mFD
allows gathering species into functional
entities (FEs) i.e. groups of species with
same trait values when many species are described with a few
categorical or ordinal traits. It is particularly useful when using
large datasets with “functionally similar” species. FEs also allow to
understand the links between functional diversity and ecological
processes as redundant species that are supposed to have similar
ecological roles are clustered in this method.
DATA The dataset used to illustrate this tutorial is a fruits dataset based on 25 types of fruits (i.e. species) distributed in 10 fruit baskets (i.e. assemblages). Each fruit is characterized by six trait values summarized in the following table:
Trait name | Trait measurement | Trait type | Number of classes | Classes code | Unit |
---|---|---|---|---|---|
Size | Maximal diameter | Ordinal | 5 | small ; medium ; large | cm |
Plant | Growth form | Categorical | 4 | tree ; not tree | NA |
Climate | Climatic niche | Ordinal | 3 | temperate ; tropical | NA |
Seed | Seed type | Ordinal | 3 | none ; pip ; pit | NA |
NOTE We reduced the dataset used in mFD General Workflow to only keep ordinal and categorical traits. Categorical traits are restrained to 2 or 3 modalities per traits to limit the number of unique combinations.
The following data frame and matrix are needed:
data("fruits_traits", package = "mFD")
fruits_traits <- fruits_traits[ , 1:4] # only keep the first 4 traits to illustrate FEs
# Decrease the number of modalities per trait for convenience ...
# ... (to have less unique combinations of trait values):
# Size grouped into only 3 categories:
fruits_traits[ , "Size"] <- as.character(fruits_traits[ , "Size"])
fruits_traits[which(fruits_traits[ , "Size"] %in% c("0-1cm", "1-3cm", "3-5cm")), "Size"] <- "small"
fruits_traits[which(fruits_traits[ , "Size"] == "5-10cm"), "Size"] <- "medium"
fruits_traits[which(fruits_traits[ , "Size"] == "10-20cm"), "Size"] <- "large"
fruits_traits[ , "Size"] <- factor(fruits_traits[, "Size"], levels = c("small", "medium", "large"), ordered = TRUE)
# Plant type grouped into only 2 categories:
fruits_traits[ , "Plant"] <- as.character(fruits_traits[, "Plant"])
fruits_traits[which(fruits_traits[ , "Plant"] != "tree"), "Plant"] <- "Not_tree"
fruits_traits[ , "Plant"] <- factor(fruits_traits[ , "Plant"], levels = c("Not_tree", "tree"), ordered = TRUE)
# Plant Origin grouped into only 2 categories:
fruits_traits[ , "Climate"] <- as.character(fruits_traits[ , "Climate"])
fruits_traits[which(fruits_traits[ , "Climate"] != "temperate"), "Climate"] <- "tropical"
fruits_traits[ , "Climate"] <- factor(fruits_traits[, "Climate"], levels = c("temperate", "tropical"), ordered = TRUE)
# Display the table:
knitr::kable(head(fruits_traits), caption = "Species x traits dataframe based on *fruits* dataset")
Size | Plant | Climate | Seed | |
---|---|---|---|---|
apple | medium | tree | temperate | pip |
apricot | small | tree | temperate | pit |
banana | large | tree | tropical | none |
currant | small | Not_tree | temperate | pip |
blackberry | small | Not_tree | temperate | pip |
blueberry | small | Not_tree | temperate | pip |
data("baskets_fruits_weights", package = "mFD")
knitr::kable(as.data.frame(baskets_fruits_weights[1:6, 1:6]),
caption = "Species x assemblages dataframe based on *fruits* dataset")
apple | apricot | banana | currant | blackberry | blueberry | |
---|---|---|---|---|---|---|
basket_1 | 400 | 0 | 100 | 0 | 0 | 0 |
basket_2 | 200 | 0 | 400 | 0 | 0 | 0 |
basket_3 | 200 | 0 | 500 | 0 | 0 | 0 |
basket_4 | 300 | 0 | 0 | 0 | 0 | 0 |
basket_5 | 200 | 0 | 0 | 0 | 0 | 0 |
basket_6 | 100 | 0 | 200 | 0 | 0 | 0 |
data("fruits_traits_cat", package = "mFD")
# only keep traits 1 - 4:
fruits_traits_cat <- fruits_traits_cat[1:4, ]
knitr::kable(head(fruits_traits_cat),
caption = "Traits types based on *fruits & baskets* dataset")
trait_name | trait_type | fuzzy_name |
---|---|---|
Size | O | NA |
Plant | N | NA |
