
Package ‘lhs’
July 1, 2024

Title Latin Hypercube Samples

Version 1.2.0

Description Provides a number of methods for creating and augmenting Latin Hypercube Sam-
ples and Orthogonal Array Latin Hypercube Samples.

License GPL-3

Encoding UTF-8

Depends R (>= 3.4.0)

LinkingTo Rcpp

Imports Rcpp

Suggests testthat, DoE.base, knitr, rmarkdown

URL https://github.com/bertcarnell/lhs

BugReports https://github.com/bertcarnell/lhs/issues

RoxygenNote 7.3.2

VignetteBuilder knitr

NeedsCompilation yes

Author Rob Carnell [aut, cre]

Maintainer Rob Carnell <bertcarnell@gmail.com>

Repository CRAN

Date/Publication 2024-06-30 23:10:02 UTC

Contents
augmentLHS . 2
correlatedLHS . 3
createAddelKemp . 5
createAddelKemp3 . 6
createAddelKempN . 7
createBose . 8
createBoseBush . 9

1

https://github.com/bertcarnell/lhs
https://github.com/bertcarnell/lhs/issues

2 augmentLHS

createBoseBushl . 10
createBush . 11
createBusht . 12
create_galois_field . 13
create_oalhs . 14
geneticLHS . 14
get_library_versions . 16
improvedLHS . 17
maximinLHS . 18
oa_to_oalhs . 20
optAugmentLHS . 20
optimumLHS . 21
optSeededLHS . 23
poly2int . 24
poly_prod . 24
poly_sum . 25
qfactor . 26
randomLHS . 27
runifint . 28

Index 29

augmentLHS Augment a Latin Hypercube Design

Description

Augments an existing Latin Hypercube Sample, adding points to the design, while maintaining the
latin properties of the design.

Usage

augmentLHS(lhs, m = 1)

Arguments

lhs The Latin Hypercube Design to which points are to be added. Contains an
existing latin hypercube design with a number of rows equal to the points in the
design (simulations) and a number of columns equal to the number of variables
(parameters). The values of each cell must be between 0 and 1 and uniformly
distributed

m The number of additional points to add to matrix lhs

correlatedLHS 3

Details

Augments an existing Latin Hypercube Sample, adding points to the design, while maintaining the
latin properties of the design. Augmentation is perfomed in a random manner.

The algorithm used by this function has the following steps. First, create a new matrix to hold the
candidate points after the design has been re-partitioned into (n + m)2 cells, where n is number
of points in the original lhs matrix. Then randomly sweep through each column (1. . . k) in the
repartitioned design to find the missing cells. For each column (variable), randomly search for an
empty row, generate a random value that fits in that row, record the value in the new matrix. The
new matrix can contain more filled cells than m unles m = 2n, in which case the new matrix will
contain exactly m filled cells. Finally, keep only the first m rows of the new matrix. It is guaranteed
to have m full rows in the new matrix. The deleted rows are partially full. The additional candidate
points are selected randomly due to the random search for empty cells.

Value

An n by k Latin Hypercube Sample matrix with values uniformly distributed on [0,1]

Author(s)

Rob Carnell

References

Stein, M. (1987) Large Sample Properties of Simulations Using Latin Hypercube Sampling. Tech-
nometrics. 29, 143–151.

See Also

[randomLHS()], [geneticLHS()], [improvedLHS()], [maximinLHS()], and [optimumLHS()] to gen-
erate Latin Hypercube Samples. [optAugmentLHS()] and [optSeededLHS()] to modify and aug-
ment existing designs.

Examples

set.seed(1234)
a <- randomLHS(4,3)
b <- augmentLHS(a, 2)

correlatedLHS Transformed Latin hypercube with a multivariate distribution

Description

A method to create a transformed Latin Hypercube sample where the marginal distributions can be
correlated according to an arbitrary set of criteria contained in a minimized cost function

4 correlatedLHS

Usage

correlatedLHS(
lhs,
marginal_transform_function,
cost_function,
debug = FALSE,
maxiter = 10000,
...

)

Arguments

lhs a Latin hypercube sample that is uniformly distributed on the margins
marginal_transform_function

a function that takes Latin hypercube sample as the first argument and other
passed-through variables as desired. ... must be passed as a argument. For
example, f <- function(W, second_argument, ...). Must return a matrix
or data.frame

cost_function a function that takes a transformed Latin hypercube sample as the first argu-
ment and other passed-through variables as desired. ... must be passed as a
argument. For example, f <- function(W, second_argument, ...)

debug Should debug messages be printed. Causes cost function output and iterations
to be printed to aid in setting the maximum number of iterations

maxiter the maximum number of iterations. The algorithm proceeds by swapping one
variable of two points at a time. Each swap is an iteration.

