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Abstract

The calculation of moments for a truncated multivariate normal distribution has been a persis-
tent challenge in statistical computation. Recently, Kan and Robotti (2017) developed an algorithm,
implemented in the R package MomTrunc by Galarza et al. (2025), which is capable of calculating mo-
ments of all orders under various types of truncation. However, its practical utility is often hampered
by the heavy computational burden, which increases exponentially with the order of the moment or
the dimension of the random vector. Meanwhile, Lee (2020) presented an effective numerical method
based on Gauss-Hermite quadrature, which offers superior accuracy and computational efficiency.

This article introduces trunmnt, an R package that implements Lee’s method. trunmnt is designed
for moment calculations in most practical statistical problems, offering superior speed and accuracy,
particularly in low-dimensional settings.

1 Introduction

The package trunmnt computes the moment:
EXY™ - Y a; <Y;<b,i=1,...,n) (1)

where Y = (Y1,...,Y,) ~ N(u,X) is a random vector and the x; are nonnegative integers. This
calculation vields the s order product moment (x = Z?:l ki) of a truncated multivariate normal
distribution, where each component Y; is truncated between a lower limit a; and an upper limit b;.
In what follows, we will use the simplified notation E (Y* |a < Y < b) for equation (1).

In this general formulation, some or all of the a;’s may be —oo and some or all of the b;’s may be
oo. Specific truncation types are defined as follows:

- Lower Truncation: When all b; are oo, the random vector is Y > a.
- Upper Truncation: When all a; are —oo, the random vector is Y < h.
- Double Truncation: When a < Y < b, implying both lower and upper truncation points.

A challenge in calculating the moments of a multivariate truncated normal distribution arises
from the fact that its marginal distributions are not truncated normal. Consequently, calculating
the marginal x™ order moment requires computing the «™ order product moment. For instance,
computing the second order moment of Y, E(Y?| a; < Y; < b;,i = 1,...,n), requires calculating the
second order product moment E(Y2YY - Y0 | a; <Y; <b;,i=1,...,n).

The calculation of these product moments has been addressed in numerous studies under varying
conditions, including the type of truncation (one-sided or double-sided) and the number of variables
(univariate, bivariate, or multivariate). However, currently, two R packages are available for the mo-
ment calculation. The first is based on the work of Manjunath and Wilhelm (2012), who provided
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explicit representations for the mean and variance of a multivariate normal distribution with arbi-
trary double truncation using the moment generating function. These results were implemented in
the package tmvtnorm (Wilhelm and Manjunath, 2010), which can consequently calculate moments
up to the second order. It is worth noting that likelihood-based inferences for some limited depen-
dent variable mixed-effects models require fourth-order moments. The second package, MomTrunc
(Galarza et al., 2025), uses the iterative relationship developed by Kan and Robotti (2017) for inte-
grals involving the multivariate normal density. Algorithms that rely on recursive relationships are
generally known to be slow. This is reflected in MomTrunc, which is quite slow even for moderately
large dimensions or moment orders. In contrast, the algorithm proposed by Lee (2020) does not
depend heavily on the dimension (n); its effectiveness depends primarily on the covariance structure
of the variables.

One advantage of both the tmvtnorm and MomTrunc packages is their capacity to compute mo-
ments without imposing structural assumptions on the variance-covariance matrix of the parent mul-
tivariate normal distribution. This matrix, for an n-dimensional random vector, comprises n(n+1)/2
unique elements. In most statistical models, this matrix is generally unknown, and its estimation
typically necessitates assumptions regarding its structure. The trunmnt package, while designed to
efficiently compute product moments by leveraging the specific variance-covariance matrix struc-
tures common in statistical models, also retains the capability to compute moments without such
structural assumptions.

2 Computation of moments

2.1 Variance-covariance structure in mixed effects linear models
The general form of the model equation for a linear mixed model is,
Y=XB+Zu+e.

