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1 Introduction

We do fuzzy P -values and confidence intervals following Geyer and Meeden
(2005) and Thompson and Geyer (2007) for three classical nonparametric proce-
dures: the sign test and the two Wilcoxon tests and their associated confidence
intervals.

1.1 Classical Randomized Tests

Following Geyer and Meeden (2005), let

x 7→ ϕ(x, α, θ)

denote the critical function of a randomized test having significance level α and
point null hypothesis θ, that is, the randomized test rejects the null hypothesis
θ = θ0 at level α when the observed data are x with probability ϕ(x, α, θ0).

The requirement that ϕ(x, α, θ) be a probability restricts it to being between
zero and one (inclusive). The requirement that the test have its nominal level
is

Eθ{ϕ(X,α, θ)} = α, for all θ and α. (1)

1.2 Fuzzy P -values

A fuzzy P -value for this test with null hypothesis θ = θ0 and observed data
x is a random variable having distribution function

α 7→ ϕ(x, α, θ0) (2)

(Geyer and Meeden, 2005, Section 1.4). In order for this to be a distribution
function, it must be nondecreasing

α1 < α2 implies ϕ(x, α1, θ) ≤ ϕ(x, α2, θ), for all x and θ. (3)

Geyer and Meeden (2005) call this property of the family of tests (each α spec-
ifying a different tests) being nested.
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For all the tests considered by Geyer and Meeden (2005), Thompson and
Geyer (2007), or in this document, the fuzzy P -value is a continuous random
variable, so its probability density function is

∂ϕ(x, α, θ0)

∂α

considered as a function of α for fixed x and θ0.
If we write the fuzzy P -value as a random variable P , then the critical

function has the interpretation

ϕ(X,α, θ) = Prθ(P ≤ α | X).

and (1) applied to this gives

Prθ(P ≤ α) = Eθ{Prθ(P ≤ α | X)} = Eθ{ϕ(X,α, θ)} = α

so P is unconditionally Unif(0, 1) distributed for all θ.

1.3 Fuzzy Confidence Intervals

A fuzzy confidence interval associated with this test having coverage proba-
bility 1− α is for observed data x a fuzzy set having membership function

θ 7→ 1− ϕ(x, α, θ) (4)

(Geyer and Meeden, 2005, Section 1.4). The interpretation is that the right-
hand side of (4) is the degree to which θ is considered to be “in” the fuzzy
confidence interval. The coverage probability is

Eθ{1− ϕ(X,α, θ)} = 1− α,

which is just (1) rewritten.

1.4 Latent Variable Randomized Tests

One way to make a randomized test is the following (Thompson and Geyer,
2007). Suppose we have observed data x and latent data y (also called random
effects and Bayesians call them parameters). And suppose we have a possibly
randomized test for the complete data with critical function

(x, y) 7→ ψ(x, y, α, θ).

Then ϕ defined by

ϕ(x, α, θ) = E{ψ(X,Y, α, θ) | X = x}

is a critical function for a randomized test for the observed data.
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Table 1: Endpoints of Supports of Fuzzy P -values. T is a random variable
having the null distribution of the test statistic, t is the observed value of the
test statistic, and τ is the center of symmetry of the null distribution of the test
statistic. The fuzzy P -value is uniformly distributed on the interval with the
endpoints indicated in the table.

lower upper
endpoint endpoint

upper-tailed Pr(T > t) Pr(T ≥ t)
lower-tailed Pr(T < t) Pr(T ≤ t)
two-tailed Pr(|T − τ | > |t− τ |) Pr(|T − τ | ≥ |t− τ |)

2 Sign Test

Suppose we observe data X1, . . ., Xn that are IID from some distribution
with median µ. The conventional sign test of a hypothesized value of µ is based
on the test statistic W , which is the number of Xi strictly greater than µ.

If the distribution of the Xi is continuous, so no ties are possible, then under
the following null hypothesis the distribution of W is Bin(n, 1/2).

Hypothesis 1. The hypothesized value of µ is the median of the distribution
of the Xi.

If the distribution of the Xi is not continuous, so ties are possible, we break
the ties by “infinitesimal jittering” of the data. If l, t, and u data points are
below µ, tied with µ, and above µ, respectively, then after infinitesimal jittering
we have W = u + T of the jittered data points strictly greater than µ, where
T ∼ Bin(t, 1/2). Again we have W ∼ Bin(n, 1/2), although, strictly speaking,
this requires that we change the null hypothesis to the following.

Hypothesis 2. The hypothesized value of µ is the median of the distribution
of the infinitesimally jittered Xi.

Since we cannot in practice distinguish infinitesimally separated points, we
consider these two hypotheses the same in practice.

Following Thompson and Geyer (2007), we call W the latent test statistic
and base the fuzzy test on it. Table 1 shows how a fuzzy test based on such a
test statistic works.