Climate | O | NA |
Seed | O | NA |
Using the mFD::asb.sp.summary()
function, we can sum up
the assemblages data and retrieve species occurrence data:
# summarize species assemblages:
asb_sp_fruits_summ <- mFD::asb.sp.summary(baskets_fruits_weights)
# retrieve species occurrences for the first 3 assemblages (fruits baskets):
head(asb_sp_fruits_summ$asb_sp_occ, 3)
## apple apricot banana currant blackberry blueberry cherry grape
## basket_1 1 0 1 0 0 0 1 0
## basket_2 1 0 1 0 0 0 1 0
## basket_3 1 0 1 0 0 0 1 0
## grapefruit kiwifruit lemon lime litchi mango melon orange
## basket_1 0 0 1 0 0 0 1 0
## basket_2 0 0 1 0 0 0 1 0
## basket_3 0 0 1 0 0 0 1 0
## passion_fruit peach pear pineapple plum raspberry strawberry tangerine
## basket_1 1 0 1 0 0 0 1 0
## basket_2 1 0 1 0 0 0 1 0
## basket_3 1 0 1 0 0 0 1 0
## water_melon
## basket_1 0
## basket_2 0
## basket_3 0
mFD
allows you to gather species into FEs using the
mFD::sp.to.fe()
function. It uses the following
arguments:
USAGE
mFD::sp.to.fe(
sp_tr = fruits_traits,
tr_cat = fruits_traits_cat,
fe_nm_type = "fe_rank",
check_input = TRUE)
TRUE
Let’s use this function with the fruits dataset:
sp_to_fe_fruits <- mFD::sp.to.fe(
sp_tr = fruits_traits,
tr_cat = fruits_traits_cat,
fe_nm_type = "fe_rank",
check_input = TRUE)
mFD::sp.to.fe()
returns:
## [1] "fe_1" "fe_2" "fe_3" "fe_4" "fe_5" "fe_6" "fe_7" "fe_8" "fe_9"
## [10] "fe_10" "fe_11" "fe_12" "fe_13" "fe_14"
## apple apricot banana currant blackberry
## "fe_3" "fe_2" "fe_7" "fe_1" "fe_1"
## blueberry cherry grape grapefruit kiwifruit
## "fe_1" "fe_2" "fe_1" "fe_8" "fe_9"
## lemon lime litchi mango melon
## "fe_4" "fe_5" "fe_10" "fe_11" "fe_6"
## orange passion_fruit peach pear pineapple
## "fe_4" "fe_12" "fe_13" "fe_3" "fe_14"
## plum raspberry strawberry tangerine water_melon
## "fe_2" "fe_1" "fe_1" "fe_5" "fe_6"
## Size Plant Climate Seed
## fe_1 small Not_tree temperate pip
## fe_2 small tree temperate pit
## fe_3 medium tree temperate pip
## fe_4 medium tree tropical pip
## fe_5 small tree tropical pip
## fe_6 large Not_tree temperate pip
## fe_7 large tree tropical none
## fe_8 large tree tropical pip
## fe_9 medium Not_tree temperate pip
## fe_10 small tree tropical pit
## fe_11 large tree tropical pit
## fe_12 small Not_tree tropical pip
## fe_13 medium tree temperate pit
## fe_14 large Not_tree tropical none
## fe_1 fe_2 fe_3 fe_4 fe_5 fe_6 fe_7 fe_8 fe_9 fe_10 fe_11 fe_12 fe_13
## 6 3 2 2 2 2 1 1 1 1 1 1 1
## fe_14
## 1
## $fe_codes
## fe_1
## "SIZEsmall_PLANTnot_tree_CLIMATEtemperate_SEEDpip"
## fe_2
## "SIZEsmall_PLANTtree_CLIMATEtemperate_SEEDpit"
## fe_3
## "SIZEmedium_PLANTtree_CLIMATEtemperate_SEEDpip"
## fe_4
## "SIZEmedium_PLANTtree_CLIMATEtropical_SEEDpip"
## fe_5
## "SIZEsmall_PLANTtree_CLIMATEtropical_SEEDpip"
## fe_6
## "SIZElarge_PLANTnot_tree_CLIMATEtemperate_SEEDpip"
## fe_7
## "SIZElarge_PLANTtree_CLIMATEtropical_SEEDnone"
## fe_8
## "SIZElarge_PLANTtree_CLIMATEtropical_SEEDpip"
## fe_9
## "SIZEmedium_PLANTnot_tree_CLIMATEtemperate_SEEDpip"
## fe_10
## "SIZEsmall_PLANTtree_CLIMATEtropical_SEEDpit"
## fe_11
## "SIZElarge_PLANTtree_CLIMATEtropical_SEEDpit"
## fe_12
## "SIZEsmall_PLANTnot_tree_CLIMATEtropical_SEEDpip"
## fe_13
## "SIZEmedium_PLANTtree_CLIMATEtemperate_SEEDpit"
## fe_14
## "SIZElarge_PLANTnot_tree_CLIMATEtropical_SEEDnone"
##
## $tr_uval
## $tr_uval$Size
## [1] "medium" "small" "large"
##
## $tr_uval$Plant
## [1] "tree" "Not_tree"
##
## $tr_uval$Climate
## [1] "temperate" "tropical"
##
## $tr_uval$Seed
## [1] "pip" "pit" "none"
##
##
## $tr_nb_uval
## Size Plant Climate Seed
## 3 2 2 3
##
## $max_nb_fe
## [1] 36
Then based on the data frame containing the value of traits for each FE, the workflow is the same as the one listed in mFD General Workflow to compute functional trait based distance, multidimensional functional space and associated plots and compute alpha and beta functional indices (step 3 till the end). It will thus not be summed up in this tutorial.