Here X,, ., is a matrix of explanatory variables, 3 is a vector of unknown parameters, Z, ., is the de-
sign matrix for the random effects u, and € is the vector of errors. Customarily, the random effects u
are assumed to follow a multivariate normal distribution with mean 0 and symmetric positive definite
variance-covariance matrix D, and the error terms are assumed to be independent but not necessarily
’homoscedastic, thus allowing for more flexibility. Specifically, the distribution of € is assumed to
be € ~ N(0,E), where E is a diagonal matrix with elements (o2, ...,02). This is a generalization of
the usual assumption € ~ N (0, o2I).
Assuming u and e are independent and letting p = X3, the response vector Y has the marginal
distribution:
Y ~ N (u,ZDZ’ +E). (2)

The trunmnt package focuses on calculating the truncated moment under this variance structure.
Let the conditional x-th moment of a truncated univariate normal random variable be defined as
My p) (n,0%) = E(Y*| a <Y < b), and the probability of truncation as ®(a, b; u,0?) = Prla < Y < b],
where Y ~ N(u,0?). Furthermore, let ¢, (x; u, ¥) denote the joint density of an n-variate normal
distribution with mean vector p and covariance matrix .
Using Theorem 1 from Lee (2020), the product moment of the truncated multivariate normal
distribution, E(Y"* - - - Yn| a; < Y; < b;,i = 1,...,n), equals:

1 < (L . _ _
m/ (H m'{”;hbi) (MmU?) N (Gmbi;ﬂi,af)) ¢q(u;0,D)du, (3)

—° \i=1

where ji; = p1; + zu, and z/ is the i row of Z.

Equation (3) is significant because it reduces an n-dimensional integral problem to a ¢g-dimensional
integral, where ¢ is typically much less than n. In practice, g is typically 1 or 2 in many statisti-
cal models, allowing these low-dimensional integrals to be evaluated efficiently using the Gauss-
Hermite quadrature method. Since the moment of a truncated univariate normal random variable,



m(ai,bi)(p‘i’ of), can be obtained via an explicit formula (Burkardt, 2014) (which is implemented in
the utrunmnt () function within the trunmnt package), (3) can be successfully approximated by the
Gauss-Hermite method. The trunmnt package specifically utilizes the multivariate Gauss-Hermite
quadrature described in Jackel (2005).

A related result of (3) is:

Pra<Y<b]= / (H ® (ag, bi; fis, af)) ¢q(u;0,D)du. (4)
-0 \i=1

The evaluation of Prla < Y < b] constitutes another n-dimensional integral problem that is analyt-
ically intractable. This quantity is required by both the tmvtnorm and MomTrunc packages. Both
packages rely on mvtnorm (Genz et al., 2025)—an R package for computing multivariate normal and
t probabilities, quantiles, random deviates, and densities—to calculate this probability after trunca-
tion.

The methods used by mvtnorm and trunmnt differ: mvtnorm utilizes a randomized quasi-Monte
Carlo procedure (Genz, 1992, 1993), while trunmnt evaluates equation (4) using multivariate Gauss-
Hermite quadrature. It is generally acknowledged that quasi-Monte Carlo integration performs better
than quadrature methods for high-dimensional integral problems, although its convergence proper-
ties are typically slow. Conversely, quadrature methods are known to be very fast and efficient for
low-dimensional integration.

2.2 Arbitrary positive-definite variance-covariance matrix

Suppose the parent distribution has an arbitrary positive-definite variance-covariance matrix X. Us-
ing the spectral decomposition, we can write:

3 = PAP/

where P is an orthogonal matrix and A is a diagonal matrix whose entries are the eigenvalues \; >
Ao > - > ), of X. Since X is positive-definite, the smallest eigenvalue \,, is strictly greater than
Zero.

If all eigenvalues are identical (X = AI,,), the components of the parent distribution are uncorre-
lated, and independent if the distribution is multivariate normal. In this special case, computing the
product moment simplifies to computing the product of the marginal moments of the independent
components, and thus one may use utrunmnt () for computing the required univariate moments.

Suppose now that the eigenvalues are not all identical, and that )\, is an r-fold eigenvalue, where
1 <r <n—1. We then partition P into an n x (n — r) matrix P; and an n x r matrix P,. Correspond-
ingly, we partition A into A; and \,I,., where A is the diagonal matrix of the remaining eigenvalues
A,y ..., An_r. This allows us to re-express X as:

A 0 | 24

=P AP) + )\, (I, — P1P)) =Py (A — AL, ) Py + M0,

Note that A; — A\,I,_, is a diagonal matrix whose entries are strictly positive. Consequently, any
arbitrary positive-definite variance-covariance matrix can be written in the form of (2).