... Additional arguments to be passed through to the marginal_transform_function
and cost_function

Value

a list of the Latin hypercube with uniform margins, the transformed Latin hypercube, and the final
cost

Examples

correlatedLHS(lhs::randomLHS(30, 2),
marginal_transform_function = function(W, ...) {
W[,1] <- qnorm(W[,1], 1, 3)
W[,2] <- qexp(W[,2], 2)
return(W)

},
cost_function = function(W, ...) {

(cor(W[,1], W[,2]) - 0.5)^2
},
debug = FALSE,
maxiter = 1000)

createAddelKemp 5

createAddelKemp Create an orthogonal array using the Addelman-Kempthorne algo-
rithm.

Description

The addelkemp program produces OA(2q^2, k, q, 2), k <= 2q+1, for odd prime powers q.

Usage

createAddelKemp(q, ncol, bRandom = TRUE)

Arguments

q the number of symbols in the array

ncol number of parameters or columns

bRandom should the array be randomized

Details

From Owen: An orthogonal array A is a matrix of n rows, k columns with every element being one
of q symbols 0,...,q-1. The array has strength t if, in every n by t submatrix, the q^t possible
distinct rows, all appear the same number of times. This number is the index of the array, commonly
denoted lambda. Clearly, lambda*q^t=n. The notation for such an array is OA(n, k, q, t).

Value

an orthogonal array

References

Owen, Art. Orthogonal Arrays for: Computer Experiments, Visualizations, and Integration in high
dimensions. https://lib.stat.cmu.edu/designs/oa.c. 1994 S. Addelman and O. Kempthorne
(1961) Annals of Mathematical Statistics, Vol 32 pp 1167-1176.

See Also

Other methods to create orthogonal arrays [createBoseBush()], [createBose()], [createAddelKemp3()],
[createAddelKempN()], [createBusht()], [createBoseBushl()]

Examples

A <- createAddelKemp(3, 3, TRUE)
B <- createAddelKemp(3, 5, FALSE)

https://lib.stat.cmu.edu/designs/oa.c

6 createAddelKemp3

createAddelKemp3 Create an orthogonal array using the Addelman-Kempthorne algo-
rithm with 2q^3 rows.

Description

The addelkemp3 program produces OA(2*q^3, k, q, 2), k <= 2q^2+2q+1, for prime powers q. q
may be an odd prime power, or q may be 2 or 4.

Usage

createAddelKemp3(q, ncol, bRandom = TRUE)

Arguments

q the number of symbols in the array

ncol number of parameters or columns

bRandom should the array be randomized

Details

From Owen: An orthogonal array A is a matrix of n rows, k columns with every element being one
of q symbols 0,...,q-1. The array has strength t if, in every n by t submatrix, the q^t possible
distinct rows, all appear the same number of times. This number is the index of the array, commonly
denoted lambda. Clearly, lambda*q^t=n. The notation for such an array is OA(n, k, q, t).

Value

an orthogonal array

References

Owen, Art. Orthogonal Arrays for: Computer Experiments, Visualizations, and Integration in high
dimensions. https://lib.stat.cmu.edu/designs/oa.c. 1994 S. Addelman and O. Kempthorne
(1961) Annals of Mathematical Statistics, Vol 32 pp 1167-1176.

See Also

Other methods to create orthogonal arrays [createBushBush()], [createBose()], [createAddelKemp()],
[createAddelKempN()], [createBusht()], [createBoseBushl()]

Examples

A <- createAddelKemp3(3, 3, TRUE)
B <- createAddelKemp3(3, 5, FALSE)

https://lib.stat.cmu.edu/designs/oa.c

createAddelKempN 7

createAddelKempN Create an orthogonal array using the Addelman-Kempthorne algo-
rithm with alternate strength with 2q^n rows.

Description

The addelkempn program produces OA(2*q^n, k, q, 2), k <= 2(q^n - 1)/(q-1)-1, for prime
powers q. q may be an odd prime power, or q may be 2 or 4.

Usage

createAddelKempN(q, ncol, exponent, bRandom = TRUE)

Arguments

q the number of symbols in the array

ncol number of parameters or columns

exponent the exponent on q

bRandom should the array be randomized

Details

From Owen: An orthogonal array A is a matrix of n rows, k columns with every element being one
of q symbols 0,...,q-1. The array has strength t if, in every n by t submatrix, the q^t possible
distinct rows, all appear the same number of times. This number is the index of the array, commonly
denoted lambda. Clearly, lambda*q^t=n. The notation for such an array is OA(n, k, q, t).

Value

an orthogonal array

See Also

Other methods to create orthogonal arrays [createBoseBush()], [createBose()], [createBush()], [cre-
ateAddelKemp()], [createAddelKemp3()], [createBusht()], [createBoseBushl()]

Examples

A <- createAddelKempN(3, 4, 3, TRUE)
B <- createAddelKempN(3, 4, 4, TRUE)

8 createBose

createBose Create an orthogonal array using the Bose algorithm.

Description

The bose program produces OA(q^2, k, q, 2), k <= q+1 for prime powers q.

