The tidyREDCap
package creates data sets with labelled
columns.
tidyREDCap::import_instruments(
url = "https://bbmc.ouhsc.edu/redcap/api/",
token = Sys.getenv("REDCapR_test")
)
If you would like to see the labels on the data set
demographics
, you can use the RStudio function
View()
, as shown below.
However, some functions do not work well with labeled variables.
Name | demographics |
Number of rows | 5 |
Number of columns | 10 |
_______________________ | |
Column type frequency: | |
Date | 1 |
character | 7 |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: Date
skim_variable | n_missing | complete_rate | min | max | median | n_unique |
---|---|---|---|---|---|---|
dob | 0 | 1 | 1934-04-09 | 2003-08-30 | 1955-04-15 | 5 |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
name_first | 0 | 1 | 5 | 8 | 0 | 5 | 0 |
name_last | 0 | 1 | 3 | 8 | 0 | 4 | 0 |
address | 0 | 1 | 29 | 38 | 0 | 5 | 0 |
telephone | 0 | 1 | 14 | 14 | 0 | 5 | 0 |
0 | 1 | 12 | 19 | 0 | 5 | 0 | |
sex | 0 | 1 | 4 | 6 | 0 | 2 | 0 |
demographics_complete | 0 | 1 | 8 | 8 | 0 | 1 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
record_id | 0 | 1 | 3.0 | 1.58 | 1 | 2 | 3 | 4 | 5 | ▇▇▇▇▇ |
age | 0 | 1 | 44.4 | 31.57 | 11 | 11 | 59 | 61 | 80 | ▇▁▁▇▃ |
So you need a way to drop the label off of a variable or to drop all the labels from all the variables in a dataset.
You can drop the label from a single variable with the drop_label() function. For example:
You can drop all the labels using the drop_labels()
function. For example:
Name | demographics_without_labe… |
Number of rows | 5 |
Number of columns | 10 |
_______________________ | |
Column type frequency: | |
character | 7 |
numeric | 3 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
name_first | 0 | 1 | 5 | 8 | 0 | 5 | 0 |
name_last | 0 | 1 | 3 | 8 | 0 | 4 | 0 |
address | 0 | 1 | 29 | 38 | 0 | 5 | 0 |
telephone | 0 | 1 | 14 | 14 | 0 | 5 | 0 |
0 | 1 | 12 | 19 | 0 | 5 | 0 | |
sex | 0 | 1 | 4 | 6 | 0 | 2 | 0 |
demographics_complete | 0 | 1 | 8 | 8 | 0 | 1 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
record_id | 0 | 1 | 3.0 | 1.58 | 1 | 2 | 3 | 4 | 5 | ▇▇▇▇▇ |
dob | 0 | 1 | -56.0 | 11581.94 | -13051 | -6269 | -5375 | 12121 | 12294 | ▃▇▁▁▇ |
age | 0 | 1 | 44.4 | 31.57 | 11 | 11 | 59 | 61 | 80 | ▇▁▁▇▃ |