This reformulation enables the use of (3) for computing the product moments with an arbitrary
variance-covariance matrix. The computation using equation (3) becomes highly efficient when r, the
multiplicity of the smallest eigenvalue, is large. This efficiency is significant because many patterned
covariance matrices commonly used in statistical applications exhibit a large value of r (e.g., the
compound symmetry variance matrix has a multiplicity of » = n — 1 for its smallest eigenvalue).



Table 1: Summary of the functions in the trunmnt package

Function Description

meanvar Calculate the mean and variance

mtrunmnt Create a mtrunmnt object with given parameters
prodmnt Calculate the product moment

probntrun Calculate the probability of not being truncated
utrunmnt Calculate the moment of univariate truncated normal distribution

3 The trunmnt package

3.1 Structure and functionality

The trunmnt package consists of five main functions for calculating the moments of a truncated
multivariate normal distribution. Table 1 provides a summary of these functions. Their functionality
will be demonstrated with numerical examples below. Most of the functional parts of trunmnt were
written using RcppArmadi1Tlo (Eddelbuettel and Sanderson, 2014) for computational efficiency.

The calculation of moments for a truncated univariate normal distribution is implemented in the
utrunmnt () function.

utrunmnt(k, mu = 0., Tower = -Inf, upper = Inf, sd = 1.)

Here, the k argument specifies the order of the moment and must be a nonnegative integer. The other
arguments are self-explanatory. For example, if a normal distribution with mean 5 and standard
deviation 1 is upper truncated at 10, the fourth moment is computed with the command:

> utrunmnt(4, mu = 5, upper = 10)
[1] 777.9971

To calculate the moment E(y"| a < Y < b), you must first create an mtrunmnt object using the
following syntax:

obj <- mtrunmnt(mu, lower = -Inf, upper = Inf, Sigma = 1, Sigmae = 1,
Z = matrix(rep(1, length(mu)), ncol = 1),
D = matrix(1, ncol = 1, nrow = 1), nGH = 35)

The mean vector of the parent distribution must be passed to the mu argument, which has no
default value. The lower limits and upper limits are specified by Tower and upper, respectively.
These limits can be provided as a scalar (if they are all the same) or as a vector with the same length as
mu. The variance-covariance matrix must be specified in one of two ways: either by providing Sigmae,
D, and Z in (2), or by providing Sigma directly. The former approach is preferable for leveraging the
computational advantages of the package.

Variance-Covariance Specification:

Sigmae: Specifies the variances of the error terms (e€). It must be a scalar or a vector of length
equal to mu. If a scalar is provided, the variances are assumed to be equal.

Z and D: The design matrix for the random effects (u) and its variance-covariance matrix are
passed via the Z and D arguments, respectively.

- By default, Z is a vector of ones in matrix format with the same length as mu. It should
be changed as necessary so that the number of columns of Z and the dimension of the
random components are the same.

- For D, you can pass a scalar (for independent random components (u) with equal variances),
a vector (for independent components with unequal variances), or a positive-definite ma-
trix. If D is provided as a scalar or a vector, it is converted into a diagonal matrix whose
diagonal entries are determined by the given value(s), with a dimension equal to the number
of columns in Z.



Sigma: When Sigma is specified, a positive-definite symmetric matrix should be passed to this
argument.

The nGH argument specifies the number of Gauss-Hermite quadrature points, with a default value
of 40. Note that while increasing the number of quadrature points increases the precision of the
calculation, the computational burden grows rapidly if the dimension of the random components
q is large. For example, when ¢ = 5 and nGH = 35, the Gauss-Hermite quadrature method requires
35° = 52,521,875 quadrature points to calculate (3). While this number may not seem excessively
large for computing a particular product moment, it could be large enough to cause computational
issues when calling the meanvar() function, which involves calculating n(n + 1)/2 + n moments.
Therefore, it may be more practical to reduce the value of nGH when ¢ is large.

Once a mtrunmnt object is created, it can then be passed to probntrun(), prodmnt(), and
meanvar () using the following syntax:

probntrun(obj)
meanvar (obj)
prodmnt(obj, kappa)

to compute Pr(a < Y < b),E(y"| a < Y < b) and the mean and variance-covariance matrix of
the truncated variables, respectively. Here, kappa is a vector of nonnegative integers with the same
length as the mean vector (i.e., the mu attribute of ob3j).

