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Abstract

How to do exact-exact (rather than only conservative-exact) sign,
signrank, and ranksum hypothesis tests, whether or not there are tied
ranks. Also how to do the corresponding confidence intervals.

Exact-exact procedures must be either randomized or fuzzy. This
package provides the latter.

1 License

This work is licensed under a Creative Commons Attribution-ShareAlike
4.0 International License http://creativecommons.org/licenses/by-sa/
4.0/.

2 R

e The version of R used to make this document is 4.5.2.
e The version of the knitr package used to make this document is 1.50.

e The version of the fuzzyRankTests package used to make this docu-
ment is 0.5.

library(fuzzyRankTests)

3 Introduction

3.1 What This is About
We deal with three tests of statistical hypotheses:


http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

e the sign test,

e Wilcoxon’s signed rank test, and

e Wilcoxon’s rank sum test (also called Mann-Whitney).
And we deal with two issues with these.

e Like all tests with discrete test statistics, exact tests are impossible
unless the test is randomized.

e Tied data and tied ranks complicate the situation.
Assumptions:
e One Sample or Paired Comparison

— Sign test: no assumptions.
— Signed rank test: symmetric population distribution.

— t test: normal population distribution.
e Two Independent Samples

— Rank sum test: one population distribution is the other shifted.

— t test: both population distributions normal with same variance.

This package does not do ¢ tests, see R function t.test in core R for that.
We only include them to show that the assumptions get more restrictive as
one goes down the list.

For non-fuzzy tests the assumptions above need an additional assump-
tion that the population distribution is continuous so there are no tied data
or tied ranks. As will be seen, fuzzy tests and confidence intervals do not
need this assumption.

3.2 Fuzzy Tests and Confidence Intervals

Despite being the official theory of testing statistical hypotheses since
it was invented by Neyman and Pearson in the 1930’s (Lehmann and Ro-
mano, 2022, Chapters 3 and 4) and despite being taught to all PhD statistics
students, the theory of randomized hypothesis tests gets little application (I
have never seen it used) because of the arbitrariness of the artificial random-
ization. Two statisticians can analyze exactly the same data using exactly
the same hypothesis test and come to opposite decisions due to the artificial
randomization.



Geyer and Meeden (2005) proposed a simple fix for this issue: “unran-
domize” randomized tests in the sense that one reports not a decision or a
P-value or a confidence interval that purports to be a realization of some
random process (the artificial randomness in the hypothesis test) but rather
report (a description of) the probability distribution of that random quan-
tity. That is we report abstract randomness rather than realized randomness.

In more detail, a randomized hypothesis test rejects the null hypothesis
with probability ¢(X) when test statistic X is observed. This function ¢
is called the critical function of the test. Geyer and Meeden (2005) point
out that the critical function also depends on the significance level o and
the value of the parameter hypothesized under the null hypothesis (for one-
tailed tests, the boundary point of the composite null hypothesis). So they
write the critical function ¢(z, v, #). And they say the result of the test is to
report this critical function, not some realization of some random variable
related to it.

Geyer and Meeden (2005) go on to point out three different interpreta-
tions of the critical function.

e The function ¢( -, «, ) is the critical function of the randomized test,
as considered classically.

e The function ¢(z, -,0) is the (distribution function of) the abstract
randomized (also called fuzzy) P-value of the randomized test.

e The function 1 — ¢(x, o, 0) is the (membership function of) the fuzzy
confidence interval) that is dual to the randomized test.

There is no difference between ¢(x) used classically and ¢(x, «, 0) used
by Geyer and Meeden (2005) when considered as a function of z for fixed
a and 6. Tt is the same function of z either way. Geyer and Meeden (2005)
say what one should report is the number ¢(x, «, ) rather than a decision
(accept or reject the null hypothesis that purportedly has this number as its
probability of rejection).