Usage

createBose(q, ncol, bRandom = TRUE)

Arguments

q the number of symbols in the array

ncol number of parameters or columns

bRandom should the array be randomized

Details

From Owen: An orthogonal array A is a matrix of n rows, k columns with every element being one
of q symbols 0,...,q-1. The array has strength t if, in every n by t submatrix, the q^t possible
distinct rows, all appear the same number of times. This number is the index of the array, commonly
denoted lambda. Clearly, lambda*q^t=n. The notation for such an array is OA(n, k, q, t).

Value

an orthogonal array

References

Owen, Art. Orthogonal Arrays for: Computer Experiments, Visualizations, and Integration in high
dimensions. https://lib.stat.cmu.edu/designs/oa.c. 1994 R.C. Bose (1938) Sankhya Vol 3
pp 323-338

See Also

Other methods to create orthogonal arrays [createBush()], [createBoseBush()], [createAddelKemp()],
[createAddelKemp3()], [createAddelKempN()], [createBusht()], [createBoseBushl()]

Examples

A <- createBose(3, 3, FALSE)
B <- createBose(5, 4, TRUE)

https://lib.stat.cmu.edu/designs/oa.c

createBoseBush 9

createBoseBush Create an orthogonal array using the Bose-Bush algorithm.

Description

The bosebush program produces OA(2q^2, k, q, 2), k <= 2q+1, for powers of 2, q=2^r.

Usage

createBoseBush(q, ncol, bRandom = TRUE)

Arguments

q the number of symbols in the array

ncol number of parameters or columns

bRandom should the array be randomized

Details

From Owen: An orthogonal array A is a matrix of n rows, k columns with every element being one
of q symbols 0,...,q-1. The array has strength t if, in every n by t submatrix, the q^t possible
distinct rows, all appear the same number of times. This number is the index of the array, commonly
denoted lambda. Clearly, lambda*q^t=n. The notation for such an array is OA(n, k, q, t).

Value

an orthogonal array

References

Owen, Art. Orthogonal Arrays for: Computer Experiments, Visualizations, and Integration in high
dimensions. https://lib.stat.cmu.edu/designs/oa.c. 1994 R.C. Bose and K.A. Bush (1952)
Annals of Mathematical Statistics, Vol 23 pp 508-524.

See Also

Other methods to create orthogonal arrays [createBush()], [createBose()], [createAddelKemp()],
[createAddelKemp3()], [createAddelKempN()], [createBusht()], [createBoseBushl()]

Examples

A <- createBoseBush(4, 3, FALSE)
B <- createBoseBush(8, 3, TRUE)

https://lib.stat.cmu.edu/designs/oa.c

10 createBoseBushl

createBoseBushl Create an orthogonal array using the Bose-Bush algorithm with alter-
nate strength >= 3.

Description

The bosebushl program produces OA(lambda*q^2, k, q, 2), k <= lambda*q+1, for prime pow-
ers q and lambda > 1. Both q and lambda must be powers of the same prime.

Usage

createBoseBushl(q, ncol, lambda, bRandom = TRUE)

Arguments

q the number of symbols in the array

ncol number of parameters or columns

lambda the lambda of the BoseBush algorithm

bRandom should the array be randomized

Details

From Owen: An orthogonal array A is a matrix of n rows, k columns with every element being one
of q symbols 0,...,q-1. The array has strength t if, in every n by t submatrix, the q^t possible
distinct rows, all appear the same number of times. This number is the index of the array, commonly
denoted lambda. Clearly, lambda*q^t=n. The notation for such an array is OA(n, k, q, t).

Value

an orthogonal array

References

Owen, Art. Orthogonal Arrays for: Computer Experiments, Visualizations, and Integration in high
dimensions. https://lib.stat.cmu.edu/designs/oa.c. 1994 R.C. Bose and K.A. Bush (1952)
Annals of Mathematical Statistics, Vol 23 pp 508-524.

See Also

Other methods to create orthogonal arrays [createBoseBush()], [createBose()], [createBush()], [cre-
ateAddelKemp()], [createAddelKemp3()], [createAddelKempN()], [createBusht()]

Examples

A <- createBoseBushl(3, 3, 3, TRUE)
B <- createBoseBushl(4, 4, 16, TRUE)

https://lib.stat.cmu.edu/designs/oa.c

createBush 11

createBush Create an orthogonal array using the Bush algorithm.

Description

The bush program produces OA(q^3, k, q, 3), k <= q+1 for prime powers q.

Usage

createBush(q, ncol, bRandom = TRUE)

Arguments

q the number of symbols in the array

ncol number of parameters or columns

bRandom should the array be randomized

Details

From Owen: An orthogonal array A is a matrix of n rows, k columns with every element being one
of q symbols 0,...,q-1. The array has strength t if, in every n by t submatrix, the q^t possible
distinct rows, all appear the same number of times. This number is the index of the array, commonly
denoted lambda. Clearly, lambda*q^t=n. The notation for such an array is OA(n, k, q, t).