3.2 Numerical example

A probit regression model for panel data, an example of a model that relies on truncated multivariate
normal random variables, is specified as follows:

Yit = X}, 8 + wi + €51, (Latent variable)
1 ifyy>a
Wi = , vit = (Observed variable)
0 ifyu<a
Here the subscript i = 1,..., g indicates the individual, and the subscript ¢ = 1,...,n; indicates the

time period. u; is a time-invariant individual specific effect that follows a normal distribution with
mean 0 and variance o2, and ¢;; is the remaining disturbance that also follows a normal distribution
with mean 0 and variance o2, independently of ;. The parameter a is a known number.

The probit regression model occurs when Y = (Y3,...,Y;)’, where Y; = (Yi1,...,Yi,,)’, is an
unobservable latent vector, and inference about the model parameters can be analyzed through the
observable vector W, where W = (Wi,... , W() and W; = (Wi,..., Wy, ). Thatis, YW = wis a
truncated multivariate normal random vector. For each Y;;, the truncation limits are determined by
the observed value w;; of WW,;: the lower and upper limits are —oo and a if w;; is 0, whereas the lower
and upper limits become ¢ and oo if W;; = 1.

The Maximum Likelihood (ML) method requires computing the product moments of the latent
variables, which constitutes a g-dimensional integration problem in this probit regression model.
The trunmnt package addresses this by utilizing the multivariate Gauss-Hermite quadrature method,
thereby inheriting the same advantages and limitations. The major trade-off is between its high
accuracy in low dimensions and its prohibitive computational cost in high dimensions. For integrals
in ¢ < 3 dimensions, employing a small number of quadrature points often yields extremely accurate
results with a relatively low computational cost. Conversely, if ¢ > 4, the method suffers from the
curse of dimensionality; that is, as noted previously, for a ¢-dimensional integral with m points per
dimension, the total number of evaluation points is m?. This cost becomes prohibitively high even
for moderate dimensions, rendering the method infeasible for high-dimensional problems (g > 5
or so), where Monte Carlo methods or sparse grid techniques are preferred. We recommend using
trunmnt when ¢ < 3. Under this condition, the default value of nGH = 35 remains computationally
tractable on modern computers. If ¢ > 4, caution is advised when calling the meanvar () function,
especially when n is large.



In general, ¢ is a given number that cannot be controlled; however, in some cases, we can decom-
pose the high-dimensional integration problem into lower-dimensional subproblems. For example,
in the random effect panel probit regression model, Y is composed of independent vectors Y;, where
i =1,...,q. Consequently, the conditional expectation can be written as a product of conditional
expectations:

q
EWﬂa<Y<M=IIHﬁi&<n<bﬁ (5)
=1
where k;, a; and b; are the appropriate partitions of «, a and b, respectively. Since only 1-dimensional
integration is required for each term E (Y;" |a; < Y; < b;), we can effectively transform the original
g-dimensional integration problem into a set of one-dimensional problems, allowing for efficient and

highly accurate computation.

The following R script, based on the R environment (R Core Team, 2025), mimics a random-effects
panel probit regression model. It generates a vector of latent variables Y = (Y}, Y5,Y5), where the
5-dimensional subvectors Y; are independently and identically distributed as NV (u, X). Here, p is a
5-element vector of equally spaced values ranging from —1 to 1. The covariance matrix is defined as
¥ = 2J5 + I5, where J5 is the 5 x 5 matrix of ones and I5 is the 5 x 5 identity matrix, respectively.
Binary observations w;; are then generated via the rule w;; = 1if Y;; > 0. This transformation defines
the truncation rules for the observed data:

- If w;; = 1, the latent variable Y;; is lower-truncated (sometimes called left-censored), implying
}/it S [07 OO)

- If wi =0, Y}, is upper-truncated (sometimes called right-censored), implying Y;; € (—o0,0).

set.seed(123)

sigma2e <- 1 ; sigma2u <- 2 # Error variance and random effect variance
n <-5; k<=3

u <- rnorm(k, sd = sqrt(sigma2u))

Z <- model.matrix(~ factor(rep(l:k, each = n)) - 1) # Design matrix for
D

S

<- diag(sigma2u, k) # random effects
<- Z %*% D %*% t(Z) + diag(sigma2e, n*k)
mu <- rep(seq(-1,1, length.out = n), k) # Mean vector mu

y <-mu+ Z %*% u + rnorm(n*k, sd = sqrt(sigma2e))
w <- ifelse(y >= 0, 1, 0)

a <- rep(-Inf, n*k)

b <- rep( Inf, n*k)

afw == 1] <- 0

b[w == 0] <- 0

The following examples demonstrate the main functions in the trunmnt package, specifically us-
ing the conditional distribution of Y; given wj.

