| Type: | Package | 
| Title: | New Data Visualisations for SOMs Networks | 
| Version: | 0.4.0 | 
| Description: | The aim of this package is to offer more variability of graphics based on the self-organizing maps. | 
| License: | MIT + file LICENSE | 
| LazyData: | true | 
| Encoding: | UTF-8 | 
| Depends: | R (≥ 3.4.0) | 
| Imports: | dplyr, magrittr, tidyr, ggplot2, kohonen, assertthat, data.table, entropy, tibble | 
| Suggests: | devtools, knitr, rmarkdown | 
| URL: | https://github.com/oldlipe/ggsom | 
| RoxygenNote: | 7.0.0 | 
| Collate: | 'ggsom.R' 'ggsom_aes.R' 'ggsom_entropy.R' 'ggsom_plot.R' 'ggsom_utils.R' 'zzz.R' | 
| NeedsCompilation: | no | 
| Packaged: | 2020-01-15 20:21:31 UTC; felipe | 
| Author: | Felipe Carvalho [aut, cre], Rafael Santos [ctb], Karine Reis [ctb] | 
| Maintainer: | Felipe Carvalho <lipecaso@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2020-01-15 20:40:02 UTC | 
Visualization in parallelels coordinates in matrix of each attribute
Description
Visualization of the classes corresponding to each neuron of the SOM
Usage
geom_class(object_som, class = NULL, x_o = 3, y_o = 5.5, x_e = 3, y_e = 6.3)
Arguments
| object_som | object of Kohonen package | 
| class | categorical vector corresponding to the class of the dataset | 
| x_o | x-axis to map the number of observations of each neuron | 
| y_o | y-axis to map the number of observations of each neuron | 
| x_e | x-axis to map the entropy of each neuron | 
| y_e | y-axis to map the entropy of each neuron | 
Value
ggplot2 object
Author(s)
Felipe Carvalho, lipecaso@gmail.com
References
'ggplot2' package (https://CRAN.R-project.org/package=ggplot2)
Examples
# Creating SOM object
iris_som <- kohonen::som(X = as.matrix(iris[1:4]),
                         grid =  kohonen::somgrid(xdim = 5,
                                                   ydim = 5,
                                                   neighbourhood.fct = "gaussian",
                                                   topo = "rectangular"),
                         rlen = 100)
# Creating ggsom class plot
geom_class(iris_som, class = iris$Species,
           x_o = 1, y_o = 6,
           x_e = 1.1, y_e = 7.4)
ggsom
Description
The aim of this package is to offer more variability of graphics based on the self-organizing maps
kohonen package object modeling
Description
Function to map each SOM neuron with its corresponding class
Usage
ggsom_aes(object_som, class)
Arguments
| object_som | object of kohonen package | 
| class | categorical vector corresponding to the class of the dataset | 
Value
data.table model used in visualizations
Author(s)
Felipe Carvalho, lipecaso@gmail.com
References
'Kohonen'package (https://CRAN.R-project.org/package=kohonen)
Function to obtain the purity of each neuron in the SOM network
Description
Entropy calculation using the maximum likelihood method
Usage
ggsom_entropy(ggsom_aes)
Arguments
| ggsom_aes | kohonen package object modeling | 
Value
Data set with the purity attribute added in Tibble
Author(s)
Felipe Carvalho, felipe.carvalho@inpe.br
verifies that the object inherits kohonen object
Description
if object inherits kohonen class return TRUE otherwise FALSE
Usage
is.kohonen(object_som)
Arguments
| object_som | object of Kohonen package | 
Value
Boolean value
Author(s)
Felipe Carvalho, lipecaso@gmail.com
References
'Kohonen'package (https://CRAN.R-project.org/package=kohonen)