Value

an orthogonal array

References

Owen, Art. Orthogonal Arrays for: Computer Experiments, Visualizations, and Integration in
high dimensions. https://lib.stat.cmu.edu/designs/oa.c. 1994 K.A. Bush (1952) Annals
of Mathematical Statistics, Vol 23 pp 426-434

See Also

Other methods to create orthogonal arrays [createBoseBush()], [createBose()], [createAddelKemp()],
[createAddelKemp3()], [createAddelKempN()], [createBusht()], [createBoseBushl()]

Examples

A <- createBush(3, 3, FALSE)
B <- createBush(4, 5, TRUE)

https://lib.stat.cmu.edu/designs/oa.c

12 createBusht

createBusht Create an orthogonal array using the Bush algorithm with alternate
strength.

Description

The busht program produces OA(q^t, k, q, t), k <= q+1, t>=3, for prime powers q.

Usage

createBusht(q, ncol, strength, bRandom = TRUE)

Arguments

q the number of symbols in the array

ncol number of parameters or columns

strength the strength of the array to be created

bRandom should the array be randomized

Details

From Owen: An orthogonal array A is a matrix of n rows, k columns with every element being one
of q symbols 0,...,q-1. The array has strength t if, in every n by t submatrix, the q^t possible
distinct rows, all appear the same number of times. This number is the index of the array, commonly
denoted lambda. Clearly, lambda*q^t=n. The notation for such an array is OA(n, k, q, t).

Value

an orthogonal array

References

Owen, Art. Orthogonal Arrays for: Computer Experiments, Visualizations, and Integration in
high dimensions. https://lib.stat.cmu.edu/designs/oa.c. 1994 K.A. Bush (1952) Annals
of Mathematical Statistics, Vol 23 pp 426-434

See Also

Other methods to create orthogonal arrays [createBoseBush()], [createBose()], [createAddelKemp()],
[createAddelKemp3()], [createAddelKempN()], [createBoseBushl()]

Examples

set.seed(1234)
A <- createBusht(3, 4, 2, TRUE)
B <- createBusht(3, 4, 3, FALSE)
G <- createBusht(3, 4, 3, TRUE)

https://lib.stat.cmu.edu/designs/oa.c

create_galois_field 13

create_galois_field Create a Galois field

Description

Create a Galois field

Usage

create_galois_field(q)

Arguments

q The order of the Galois Field q = p^n

Value

a GaloisField object containing

n q = p^n

p The prime modulus of the field q=p^n

q The order of the Galois Field q = p^n. q must be a prime power.

xton coefficients of the characteristic polynomial where the first coefficient is on x^0, the second
is on x^1 and so on

inv An index for which row of poly (zero based) is the multiplicative inverse of this row. An NA
indicates that this row of poly has no inverse. e.g. c(3, 4) means that row 4=3+1 is the inverse
of row 1 and row 5=4+1 is the inverse of row 2

neg An index for which row of poly (zero based) is the negative or additive inverse of this row. An
NA indicates that this row of poly has no negative. e.g. c(3, 4) means that row 4=3+1 is the
negative of row 1 and row 5=4+1 is the negative of row 2

root An index for which row of poly (zero based) is the square root of this row. An NA indicates
that this row of poly has no square root. e.g. c(3, 4) means that row 4=3+1 is the square root
of row 1 and row 5=4+1 is the square root of row 2

plus sum table of the Galois Field

times multiplication table of the Galois Field

poly rows are polynomials of the Galois Field where the entries are the coefficients of the polyno-
mial where the first coefficient is on x^0, the second is on x^1 and so on

Examples

gf <- create_galois_field(4);

14 geneticLHS

create_oalhs Create an orthogonal array Latin hypercube

Description

Create an orthogonal array Latin hypercube

Usage

create_oalhs(n, k, bChooseLargerDesign, bverbose)

Arguments

n the number of samples or rows in the LHS (integer)

k the number of parameters or columns in the LHS (integer)

bChooseLargerDesign

should a larger oa design be chosen than the n and k requested?

bverbose should information be printed with execution

Value

a numeric matrix which is an orthogonal array Latin hypercube sample

Examples

set.seed(34)
A <- create_oalhs(9, 4, TRUE, FALSE)
B <- create_oalhs(9, 4, TRUE, FALSE)

geneticLHS Latin Hypercube Sampling with a Genetic Algorithm

Description

Draws a Latin Hypercube Sample from a set of uniform distributions for use in creating a Latin
Hypercube Design. This function attempts to optimize the sample with respect to the S optimality
criterion through a genetic type algorithm.

geneticLHS 15

Usage

geneticLHS(
n = 10,
k = 2,
pop = 100,
gen = 4,
pMut = 0.1,
criterium = "S",
verbose = FALSE

)

Arguments

n The number of partitions (simulations or design points or rows)

k The number of replications (variables or columns)

pop The number of designs in the initial population

gen The number of generations over which the algorithm is applied

pMut The probability with which a mutation occurs in a column of the progeny

criterium The optimality criterium of the algorithm. Default is S. Maximin is also sup-
ported

verbose Print informational messages. Default is FALSE

Details

Latin hypercube sampling (LHS) was developed to generate a distribution of collections of parame-
ter values from a multidimensional distribution. A square grid containing possible sample points is
a Latin square iff there is only one sample in each row and each column. A Latin hypercube is the
generalisation of this concept to an arbitrary number of dimensions. When sampling a function of
k variables, the range of each variable is divided into n equally probable intervals. n sample points
are then drawn such that a Latin Hypercube is created. Latin Hypercube sampling generates more
efficient estimates of desired parameters than simple Monte Carlo sampling.

