
expanded by the
given insets.left
- the amount to expand the left sidetop
- the amount to expand the top sideright
- the amount to expand the right sidebottom
- the amount to expand the bottom sideAbstractRectangleBasedGeometry
public final double getHeight()
AbstractRectangleBasedGeometry
.AbstractRectangleBasedGeometry
public Point getLocation()
Point
specifying the x and y coordinates of this
AbstractRectangleBasedGeometry
.Point
representing the x and y coordinates of this
AbstractRectangleBasedGeometry
public T getScaled(double factor)
IScalable
Point
.getScaled
in interface IScalable<T extends AbstractRectangleBasedGeometry<?,?>>
factor
- scale-factorpublic T getScaled(double factorX, double factorY)
IScalable
Point
.getScaled
in interface IScalable<T extends AbstractRectangleBasedGeometry<?,?>>
factorX
- x-scale-factorfactorY
- y-scale-factorpublic T getScaled(double factor, double centerX, double centerY)
IScalable
Point
(cx, cy).public T getScaled(double factorX, double factorY, double centerX, double centerY)
IScalable
Point
(cx, cy).getScaled
in interface IScalable<T extends AbstractRectangleBasedGeometry<?,?>>
factorX
- x-scale-factorfactorY
- y-scale-factorcenterX
- x-coordinate of the relative Point
for the scalingcenterY
- y-coordinate of the relative Point
for the scalingpublic T getScaled(double factorX, double factorY, Point center)
IScalable
Point
.getScaled
in interface IScalable<T extends AbstractRectangleBasedGeometry<?,?>>
factorX
- x-scale-factorfactorY
- y-scale-factorcenter
- relative Point
for the scalingpublic T getScaled(double factor, Point center)
IScalable
Point
.getScaled
in interface IScalable<T extends AbstractRectangleBasedGeometry<?,?>>
factor
- scale-factorcenter
- relative Point
for the scalingpublic T getShrinked(double h, double v)
AbstractRectangleBasedGeometry
, where the sides are
shrinked by the horizontal and vertical values supplied. The center of
this AbstractRectangleBasedGeometry
is kept constant.h
- horizontal reduction amountv
- vertical reduction amountAbstractRectangleBasedGeometry
public T getShrinked(double left, double top, double right, double bottom)
AbstractRectangleBasedGeometry
shrinked by the
specified insets.left
- the amount to shrink the left sidetop
- the amount to shrink the top sideright
- the amount to shrink the right sidebottom
- the amount to shrink the bottom sideAbstractRectangleBasedGeometry
public final Dimension getSize()
Dimension
that records the width and height of this
AbstractRectangleBasedGeometry
.Dimension
that records the width and height of this
AbstractRectangleBasedGeometry
public T getTranslated(double dx, double dy)
ITranslatable
getTranslated
in interface ITranslatable<T extends AbstractRectangleBasedGeometry<?,?>>
dx
- x-translationdy
- y-translationpublic T getTranslated(Point pt)
ITranslatable
Point
.getTranslated
in interface ITranslatable<T extends AbstractRectangleBasedGeometry<?,?>>
pt
- translation Point
public final double getWidth()
AbstractRectangleBasedGeometry
.AbstractRectangleBasedGeometry
public final double getX()
AbstractRectangleBasedGeometry
.AbstractRectangleBasedGeometry
public final double getY()
AbstractRectangleBasedGeometry
.AbstractRectangleBasedGeometry
public T scale(double factor)
IScalable
Point
.scale
in interface IScalable<T extends AbstractRectangleBasedGeometry<?,?>>
factor
- scale-factorthis
for conveniencepublic T scale(double fx, double fy)
IScalable
Point
.scale
in interface IScalable<T extends AbstractRectangleBasedGeometry<?,?>>
fx
- x-scale-factorfy
- y-scale-factorthis
for conveniencepublic T scale(double factor, double cx, double cy)
IScalable
Point
(cx, cy).public T scale(double fx, double fy, double cx, double cy)
IScalable
Point
(cx, cy).public T scale(double fx, double fy, Point center)
IScalable
Point
.scale
in interface IScalable<T extends AbstractRectangleBasedGeometry<?,?>>
fx
- x-scale-factorfy
- y-scale-factorcenter
- relative Point
for the scalingthis
for conveniencepublic T scale(double factor, Point center)