In order for the function ¢(x, -,0) to be a distribution function, the
hypothesis test need only have nested critical regions (Geyer and Meeden,
2005, equation (1.4) and the surrounding discussion) and be continuous
(which property our applications have). If we were to generate a random
variable P having this distribution function, then rejecting the null hypoth-
esis when P < « is the classical randomized test. Hence this is the P-value
of that test. Geyer and Meeden (2005) are only saying that rather than



simulating such a P and reporting that number, one should report its dis-
tribution as described by the distribution function ¢(z, -, ) or perhaps by
the probability density function of that distribution function.

The function 1—¢(z, «, - ) takes value between zero and one, including (if
the test is actually randomized) values strictly between zero and one. Geyer
and Meeden (2005) suggest we interpret this as the membership function of
a fuzzy set, as in fuzzy set theory (Klir, St. Clair, and Yuan, 1997). One
interprets the membership function as saying to what degree the point is
in the fuzzy set. Geyer and Meeden (2005) say one should interpret it like
partial credit on a test question. After all, that is what probability does.
The coverage probability of the interval is

Ep{l — ¢(X,0,0)} =1 —«

and this means point x is being given “partial credit” 1 — ¢(x, o, 0) when 6
is the true unknown parameter value.

3.3 Tied Data or Tied Ranks

Tied data (data points tied with the hypothesized value under the null
hypothesis) or tied ranks (for the signed rank test or for the rank sum test)
bring more issues. We deal with these using the methods of Thompson and
Geyer (2007).

Now our model has data in two parts: the observable part x and the un-
observable part y (also called missing data, latent variables, random effects,
or hidden layer). So we write the critical function of our randomized test
Y(z,y,a,0). Then

¢($aa79) = Ee{ﬂ)(%Yvaa@)} (1)

is the critical function for the test based on the observed data x.

3.4 What this Package Does

For all three hypothesis tests this package does, the null distribution of
the test statistic is discrete and symmetric. Let T be the test statistic for
an upper tailed test and 7 be the center of symmetry of its null distribution.
Then —T is the test statistic for the lower tailed test, and |T'— 7| is the test
statistic for the two-tailed test.

In all three cases, the fuzzy P-value is uniformly distributed on the
interval with endpoints pry(W > w) and prg(W > w), where W is the test
statistic considered as a random variable and w is its observed value.



Hence the critical function of the test is

0, a < prg(W > w)
o(w,a,0) = %, pro(W > w) < o < pry(W > w)
1, prog(W > w) <«

when there are no ties in the data or the ranks.

When there are ties in the data or the ranks, we assume the data have
been measured with inadequate precision. If more precise measurement had
been used there would be no ties in the data or the ranks. We assume that
all orderings of the hypothetical precise data consistent with the observed
(imprecise) data are equiprobable (since there is no data favoring any such
ordering).

Thus the critical function when there are ties is just the average of the
critical functions (1) for the precise data (with no ties) consistent with the
observed imprecise data.

3.5 Ordered Categorical Data

We do not recommend the procedures in this package as competitors for
procedures for ordered categorical data (Agresti, 2013, Sections 8.2 and 8.3).
If one has ordered categorical response data, then one should probably use
statistical models and procedures designed specifically for that.

But if the ordered categories have arisen from imprecise measurement,
then one could also justify using the fuzzy procedures this package provides
for such data.

3.6 Other Procedures for Tied Data or Tied Ranks

We take Hollander, Wolfe, and Chicken (2014) to be authoritative about
existing practice.

3.6.1 Sign Test

For the sign test, their recommended procedure is to report the usual
P-value for a discrete test: prg(WW > w) when there are no ties (data values
equal to the value hypothesized by the null hypothesis).

When there are ties, Hollander, et al. (2014, Subsection Ties of Sec-
tion 3.4) say one should eliminate the ties from the data and then proceed
as above.



We say this is unacceptable. It is cherry-picking data that favor the
alternative hypothesis (suppressing data that favor the null hypothesis).
This correction for ties, although widely used, can never be justified.