This program generates a Latin Hypercube Sample by creating random permutations of the first n
integers in each of k columns and then transforming those integers into n sections of a standard
uniform distribution. Random values are then sampled from within each of the n sections. Once the
sample is generated, the uniform sample from a column can be transformed to any distribution by
using the quantile functions, e.g. qnorm(). Different columns can have different distributions.

S-optimality seeks to maximize the mean distance from each design point to all the other points in
the design, so the points are as spread out as possible.

Genetic Algorithm:

1. Generate pop random latin hypercube designs of size n by k

2. Calculate the S optimality measure of each design

3. Keep the best design in the first position and throw away half of the rest of the population

4. Take a random column out of the best matrix and place it in a random column of each of the
other matricies, and take a random column out of each of the other matricies and put it in
copies of the best matrix thereby causing the progeny

16 get_library_versions

5. For each of the progeny, cause a genetic mutation pMut percent of the time. The mutation is
accomplished by swtching two elements in a column

Value

An n by k Latin Hypercube Sample matrix with values uniformly distributed on [0,1]

Author(s)

Rob Carnell

References

Stocki, R. (2005) A method to improve design reliability using optimal Latin hypercube sampling
Computer Assisted Mechanics and Engineering Sciences 12, 87–105.

Stein, M. (1987) Large Sample Properties of Simulations Using Latin Hypercube Sampling. Tech-
nometrics. 29, 143–151.

See Also

[randomLHS()], [improvedLHS()], [maximinLHS()], and [optimumLHS()] to generate Latin Hy-
percube Samples. [optAugmentLHS()] [optSeededLHS()], and [augtmentLHS()] to modify and
augment existing designs.

Examples

set.seed(1234)
A <- geneticLHS(4, 3, 50, 5, .25)

get_library_versions Get version information for all libraries in the lhs package

Description

Get version information for all libraries in the lhs package

Usage

get_library_versions()

Value

a character string containing the versions

Examples

get_library_versions()

improvedLHS 17

improvedLHS Improved Latin Hypercube Sample

Description

Draws a Latin Hypercube Sample from a set of uniform distributions for use in creating a Latin
Hypercube Design. This function attempts to optimize the sample with respect to an optimum
euclidean distance between design points.

Usage

improvedLHS(n, k, dup = 1)

Arguments

n The number of partitions (simulations or design points or rows)

k The number of replications (variables or columns)

dup A factor that determines the number of candidate points used in the search. A
multiple of the number of remaining points than can be added.

Details

Latin hypercube sampling (LHS) was developed to generate a distribution of collections of parame-
ter values from a multidimensional distribution. A square grid containing possible sample points is
a Latin square iff there is only one sample in each row and each column. A Latin hypercube is the
generalisation of this concept to an arbitrary number of dimensions. When sampling a function of
k variables, the range of each variable is divided into n equally probable intervals. n sample points
are then drawn such that a Latin Hypercube is created. Latin Hypercube sampling generates more
efficient estimates of desired parameters than simple Monte Carlo sampling.

This program generates a Latin Hypercube Sample by creating random permutations of the first n
integers in each of k columns and then transforming those integers into n sections of a standard
uniform distribution. Random values are then sampled from within each of the n sections. Once
the sample is generated, the uniform sample from a column can be transformed to any distribution
byusing the quantile functions, e.g. qnorm(). Different columns can have different distributions.

This function attempts to optimize the sample with respect to an optimum euclidean distance be-
tween design points.

Optimumdistance = fracnn
1.0
k

Value

An n by k Latin Hypercube Sample matrix with values uniformly distributed on [0,1]

18 maximinLHS

References

Beachkofski, B., Grandhi, R. (2002) Improved Distributed Hypercube Sampling American Institute
of Aeronautics and Astronautics Paper 1274.

This function is based on the MATLAB program written by John Burkardt and modified 16 Feb
2005 https://people.math.sc.edu/Burkardt/m_src/ihs/ihs.html

See Also

[randomLHS()], [geneticLHS()], [maximinLHS()], and [optimumLHS()] to generate Latin Hyper-
cube Samples. [optAugmentLHS()], [optSeededLHS()], and [augmentLHS()] to modify and aug-
ment existing designs.