IScalable
Point
.scale
in interface IScalable<T extends AbstractRectangleBasedGeometry<?,?>>
factor
- scale-factorcenter
- relative Point
for the scalingthis
for conveniencepublic final T setBounds(double x, double y, double w, double h)
AbstractRectangleBasedGeometry
to the given values.x
- the new x-coordinatey
- the new y-coordinatew
- the new widthh
- the new heightthis
for conveniencepublic final T setBounds(Point loc, Dimension size)
AbstractRectangleBasedGeometry
to the respective values specified
by the passed-in Point
and the passed-in Dimension
.loc
- the Point
specifying the new x and y coordinates of
this AbstractRectangleBasedGeometry
size
- the Dimension
specifying the new width and height of
this AbstractRectangleBasedGeometry
this
for conveniencepublic final T setBounds(Rectangle r)
AbstractRectangleBasedGeometry
to the respective values of the
given Rectangle
.r
- the Rectangle
specifying the new x, y, width, and
height values of this AbstractRectangleBasedGeometry
this
for conveniencepublic final T setHeight(double height)
AbstractRectangleBasedGeometry
to the
given value.height
- the new heightthis
for conveniencepublic final T setLocation(double x, double y)
AbstractRectangleBasedGeometry
to the specified values.x
- the new x coordinate of this
AbstractRectangleBasedGeometry
y
- the new y coordinate of this
AbstractRectangleBasedGeometry
this
for conveniencepublic final T setLocation(Point p)
AbstractRectangleBasedGeometry
to the respective values of the
given Point
.p
- the Point
specifying the new x and y coordinates of
this AbstractRectangleBasedGeometry
this
for conveniencepublic final T setSize(Dimension d)
AbstractRectangleBasedGeometry
to the width and height of the given Dimension
.d
- the Dimension
specifying the new width and height of
this AbstractRectangleBasedGeometry
this
for conveniencepublic final T setSize(double w, double h)
AbstractRectangleBasedGeometry
to the given values.w
- the new width of this AbstractRectangleBasedGeometry
h
- the new height of this AbstractRectangleBasedGeometry
this
for conveniencepublic final T setWidth(double width)
AbstractRectangleBasedGeometry
to the
passed-in value.width
- the new width of this AbstractRectangleBasedGeometry
this
for conveniencepublic final T setX(double x)
AbstractRectangleBasedGeometry
to
the given value.x
- The new x-coordinate.this
for convenience.public final T setY(double y)
AbstractRectangleBasedGeometry
to
the given value.y
- The new y-coordinate.this
for convenience.public T shrink(double h, double v)
AbstractRectangleBasedGeometry
by the
horizontal and vertical values provided as input, and returns this
AbstractRectangleBasedGeometry
for convenience. The center of
this AbstractRectangleBasedGeometry
is kept constant.h
- horizontal reduction amountv
- vertical reduction amountthis
for conveniencepublic T shrink(double left, double top, double right, double bottom)
AbstractRectangleBasedGeometry
by the specified
amounts.left
- the amount to shrink the left sidetop
- the amount to shrink the top sideright
- the amount to shrink the right sidebottom
- the amount to shrink the bottom sidethis
for conveniencepublic T translate(double dx, double dy)
ITranslatable
translate
in interface ITranslatable<T extends AbstractRectangleBasedGeometry<?,?>>
dx
- x-translationdy
- y-translationthis
for conveniencepublic T translate(Point p)
ITranslatable
Point
.translate
in interface ITranslatable<T extends AbstractRectangleBasedGeometry<?,?>>
p
- translation Point
this
for conveniencepublic java.lang.Object clone()
Cloneable
.clone
in class java.lang.Object
public IGeometry getTransformed(AffineTransform t)
Path
representation of this IGeometry
. Subclasses may override this
method to return a more specific representation.getTransformed
in interface IGeometry
t
- The AffineTransform
to be appliedPath
representation of this
IGeometry
public final int hashCode()
hashCode
in class java.lang.Object
Object.hashCode()
Copyright (c) 2014 itemis AG, and others. All rights reserved.