> obj <- mtrunmnt(mu[1l:5], a[l:5], b[1:5], Sigmae = 1, D = 2)
> probntrun(obj)

[1] 0.01465224

> meanvar(obj)

$tmean

[1] -1.5460538 -1.2227138 0.7203610 0.9030988 -0.6186135

$tvar

[,1] [,2] [,3] [,4] [,5]
[1,] 0.87417118 0.13333969 0.06742012 0.08987795 0.05916922
[2,] 0.13333969 0.69024283 0.05456682 0.07276999 0.04880507
[3,] 0.06742012 0.05456682 0.34753567 0.04263978 0.02377110
[4,] 0.08987795 0.07276999 0.04263978 0.47601312 0.03170960
[5,1 0.05916922 0.04880507 0.02377110 0.03170960 0.27720637



> c(prodmnt(obj, c(4,0,0,0,0)), prodmnt(obj, c(3,1,0,0,0)),
+ prodmnt(obj, c(2,2,0,0,0)), prodmnt(obj, c(2,1,1,0,0))
+ prodmnt(obj, c(1,1,1,1,0)))

[1] 23.352856 11.732113 8.706671 -2.734212 1.079536

You can also obtain the mtrunmnt object using an explicit covariance matrix:
> obj <- mtrunmnt(mu[1:5], a[1:5], b[1:5], Sigma = S[1:5, 1:5])

Applying this object to the functions will yield exactly the same results as the previous example.

The probability Prla < Y < b] can also be calculated using the function pmvnorm() from the
mvtnorm package (Genz et al., 2025). It employs the randomized quasi-Monte Carlo procedure pro-
posed by Genz (1992, 1993) to compute the probability mass. Consequently, the calculated values
may fluctuate slightly from run to run, even under identical conditions. Nevertheless, the functions
probntrun() (with the default value of nGH) and pmvnorm() yielded values that agreed up to the fifth
decimal place in most runs. Note also that the functions ptmvnorm (from the tmvnorm package) and
pmvnormt (from the MomTrunc package) can compute the probability mass. These functions are
essentially aliases of pmvnorm().

The accurate calculation of this probability is particularly important when n is large, as the prob-
ability value decreases with increasing n. When computing the product moment, the integral value
within (3) is divided by this small probability; thus, a small change in the probability calculation may
lead to a large change (or instability) in the final moment.

The trunmnt package computes several parameters of a truncated multivariate normal distribu-
tion for which analytical solutions are unavailable, rendering their true values unknown. Conse-
quently, assessing the accuracy of its results is challenging.

The Gauss-Hermite quadrature method is known to yield an exact integral if the integrand is a
polynomial of degree at most 2m — 1, where m is the number of quadrature points. The function
enclosed in parentheses of Equation (3) is a re-expression of

n b;
flu) = H/ Yy o1 (y; s 07) dy,
i=1v %

where ji = p1; + zu and Z/ is the i'" row of Z). This function is easily shown to be infinitely differen-
tiable (C*°) with respect to u over the domain R9. Similarly, the function enclosed in parentheses in
(4) is also C*°. Although their complexity increases as n increases, this C'*° continuity ensures that
the integrand for the Gauss-Hermite method is smooth and, crucially, accurately approximable by a
polynomial. Therefore, we can expect the Gauss-Hermite method to perform well with a moderate
number of quadrature points.

We tested various nGH values when computing the probability Prfa < Y < b] to determine the
appropriate number of quadrature points for an accurate calculated value. Figure 1 shows the cal-
culated values of Prla; <Y} < b;] against the number of quadrature points nGH, for ¢ = 1,2, 3. Here,
Y;, a;, and b} are defined as Y; = (Yi,...,Y,)",a; = (a},...,a;),and b} = (b},...,b;)’, where ¢
serves as the dimension of the integral in (4). The calculated values stabilize after nGH = 35. Beyond
this point, the values for all three cases exhibit a maximum variation of 1.0 x 107",