Examples

set.seed(1234)
A <- improvedLHS(4, 3, 2)

maximinLHS Maximin Latin Hypercube Sample

Description

Draws a Latin Hypercube Sample from a set of uniform distributions for use in creating a Latin
Hypercube Design. This function attempts to optimize the sample by maximizing the minium
distance between design points (maximin criteria).

Usage

maximinLHS(
n,
k,
method = "build",
dup = 1,
eps = 0.05,
maxIter = 100,
optimize.on = "grid",
debug = FALSE

)

Arguments

n The number of partitions (simulations or design points or rows)

k The number of replications (variables or columns)

method build or iterative is the method of LHS creation. build finds the next best
point while constructing the LHS. iterative optimizes the resulting sample on
[0,1] or sample grid on [1,N]

https://people.math.sc.edu/Burkardt/m_src/ihs/ihs.html

maximinLHS 19

dup A factor that determines the number of candidate points used in the search. A
multiple of the number of remaining points than can be added. This is used
when method="build"

eps The minimum percent change in the minimum distance used in the iterative
method

maxIter The maximum number of iterations to use in the iterative method

optimize.on grid or result gives the basis of the optimization. grid optimizes the LHS on
the underlying integer grid. result optimizes the resulting sample on [0,1]

debug prints additional information about the process of the optimization

Details

Latin hypercube sampling (LHS) was developed to generate a distribution of collections of parame-
ter values from a multidimensional distribution. A square grid containing possible sample points is
a Latin square iff there is only one sample in each row and each column. A Latin hypercube is the
generalisation of this concept to an arbitrary number of dimensions. When sampling a function of
k variables, the range of each variable is divided into n equally probable intervals. n sample points
are then drawn such that a Latin Hypercube is created. Latin Hypercube sampling generates more
efficient estimates of desired parameters than simple Monte Carlo sampling.

This program generates a Latin Hypercube Sample by creating random permutations of the first n
integers in each of k columns and then transforming those integers into n sections of a standard
uniform distribution. Random values are then sampled from within each of the n sections. Once the
sample is generated, the uniform sample from a column can be transformed to any distribution by
using the quantile functions, e.g. qnorm(). Different columns can have different distributions.

Here, values are added to the design one by one such that the maximin criteria is satisfied.

Value

An n by k Latin Hypercube Sample matrix with values uniformly distributed on [0,1]

References

Stein, M. (1987) Large Sample Properties of Simulations Using Latin Hypercube Sampling. Tech-
nometrics. 29, 143–151.

This function is motivated by the MATLAB program written by John Burkardt and modified 16 Feb
2005 https://people.math.sc.edu/Burkardt/m_src/ihs/ihs.html

See Also

[randomLHS()], [geneticLHS()], [improvedLHS()] and [optimumLHS()] to generate Latin Hyper-
cube Samples. [optAugmentLHS()], [optSeededLHS()], and [augmentLHS()] to modify and aug-
ment existing designs.

Examples

set.seed(1234)
A1 <- maximinLHS(4, 3, dup=2)
A2 <- maximinLHS(4, 3, method="build", dup=2)

https://people.math.sc.edu/Burkardt/m_src/ihs/ihs.html

20 optAugmentLHS

A3 <- maximinLHS(4, 3, method="iterative", eps=0.05, maxIter=100, optimize.on="grid")
A4 <- maximinLHS(4, 3, method="iterative", eps=0.05, maxIter=100, optimize.on="result")

oa_to_oalhs Create a Latin hypercube from an orthogonal array

Description

Create a Latin hypercube from an orthogonal array

Usage

oa_to_oalhs(n, k, oa)

Arguments

n the number of samples or rows in the LHS (integer)

k the number of parameters or columns in the LHS (integer)

oa the orthogonal array to be used as the basis for the LHS (matrix of integers) or
data.frame of factors

Value

a numeric matrix which is a Latin hypercube sample

Examples

oa <- createBose(3, 4, TRUE)
B <- oa_to_oalhs(9, 4, oa)

optAugmentLHS Optimal Augmented Latin Hypercube Sample

Description

Augments an existing Latin Hypercube Sample, adding points to the design, while maintaining the
latin properties of the design. This function attempts to add the points to the design in an optimal
way.

Usage

optAugmentLHS(lhs, m = 1, mult = 2)

optimumLHS 21

Arguments

lhs The Latin Hypercube Design to which points are to be added

m The number of additional points to add to matrix lhs

mult m*mult random candidate points will be created.

Details

Augments an existing Latin Hypercube Sample, adding points to the design, while maintaining the
latin properties of the design. This function attempts to add the points to the design in a way that
maximizes S optimality.

S-optimality seeks to maximize the mean distance from each design point to all the other points in
the design, so the points are as spread out as possible.

Value

An n by k Latin Hypercube Sample matrix with values uniformly distributed on [0,1]

References

Stein, M. (1987) Large Sample Properties of Simulations Using Latin Hypercube Sampling. Tech-
nometrics. 29, 143–151.