mFD
also allows to compute functional indices based on
FEs following the framework proposed in Mouillot
et al. 2014) using the mFD::alpha.fd.fe()
function. It computes:
mFD::alpha.fd.fe()
function is used as follows:
USAGE
mFD::alpha.fd.fe(
asb_sp_occ = asb_sp_fruits_occ,
sp_to_fe = sp_to_fe_fruits,
ind_nm = c("fred", "fored", "fvuln"),
check_input = TRUE,
details_returned = TRUE)
It takes as inputs:
mFD::sp.tr.summary()
functionmFD::sp.to.fe()
TRUE
.Let’s apply this function with the fruits dataset:
alpha_fd_fe_fruits <- mFD::alpha.fd.fe(
asb_sp_occ = asb_sp_fruits_occ,
sp_to_fe = sp_to_fe_fruits,
ind_nm = c("fred", "fored", "fvuln"),
check_input = TRUE,
details_returned = TRUE)
This function returns a dataframe of indices values for each assemblage and a detailed list containing a matrix gathering the number of species per FE in each assemblage:
## nb_sp nb_fe fred fored fvuln
## basket_1 8 7 1.142857 0.1071429 0.8571429
## basket_2 8 7 1.142857 0.1071429 0.8571429
## basket_3 8 7 1.142857 0.1071429 0.8571429
## basket_4 8 6 1.333333 0.1666667 0.6666667
## basket_5 8 6 1.333333 0.1666667 0.6666667
## basket_6 8 8 1.000000 0.0000000 1.0000000
## basket_7 8 8 1.000000 0.0000000 1.0000000
## basket_8 8 3 2.666667 0.4166667 0.6666667
## basket_9 8 3 2.666667 0.4166667 0.6666667
## basket_10 8 5 1.600000 0.1500000 0.4000000
# a matrix gathering the number of species per FE in each assemblage
alpha_fd_fe_fruits$"details_fdfe"
## $asb_fe_nbsp
## fe_3 fe_2 fe_7 fe_1 fe_8 fe_9 fe_4 fe_5 fe_10 fe_11 fe_6 fe_12 fe_13
## basket_1 2 1 1 1 0 0 1 0 0 0 1 1 0
## basket_2 2 1 1 1 0 0 1 0 0 0 1 1 0
## basket_3 2 1 1 1 0 0 1 0 0 0 1 1 0
## basket_4 2 1 0 0 0 1 2 1 0 0 0 0 1
## basket_5 2 1 0 0 0 1 2 1 0 0 0 0 1
## basket_6 1 0 1 0 0 0 1 1 1 1 1 0 0
## basket_7 1 0 1 0 0 0 1 1 1 1 1 0 0
## basket_8 0 1 0 6 0 0 1 0 0 0 0 0 0
## basket_9 0 1 0 6 0 0 1 0 0 0 0 0 0
## basket_10 2 2 0 2 1 0 0 0 0 0 1 0 0
## fe_14
## basket_1 0
## basket_2 0
## basket_3 0
## basket_4 0
## basket_5 0
## basket_6 1
## basket_7 1
## basket_8 0
## basket_9 0
## basket_10 0
Then, it is possible to have a graphical representation of FE-based
indices for a given assemblage using the
mFD::alpha.fe.fd.plot()
function:
USAGE
mFD::alpha.fd.fe.plot(
alpha_fd_fe = alpha_fd_fe_fruits,
plot_asb_nm = c("basket_1"),
plot_ind_nm = c("fred", "fored", "fvuln"),
name_file = NULL,
color_fill_fored = "darkolivegreen2",
color_line_fred = "darkolivegreen4",
color_fill_bar = "grey80",
color_fill_fvuln = "lightcoral",
color_arrow_fvuln = "indianred4",
size_line_fred = 1.5,
size_arrow_fvuln = 1,
check_input = TRUE)
This function takes as inputs:
mFD::alpha.fd.fe()
applied on assemblage of interest with
details_returned = TRUE
fred
to plot functional redundancy (FRed),
fored
to plot functional over-redundancy (FOred) and/or
fvuln
to plot functional vulnerability (FVuln)NULL
the plot is only displayedmFD::alpha.fd.fe.plot
)TRUE
For the studied example, the plot looks as follows:
mFD::alpha.fd.fe.plot(
alpha_fd_fe = alpha_fd_fe_fruits,
plot_asb_nm = c("basket_1"),
plot_ind_nm = c("fred", "fored", "fvuln"),
name_file = NULL,
color_fill_fored = "darkolivegreen2",
color_line_fred = "darkolivegreen4",
color_fill_bar = "grey80",
color_fill_fvuln = "lightcoral",
color_arrow_fvuln = "indianred4",
size_line_fred = 1.5,
size_arrow_fvuln = 1,
check_input = TRUE)
All FE except “fe_3” contain only one species thus FRed and FVuln are close to 1. Only “fe_3” has more species than the average number of species thus the proportion of species in excess in FE richer than average is quite low (FORed = 0.107).