Recall that the tmvnorm package can compute up to the second-order moments based on the mo-
ment generating functions (MGF). Specifically, the mtmvnorm() function within tmvnorm produces
the mean vector and the variance-covariance matrix of a truncated multivariate normal random vec-
tor. The meanvarTMD() function in MomTrunc offers the same functionality. Note that MomTrunc
contains two functions, meanvarTMD and momentsTMD, for the computation of product moments.
While both functions are rooted in the Kan and Robotti (2017) recurrence relations, they use differ-
ent computational implementations based on the order of the moment, primarily for efficiency. For
the first and second moments (the mean vector and the variance-covariance matrix), the general re-
currence relation is explicitly solved and simplified. This optimized formula avoids the full iterative
complexity required for higher orders, making the calculation of the mean and variance faster and
more computationally stable than applying the general recursive procedure directly.
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Figure 1: Calculated probability mass after truncation as a function of nGH

We aim to verify the accuracy of meanvar by comparing it with mtmvnorm and meanvar TMD.
Although the moment calculations in both mtmvnorm (MGF) and meanvarTMD (closed-form solution of
the recurrence relation) rely on deterministic analytic formulas for the moment calculation, they use
arandomized quasi-Monte Carlo procedure to calculate the truncated probability (given in Equation
(2.2)) required for the computation. Consequently, their outputs will not be identical with every run.
It was observed, however, that the outputs of mtmvnorm() and meanvarTMD() typically match only
within 2 to 3 decimal places in most runs. We cannot identify the true value of the moments. But,
it was observed that the output of meanvar is closer to that of meanvarTMD. They match within 3
to 4 decimal places, but meanvar and mtmvnorm match within 2 to 3 decimal places. Since the true
value is unknown, it is not possible to conclude which function yields the moment closest to the true
value.

To assess the accuracy of trunmnt, we leverage the theoretical independence of Yy, Yo, and Y3 in
the unconditional distribution. A partial output of the mean vector and variance-covariance matrix
of the truncated vector Y|w is presented below:

> obj3 <- mtrunmnt(mu, a, b, Sigma = S)
> meanvar(obj3)
$tmean
[1] -1.5460538 -1.2227138 0.7203610 0.9030988 -0.6186135 -1.1630524 ...

$tvar
[,1] [,2] [,3] [,4] [,5]
[1,] 8.741712e-01 1.333397e-01 6.742012e-02 8.987795e-02 5.916922e-02
[2,] 1.333397e-01 6.902428e-01 5.456682e-02 7.276999e-02 4.880507e-02
[3,] 6.742012e-02 5.456682e-02 3.475357e-01 4.263978e-02 2.377110e-02
[4,] 8.987795e-02 7.276999e-02 4.263978e-02 4.760131e-01 3.170960e-02
[5,]1 5.916922e-02 4.880507e-02 2.377110e-02 3.170960e-02 2.772064e-01
[6,] -3.108624e-15 1.332268e-15 1.332268e-15 -1.332268e-15 4.440892e-16
[7,] 8.881784e-16 3.108624e-15 2.220446e-16 -1.110223e-15 1.221245e-15
[8,] 3.996803e-15 -1.998401e-15 -1.554312e-15 3.330669e-15 -6.661338e-16
[9,] -6.661338e-16 -7.327472e-15 -1.998401le-15 3.330669e-15 -1.776357e-15
[10,] -5.329071e-15 -8.881784e-15 -4.440892e-16 5.551115e-15 -2.997602e-15
[11,] -8.881784e-15 -1.265654e-14 6.661338e-16 7.105427e-15 -6.106227e-15
[12,] 8.881784e-16 -8.659740e-15 -1.332268e-15 -8.881784e-16 -4.107825e-15
[13,] -3.552714e-15 8.881784e-16 1.110223e-15 3.774758e-15 -2.220446e-16

[14,] -1.776357e-15 -1.021405e-14 -4.440892e-15 .110223e-14 -5.329071e-15
[15,] 6.217249e-15 -1.687539e-14 -6.661338e-15 -4.440892e-15 -3.552714e-15

The computed mean vector and variance-covariance matrix of Y;|w are identical to the previously
reported output. More importantly, inter-subvector covariance matrices Cov(Yy, Yo|w) are computed

=




to be negligibly small (~ 10~'?), aligning with their theoretical true value of 0. Given that the calcula-
tion of these covariances involves three-dimensional integrals, this result strongly suggests that the
Gauss-Hermite quadrature performs exceptionally well, at least for integrals up to this dimension. It
is noteworthy that the tmvtnorm and MomTrunc packages fail to achieve this level of approximation
for the covariances, offering accuracy only up to two or three decimal places.

