glmm: Generalized Linear Mixed Models via Monte Carlo Likelihood Approximation

Approximates the likelihood of a generalized linear mixed model using Monte Carlo likelihood approximation. Then maximizes the likelihood approximation to return maximum likelihood estimates, observed Fisher information, and other model information.

Version: 1.4.5
Depends: R (≥ 4.0), trust, mvtnorm, Matrix, parallel, doParallel
Imports: stats, foreach, itertools, utils
Suggests: knitr, V8
Published: 2024-09-22
DOI: 10.32614/CRAN.package.glmm
Author: Christina Knudson [aut, cre], Charles J. Geyer [ctb], Sydney Benson [ctb]
Maintainer: Christina Knudson <drchristinaknudson at gmail.com>
License: GPL-2
NeedsCompilation: yes
In views: MixedModels
CRAN checks: glmm results

Documentation:

Reference manual: glmm.pdf
Vignettes: author2019mypaper (source)

Downloads:

Package source: glmm_1.4.5.tar.gz
Windows binaries: r-devel: glmm_1.4.5.zip, r-release: glmm_1.4.5.zip, r-oldrel: glmm_1.4.5.zip
macOS binaries: r-release (arm64): glmm_1.4.5.tgz, r-oldrel (arm64): glmm_1.4.5.tgz, r-release (x86_64): glmm_1.4.5.tgz, r-oldrel (x86_64): glmm_1.4.5.tgz
Old sources: glmm archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=glmm to link to this page.