See Also

[randomLHS()], [geneticLHS()], [improvedLHS()], [maximinLHS()], and [optimumLHS()] to gen-
erate Latin Hypercube Samples. [optSeededLHS()] and [augmentLHS()] to modify and augment
existing designs.

Examples

set.seed(1234)
a <- randomLHS(4,3)
b <- optAugmentLHS(a, 2, 3)

optimumLHS Optimum Latin Hypercube Sample

Description

Draws a Latin Hypercube Sample from a set of uniform distributions for use in creating a Latin
Hypercube Design. This function uses the Columnwise Pairwise (CP) algorithm to generate an
optimal design with respect to the S optimality criterion.

Usage

optimumLHS(n = 10, k = 2, maxSweeps = 2, eps = 0.1, verbose = FALSE)

22 optimumLHS

Arguments

n The number of partitions (simulations or design points or rows)

k The number of replications (variables or columns)

maxSweeps The maximum number of times the CP algorithm is applied to all the columns.

eps The optimal stopping criterion. Algorithm stops when the change in optimality
measure is less than eps*100% of the previous value.

verbose Print informational messages

Details

Latin hypercube sampling (LHS) was developed to generate a distribution of collections of parame-
ter values from a multidimensional distribution. A square grid containing possible sample points is
a Latin square iff there is only one sample in each row and each column. A Latin hypercube is the
generalisation of this concept to an arbitrary number of dimensions. When sampling a function of
k variables, the range of each variable is divided into n equally probable intervals. n sample points
are then drawn such that a Latin Hypercube is created. Latin Hypercube sampling generates more
efficient estimates of desired parameters than simple Monte Carlo sampling.

This program generates a Latin Hypercube Sample by creating random permutations of the first n
integers in each of k columns and then transforming those integers into n sections of a standard
uniform distribution. Random values are then sampled from within each of the n sections. Once the
sample is generated, the uniform sample from a column can be transformed to any distribution by
using the quantile functions, e.g. qnorm(). Different columns can have different distributions.

S-optimality seeks to maximize the mean distance from each design point to all the other points in
the design, so the points are as spread out as possible.

This function uses the CP algorithm to generate an optimal design with respect to the S optimality
criterion.

Value

An n by k Latin Hypercube Sample matrix with values uniformly distributed on [0,1]

References

Stocki, R. (2005) A method to improve design reliability using optimal Latin hypercube sampling
Computer Assisted Mechanics and Engineering Sciences 12, 87–105.

See Also

[randomLHS()], [geneticLHS()], [improvedLHS()] and [maximinLHS()] to generate Latin Hyper-
cube Samples. [optAugmentLHS()], [optSeededLHS()], and [augmentLHS()] to modify and aug-
ment existing designs.

Examples

A <- optimumLHS(4, 3, 5, .05)

optSeededLHS 23

optSeededLHS Optimum Seeded Latin Hypercube Sample

Description

Augments an existing Latin Hypercube Sample, adding points to the design, while maintaining the
latin properties of the design. This function then uses the columnwise pairwise (CP) algoritm to
optimize the design. The original design is not necessarily maintained.

Usage

optSeededLHS(seed, m = 0, maxSweeps = 2, eps = 0.1, verbose = FALSE)

Arguments

seed The number of partitions (simulations or design points)
m The number of additional points to add to the seed matrix seed. default value is

zero. If m is zero then the seed design is optimized.
maxSweeps The maximum number of times the CP algorithm is applied to all the columns.
eps The optimal stopping criterion
verbose Print informational messages

Details

Augments an existing Latin Hypercube Sample, adding points to the design, while maintaining the
latin properties of the design. This function then uses the CP algoritm to optimize the design. The
original design is not necessarily maintained.

Value

An n by k Latin Hypercube Sample matrix with values uniformly distributed on [0,1]

References

Stein, M. (1987) Large Sample Properties of Simulations Using Latin Hypercube Sampling. Tech-
nometrics. 29, 143–151.

See Also

[randomLHS()], [geneticLHS()], [improvedLHS()], [maximinLHS()], and [optimumLHS()] to gen-
erate Latin Hypercube Samples. [optAugmentLHS()] and [augmentLHS()] to modify and augment
existing designs.

Examples

set.seed(1234)
a <- randomLHS(4,3)
b <- optSeededLHS(a, 2, 2, .1)

24 poly_prod

poly2int Convert polynomial to integer in <code>0..q-1</code>

Description

Convert polynomial to integer in <code>0..q-1</code>

Usage

poly2int(p, n, poly)

Arguments

p modulus

n the length of poly

poly the polynomial vector

Value

an integer

Examples

gf <- create_galois_field(4)
stopifnot(poly2int(gfp, gfn, c(0, 0)) == 0)

poly_prod Multiplication in polynomial representation

Description

Multiplication in polynomial representation

Usage

poly_prod(p, n, xton, p1, p2)

