TimeGEN-1 is TimeGPT optimized for Azure, Microsoft’s cloud computing
service. You can easily access TimeGEN via nixtlar. To do
this, just follow these steps:
Models in the sidebar and select
TimeGEN in the model catalog.Deploy. This will create an Endpoint.nixtlarIn your favorite R IDE, install nixtlar from CRAN or
GitHub.
To do this, use the nixtla_client_setup function.
Now you can start making forecasts! We will use the electricity
dataset that is included in nixtlar. This dataset contains
the prices of different electricity markets.
df <- nixtlar::electricity
nixtla_client_fcst <- nixtla_client_forecast(df, h = 8, level = c(80,95))
#> Frequency chosen: h
head(nixtla_client_fcst)
#>   unique_id                  ds  TimeGPT TimeGPT-lo-95 TimeGPT-lo-80
#> 1        BE 2016-12-31 00:00:00 45.19045      30.49691      35.50842
#> 2        BE 2016-12-31 01:00:00 43.24445      28.96423      35.37463
#> 3        BE 2016-12-31 02:00:00 41.95839      27.06667      35.34079
#> 4        BE 2016-12-31 03:00:00 39.79649      27.96751      32.32625
#> 5        BE 2016-12-31 04:00:00 39.20454      24.66072      30.99895
#> 6        BE 2016-12-31 05:00:00 40.10878      23.05056      32.43504
#>   TimeGPT-hi-80 TimeGPT-hi-95
#> 1      54.87248      59.88399
#> 2      51.11427      57.52467
#> 3      48.57599      56.85011
#> 4      47.26672      51.62546
#> 5      47.41012      53.74836
#> 6      47.78252      57.16700We can plot the forecasts with the nixtla_client_plot
function.
To learn more about data requirements and TimeGPT’s capabilities, please read the nixtlar vignettes.
nixtlar.Deploying TimeGEN via nixtlar on Azure allows you to
implement robust and scalable forecasting solutions. This not only
simplifies the integration of advanced analytics into your workflows but
also ensures that you have the power of Azure’s cutting-edge technology
at your disposal through a pay-as-you-go service. To learn more, read here.