Another key advantage of trunmnt is its ability to compute higher-order moments significantly
faster than MomTrunc. For instance, the output of prodmnt in the preceding example demonstrates
the computation of the 4™ order moments. Comparing this result with the output of the momentsTMD
function in the MomTrunc package shows agreement only up to the first or second decimal place.
However, the difference in computational speed is dramatic, specifically, when the dimension of Y
is greater than 10. momentsTMD () is too slow to be practically used, rendering it infeasible for such
high-dimensional problems.

4 Summary

This paper introduces the trunmnt package, an R implementation designed for calculating the prod-
uct moment of a truncated multivariate normal distribution. The package can compute high-order
moments of an arbitrarily truncated multivariate normal distribution, but is particularly efficient
when the variance-covariance matrix is a patterned matrix. trunmnt offers two major advantages:
it can yield more accurate values than the others in some cases, and it is significantly faster. For
example, when computing the mean and variance-covariance matrices for the example in Section 3.2,
trunmnt was approximately 98 times faster than tmvtnorm and 19 times faster than MomTrunc in
average of 1000 replications. This speed advantage is particularly dramatic with high-dimensional
variables. This slow computational speed is a major impediment to using both competitor packages
in real-world problems. Furthermore, the computation of higher-order moments is more problem-
atic: tmvtnorm lacks the functionality entirely, while MomTrunc is unusably slow. Considering
these points, trunmnt is a powerful alternative for certain problems.

It should be noted, however, that the trunmnt package shares the limitations of the multivari-
ate Gauss-Hermite quadrature. Specifically, the computational burden grows very rapidly with the
increasing dimension (q) of the random components. For example, when ¢ = 5 and nGH = 35, the
method requires the calculation of 35° = 52,521,875 quadrature points. While this number is not
excessively large for computing a particular product moment, it can lead to computational issues
when calling the meanvar() function, which requires calculating a substantially larger number of
moments.

References

Burkardt J (2014). The truncated normal distribution, Online document, Available from: http://
people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf

Eddelbuettel D and Sanderson C (2014). RcppArmadillo: Accelerating R with high-performance C++
linear algebra, Computational Statistics & Data Analysis, 71, 1054-1063.

Galarza CE, Kan R, and Lachos VH (2021). MomTrunc: Moments of folded and doubly truncated
multivariate distributions, Online document, Available from: https://cran.r-project.org/
web/packages/MomTrunc/MomTrunc. pdf

Genz A (1992). Numerical computation of multivariate normal probabilities, Journal of Computa-
tional and Graphical Statistics, 1, 141--150.

Genz A (1993). Comparison of methods for the computation of multivariate normal probabilities,
Computing Science and Statistics, 25, 400--405.

Genz et al. (2021). mvtvnorm: Multivariate Normal and t Distributions, R package version 1.1, Avail-
able from: https://cran.r-project.org/web/packages/mvtnorm/mvtnorm.pdf

Jackel P (2005). A note on multivariate Gauss-Hermite quadrature, London: ABN-Amro, Available
from: urlhttp://www.jaeckel.org/ANoteOnMultivariateGaussHermiteQuadrature.pdf


http://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
http://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
https://cran.r-project.org/web/packages/MomTrunc/MomTrunc.pdf
https://cran.r-project.org/web/packages/MomTrunc/MomTrunc.pdf
https://cran.r-project.org/web/packages/mvtnorm/mvtnorm.pdf

Kan R and Robotti C (2017). On moments of folded and truncated multivariate normal distributions,
Journal of Computational and Graphical Statistics, 26, 930-934.

Lee S.-C. (2021). Moments calculation for truncated multivariate normal in nonlinear generalized
mixed models, Communications for Statistical Applications and Methods, 27, 377-383.

Manjunath BG and Wilhelm S (2012). Moments calculation for the doubly truncated multivariate
normal density, SSRN Electronic Journal, arXiv preprint arXiv:1206.5387.

R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing,
Vienna, Austria. https://www.R-project.org/.

Wilhelm S and Manjunath BG (2010). tmvtnorm: Truncated multivariate normal and Student t distri-
bution, The R Journal, 2.

10


https://www.R-project.org/

	Introduction
	Computation of moments
	Variance-covariance structure in mixed effects linear models
	Arbitrary positive-definite variance-covariance matrix

	The trunmnt package
	Structure and functionality
	Numerical example

	Summary