Arguments

p modulus

n length of polynomials

xton characteristic polynomial vector for the field (x to the n power)

p1 polynomial vector 1

p2 polynomial vector 2

poly_sum 25

Value

the product of p1 and p2

Examples

gf <- create_galois_field(4)
a <- poly_prod(gfp, gfn, gf$xton, c(1, 0), c(0, 1))
stopifnot(all(a == c(0, 1)))

poly_sum Addition in polynomial representation

Description

Addition in polynomial representation

Usage

poly_sum(p, n, p1, p2)

Arguments

p modulus

n length of polynomial 1 and 2

p1 polynomial vector 1

p2 polynomial vector 2

Value

the sum of p1 and p2

Examples

gf <- create_galois_field(4)
a <- poly_sum(gfp, gfn, c(1, 0), c(0, 1))
stopifnot(all(a == c(1, 1)))

26 qfactor

qfactor Quantile Transformations

Description

A collection of functions that transform the margins of a Latin hypercube sample in multiple ways

Usage

qfactor(p, fact)

qinteger(p, a, b)

qdirichlet(X, alpha)

Arguments

p a vector of LHS samples on (0,1)

fact a factor or categorical variable. Ordered and un-ordered variables are allowed.

a a minimum integer

b a maximum integer

X multiple columns of an LHS sample on (0,1)

alpha Dirichlet distribution parameters. All alpha >= 1 The marginal mean probabil-
ity of the Dirichlet distribution is given by alpha[i] / sum(alpha)

Details

qdirichlet is not an exact quantile function since the quantile of a multivariate distribution is
not unique. qdirichlet is also not the independent quantiles of the marginal distributions since
those quantiles do not sum to one. qdirichlet is the quantile of the underlying gamma functions,
normalized. This is the same procedure that is used to generate random deviates from the Dirich-
let distribution therefore it will produce transformed Latin hypercube samples with the intended
distribution.

q_factor divides the [0,1] interval into nlevel(fact) equal sections and assigns values in those
sections to the factor level.

Value

the transformed column or columns

randomLHS 27

Examples

X <- randomLHS(20, 7)
Y <- as.data.frame(X)
Y[,1] <- qnorm(X[,1], 2, 0.5)
Y[,2] <- qfactor(X[,2], factor(LETTERS[c(1,3,5,7,8)]))
Y[,3] <- qinteger(X[,3], 5, 17)
Y[,4:6] <- qdirichlet(X[,4:6], c(2,3,4))
Y[,7] <- qfactor(X[,7], ordered(LETTERS[c(1,3,5,7,8)]))

randomLHS Construct a random Latin hypercube design

Description

randomLHS(4,3) returns a 4x3 matrix with each column constructed as follows: A random per-
mutation of (1,2,3,4) is generated, say (3,1,2,4) for each of K columns. Then a uniform random
number is picked from each indicated quartile. In this example a random number between .5 and
.75 is chosen, then one between 0 and .25, then one between .25 and .5, finally one between .75 and
1.

Usage

randomLHS(n, k, preserveDraw = FALSE)

Arguments

n the number of rows or samples

k the number of columns or parameters/variables

preserveDraw should the draw be constructed so that it is the same for variable numbers of
columns?

Value

a Latin hypercube sample

Examples

a <- randomLHS(5, 3)

28 runifint

runifint Create a Random Sample of Uniform Integers

Description

Create a Random Sample of Uniform Integers

Usage

runifint(n = 1, min_int = 0, max_int = 1)

Arguments

n The number of samples

min_int the minimum integer x >= min_int

max_int the maximum integer x <= max_int

Value

the sample sample of size n

Index

∗ design
augmentLHS, 2
geneticLHS, 14
improvedLHS, 17
maximinLHS, 18
optAugmentLHS, 20
optimumLHS, 21
optSeededLHS, 23

augmentLHS, 2

correlatedLHS, 3
create_galois_field, 13
create_oalhs, 14
createAddelKemp, 5
createAddelKemp3, 6
createAddelKempN, 7
createBose, 8
createBoseBush, 9
createBoseBushl, 10
createBush, 11
createBusht, 12

geneticLHS, 14
get_library_versions, 16

improvedLHS, 17

maximinLHS, 18

oa_to_oalhs, 20
optAugmentLHS, 20
optimumLHS, 21
optSeededLHS, 23

poly2int, 24
poly_prod, 24
poly_sum, 25

qdirichlet (qfactor), 26
qfactor, 26

qinteger (qfactor), 26

randomLHS, 27
runifint, 28

29

	augmentLHS
	correlatedLHS
	createAddelKemp
	createAddelKemp3
	createAddelKempN
	createBose
	createBoseBush
	createBoseBushl
	createBush
	createBusht
	create_galois_field
	create_oalhs
	geneticLHS
	get_library_versions
	improvedLHS
	maximinLHS
	oa_to_oalhs
	optAugmentLHS
	optimumLHS
	optSeededLHS
	poly2int
	poly_prod
	poly_sum
	qfactor
	randomLHS
	runifint
	Index