To be fair to Hollander, et al. (2014) they say (Comment 34 of Sec-
tion 3.4) that one should not do their recommended procedure when the
number of ties “represent a sizable percentage of the total.” So they already
recognize the wrongness. They also give two other procedures.

e A randomized procedure that is what we “unrandomize” turning it
into a fuzzy P-value. They do not like randomized procedures and
hence do not recommend them. But we do not either. Hence the
unrandomization, which escapes their criticism.

e A conservative procedure that counts all ties in favor of the null hy-
pothesis. Our procedure also calculates this: its P-value is the upper
endpoint of the support of the distribution of our fuzzy P-value. So
we take that into account (including exactly how conservative it is).

3.6.2 Signed Rank Test

This section is much like the preceding one mutatis mutandis. The issues
surrounding exactness and ties are much the same. Ranks bring in a few
technical details, which we do not need to emphasize because the computer
does all the work dealing with them.

For the signed rank test, the recommended procedure of Hollander, et
al. (2014, Section 3.1) is to report the usual P-value for a discrete test:
pro(W > w) when there are no ties (either data values equal to the value
hypothesized by the null hypothesis or tied ranks).

When there are ties, Hollander, et al. (2014, Subsection Ties of Sec-
tion 3.1) say one should (i) eliminate data values equal to the value hypoth-
esized by the null hypothesis and (ii) use average ranks when there are tied
ranks. Using average ranks changes the null distribution of the test statis-
tic to something not easily understood, so one uses the asymptotic normal
distribution of the test statistic under the null hypothesis, which has its
asymptotic variance corrected for ties.

We say (i) is unacceptable. It is cherry-picking data that favor the
alternative hypothesis (suppressing data that favor the null hypothesis).
Although widely used, it can never be justified.

We also do not need (ii) because we use unrandomized randomized tests
(Section 3.4 above) instead.



To be fair to Hollander, et al. (2014) they say (Comments 9 and 10 of
Section 3.1) that one should not do their recommended procedure unless
the “zero values are a very small percentage” of the total. So they already
recognize the wrongness. They also give two other procedures.

e A randomized procedure that is what we “unrandomize” turning it
into a fuzzy P-value. They do not like randomized procedures and
hence do not recommend them. But we do not either. Hence the
unrandomization, which escapes their criticism.

e A conservative procedure that counts all ties in favor of the null hy-
pothesis. Our procedure also calculates this: its P-value is the upper
endpoint of the support of the distribution of our fuzzy P-value. So
we take that into account (including exactly how conservative it is).

They also discuss (Comment 11 of Section 3.1) another procedure that keeps
the tied ranks but uses intensive computation to calculate the exact permu-
tation distribution conditioning on the pattern of ties. Since we have an
alternative, we are not interested in this either.

3.6.3 Rank Sum Test

For some reason, the discussion in Hollander, et al. (2014) of this test
is not parallel to the other two. They do not discuss randomized versions
of this test, although they obviously exist and work just as well as for the
other two. Hence this package does the fuzzy hypothesis tests and confidence
intervals that are justified in the same way as for the other two procedures.

4 Examples

4.1 Sign Test
4.1.1 No Zero Values

For an example with no zero values, we do Example 3.5 in Hollander, et
al. (2014)

z <- c(-0.8, 7.5, 46.9, 17.6, -4.6, 54.0, 48.3, 3.9, 16.7,
19.7, -8.5, 7.1, 40.7, 23.8, 14.8, 20.6, 25.0, 24.7,
-1.8, 21.9, 4.7, 24.7, 52.8, 8.5, 1.9)

fuzzy.sign.test(z, alternative = "greater")



##

## sign test

##

## data: =z

## alternative hypothesis: true mu is greater than O

##

## fuzzy P-value has continuous, piecewise linear CDF with knots and
## values

##

## knots values
## 7.826e-05 0
## 4.553e-04 1

Since (the support of the distribution of) the fuzzy P-value is far below
common criteria of statistical significance, this is strong evidence against the
null hypothesis. Note that the upper endpoint of the support of (the distri-
bution of) the fuzzy P-value is the conventional P-value given by Hollander,
et al. (2014).

