An interface to build machine learning models for classification and regression problems. 'mikropml' implements the ML pipeline described by Topçuoğlu et al. (2020) <doi:10.1128/mBio.00434-20> with reasonable default options for data preprocessing, hyperparameter tuning, cross-validation, testing, model evaluation, and interpretation steps. See the website <https://www.schlosslab.org/mikropml/> for more information, documentation, and examples.
Version: | 1.6.1 |
Depends: | R (≥ 4.1.0) |
Imports: | caret, dplyr, e1071, glmnet, kernlab, MLmetrics, randomForest, rlang, rpart, stats, utils, xgboost |
Suggests: | assertthat, doFuture, forcats, foreach, future, future.apply, furrr, ggplot2, knitr, progress, progressr, purrr, rmarkdown, rsample, testthat, tidyr |
Published: | 2023-08-21 |
DOI: | 10.32614/CRAN.package.mikropml |
Author: | Begüm Topçuoğlu [aut], Zena Lapp [aut], Kelly Sovacool [aut, cre], Evan Snitkin [aut], Jenna Wiens [aut], Patrick Schloss [aut], Nick Lesniak [ctb], Courtney Armour [ctb], Sarah Lucas [ctb] |
Maintainer: | Kelly Sovacool <sovacool at umich.edu> |
BugReports: | https://github.com/SchlossLab/mikropml/issues |
License: | MIT + file LICENSE |
URL: | https://www.schlosslab.org/mikropml/, https://github.com/SchlossLab/mikropml |
NeedsCompilation: | no |
Citation: | mikropml citation info |
Materials: | README NEWS |
CRAN checks: | mikropml results |
Reference manual: | mikropml.pdf |
Vignettes: |
Introduction to mikropml mikropml paper |
Package source: | mikropml_1.6.1.tar.gz |
Windows binaries: | r-devel: mikropml_1.6.1.zip, r-release: mikropml_1.6.1.zip, r-oldrel: mikropml_1.6.1.zip |
macOS binaries: | r-release (arm64): mikropml_1.6.1.tgz, r-oldrel (arm64): mikropml_1.6.1.tgz, r-release (x86_64): mikropml_1.6.1.tgz, r-oldrel (x86_64): mikropml_1.6.1.tgz |
Old sources: | mikropml archive |
Please use the canonical form https://CRAN.R-project.org/package=mikropml to link to this page.