tdarec: A 'recipes' Extension for Persistent Homology and Its Vectorizations

Topological data analytic methods in machine learning rely on vectorizations of the persistence diagrams that encode persistent homology, as surveyed by Ali &al (2000) <doi:10.48550/arXiv.2212.09703>. Persistent homology can be computed using 'TDA' and 'ripserr' and vectorized using 'TDAvec'. The Tidymodels package collection modularizes machine learning in R for straightforward extensibility; see Kuhn & Silge (2022, ISBN:978-1-4920-9644-3). These 'recipe' steps and 'dials' tuners make efficient algorithms for computing and vectorizing persistence diagrams available for Tidymodels workflows.

Version: 0.1.0
Depends: R (≥ 3.5.0), recipes (≥ 0.1.17), dials
Imports: rlang (≥ 1.1.0), vctrs (≥ 0.5.0), scales, tibble, purrr (≥ 1.0.0), tidyr, magrittr
Suggests: ripserr (≥ 0.1.1), TDA, TDAvec (≥ 0.1.4), testthat (≥ 3.0.0), modeldata, tdaunif, knitr (≥ 1.20), rmarkdown (≥ 1.10), tidymodels, ranger
Published: 2025-05-26
DOI: 10.32614/CRAN.package.tdarec
Author: Jason Cory Brunson [cre, aut]
Maintainer: Jason Cory Brunson <cornelioid at gmail.com>
BugReports: https://github.com/tdaverse/tdarec/issues
License: GPL (≥ 3)
URL: https://github.com/tdaverse/tdarec
NeedsCompilation: no
Materials: README NEWS
CRAN checks: tdarec results

Documentation:

Reference manual: tdarec.pdf
Vignettes: Tuning persistent homological hyperparameters (source)

Downloads:

Package source: tdarec_0.1.0.tar.gz
Windows binaries: r-devel: tdarec_0.1.0.zip, r-release: tdarec_0.1.0.zip, r-oldrel: tdarec_0.1.0.zip
macOS binaries: r-release (arm64): tdarec_0.1.0.tgz, r-oldrel (arm64): tdarec_0.1.0.tgz, r-release (x86_64): tdarec_0.1.0.tgz, r-oldrel (x86_64): tdarec_0.1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=tdarec to link to this page.