A 95% fuzzy confidence interval for the median difference is given by

fuzzy.sign.ci(z) |> plot()

Figure 1 shows (the membership function of) this fuzzy confidence in-
terval. Although we say this example has no ties, that means it has no ties
at the hypothesized value under the null hypothesis, which in this case is
zero. It does have ties at the upper endpoint of the support of the fuzzy
confidence interval, which affects the value at that point.

4.1.2 With Zero Values
For an example with zero values, we make up some data.
z <- c¢(-1.3, -0.4, 0.0, 0.0, 0.3, 0.5, 0.9, 1.1, 1.1, 1.1, 2.3,

2.5, 3.1, 4.5, 5.5)
fuzzy.sign.test(z)

##

## sign test
##

## data: =z
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Figure 1: 95% fuzzy confidence interval for Example 3.5 of Hollander et al.
(2014). Interval dual to sign test.



## alternative hypothesis: true mu is not equal to O

##

## fuzzy P-value has continuous, piecewise linear CDF with knots and
## values

##

#i#t knots values

## 0.0009766 0.00

## 0.0073853 0.25

## 0.0351563 0.75

## 0.1184692 1.00

This might be called borderline statistically significant. It is equivocal.
We can plot the probability density function (Figure 2).

fuzzy.sign.test(z) [|> plot()
Or we can plot the cumulative distribution function (Figure 3).
fuzzy.sign.test(z) |> plot(type = "cdf")

It is left as an exercise for the reader, if he or she is interested, to remove
the zeroes from the data and redo, and then try to defend those results. (We
do not think any defense can be valid.)

The interpretation of the PDF (Figure 2) is that the area under the curve
to the left of « is the probability the null hypothesis is rejected at level .

The interpretation of the CDF (Figure 3) is that the height of the curve
at « is the probability the null hypothesis is rejected at level .

The 95% fuzzy confidence interval is Figure 4.

fuzzy.sign.ci(z) |> plot()

4.2 Signed Rank Test

Again, to illustrate the issues with ties, we just make up some data.
Figure 5 is the PDF of the fuzzy P-value.

z <- c(-2.2, -1.3, -0.3, 0.0, 0.0, 0.3, 0.5, 0.9, 1.1, 1.3,

1.3, 2.3, 2.5, 3.1, 4.5, 5.5)
fuzzy.signrank.test(z) |> plot()
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Figure 2: PDF of Fuzzy P-value.
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Figure 3: CDF of Fuzzy P-value.
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Figure 4: 95% fuzzy confidence interval for made-up data with ties. Interval
dual to sign test.
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Figure 5: Signed rank test for made-up data.
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And Figure 6 is the CDF of the fuzzy P-value.
fuzzy.signrank.test(z) |> plot(type = "cdf")

And Figure 7 is (the membership function of) the 95% fuzzy confidence
interval.

fuzzy.signrank.ci(z) [> plot()

4.3 Rank Sum Test

Again, to illustrate the issues with ties, we just make up some data.
Figure 8 is the PDF of the fuzzy P-value.

x <- c(1, 2, 3, 4, 4, 4, 5, 6, 7)
y <- c(4, 5, 7, 7, 8, 9, 10, 11)
fuzzy.ranksum.test(x, y) |> plotQ)

And Figure 9 is (the membership function of) the 95% fuzzy confidence
interval.

fuzzy.ranksum.ci(x, y) |> plot()
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Figure 6: Signed rank test for made-up data.
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Figure 7: 95% Signed rank confidence interval for made-up data.
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Figure 8: Rank sum test for made-up data.
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Figure 9: 95% rank sum confidence interval for made-up data.
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