2.1 One-Tailed Tests

2.1.1 General

Suppose we have a test with univariate discrete test statistic X taking values
in a discrete set S, and we want to do an upper-tailed test. We claim that the
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random variable P defined as follows is a fuzzy P -value: conditional on X = x
the random variable P has the Unif

(
a(x, θ), b(x, θ)

)
distribution, where

a(x, θ) = Prθ{X > x}
b(x, θ) = Prθ{X ≥ x}

To prove this we must show that the critical function

ϕ(x, α, θ) =


0, α ≤ a(x, θ)

α−a(x,θ)
b(x,θ)−a(x,θ) , a(x, θ) < α < b(x, θ)

1, α ≥ b(x, θ)

satisfies (1) (it clearly satisfies (3)). Let x∗ denote the unique element of S such
that a(x∗, θ) < α < b(x∗, θ). Note that x∗ is a function of α even though the
notation does not indicate this. Then

Eθ{ϕ(X,α, θ)} =
∑
x∈S

Prθ(X = x) · ϕ(x, α, θ)

= Prθ
(
X > x∗

)
+ Prθ

(
X = x∗

)
· α− a(x∗, θ)

b(x∗, θ)− a(x∗, θ)

and this is equal to α, so (1) holds.

2.1.2 Latent Test for Sign Test

The latent fuzzy P -value for latent test statistic u+ T is Unif(a, b) where

a = Pr{W > u+ T}
b = Pr{W ≥ u+ T}

Note that a and b depend on u+T although the notation does not indicate this.
The (actual, non-latent) fuzzy P -value is a mixture of these uniform distribu-
tions (mixing over the latent variable T ). This means the (actual, non-latent)
fuzzy P -value has continuous, piecewise linear CDF with knots Pr{W > u+t−k}
and corresponding values Pr{T < k}, where k = 0, . . . , t + 1. Recall that the
distribution of W is Bin(n, 1/2) and the distribution of T is Bin(t, 1/2).

For a lower-tailed test, swap l and u and proceed as above.

2.2 Two-Tailed Tests

For a two-tailed test, we use same distributions of T and W as in the one-
tailed test, but now the latent test statistic is

g(T ) = max(u+ T, l + t− T ).

The latent fuzzy P -value for latent test statistic g(T ) is Unif(a, b) where

a = Pr{|W | > g(T )}
b = Pr{|W | ≥ g(T )}
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Because of the symmetry of the distribution of W we always have

a = 2Pr{W > g(T )}
b = min

(
1, 2Pr{W ≥ g(T )}

)
Note that in all of these a and b depend on T even though the notation does
not indicate this.

Thus we can get the fuzzy P -value for a two-tailed test by simply calcu-
lating the fuzzy P -value for the one-tailed test for the tail the data favor and
multiplying the knots by two if none of the resulting knots exceeds one.

If some of the resulting knots exceed one, then we are in an uninteresting
case from a practical standpoint (the data give essentially no evidence against
the null hypothesis), but we should do the calculation correctly anyway.

One way to think of the relation between the one-tailed and two-tailed fuzzy
P -values is that if P is the one-tailed fuzzy P -value, then min(2P, 1−2P ) is the
two-tailed fuzzy P -value. One easy case discussed above is P is concentrated
below 1/2 so the two-tailed fuzzy P value is 2P . The other easy case discussed
above is P is concentrated above 1/2 so the two-tailed fuzzy P value is 1− 2P ,
which is twice the one-tailed fuzzy P -value for the other-tailed test.

The complications arise when the support of the distribution of P contains
1/2, in which case the upper bound of the support of the two-tailed fuzzy P -
value will be one. Suppose we have l ≤ u and P is the fuzzy P -value for the
upper tailed test (if l > u, swap). Then P is the mixture of Unif(ak, bk) random
variables, where

ak = Pr{W < l + k}
bk = Pr{W ≤ l + k}

(5)

for k = 0, . . ., t, and the mixing probabilities are Pr{T = k}. When l+k ≥ n/2,
the endpoints (5), when doubled, are wrong for the two-tailed P -value (because
one or both exceeds one). There are two cases to consider. When l + k = n/2,
which means n must be even, we then have

1− 2ak = 2bk − 1

and the entire mixing probability Pr{T = k} should be assigned to the interval
(2ak, 1). When l + k > n/2, which can happen whether n is odd or even, we
have

1 < 2ak < 2bk

but also

1− 2ak = 2bk∗

1− 2bk = 2ak∗

for some k∗ < k. In fact, we have

l + k∗ = n− (l + k)
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hence
k∗ = n− 2l − k

and now the mixing probability assigned to the interval (2ak∗ , 2bk∗) should be
Pr{T = k∗}+ Pr{T = k}.

2.3 Two-Sided Confidence Intervals

In principle we get a two-tailed fuzzy confidence interval by “inverting” the
two-tailed fuzzy test. So there is nothing left to do. In practice, we want to
apply some additional theory.

Let X(i), i = 0, . . ., n + 1 be the order statistics, where X(0) = −∞ and
X(n+1) = +∞. The result of the sign test does not change as µ changes within
an interval between order statistics. Thus we only need calculate for each order
statistic and for each interval between order statistics. Moreover, we can save
some work using the following theorems.

Theorem 1. If
2Pr{W < m} < α,

where W ∼ Bin(n, 1/2), then the membership function of the fuzzy confidence
interval with coverage 1− α is zero for

µ < X(m) orX(n−m+1) < µ.

If the only m satisfying the condition is m = 0, then the assertion of the
theorem is vacuously true.

Proof. For µ < X(m) we have at least n − m + 1 data values above µ. Since
m ≤ n/2 the latent test statistic is at least n−m+1. Hence the fuzzy P -value
has support bounded above by 2Pr(W ≥ n − m + 1) = 2Pr(W < m) < α.
Hence we accept this µ with probability zero, and the membership function of
the fuzzy confidence interval is zero at this µ. The case µ > X(n−m+1) follows
by symmetry.

Theorem 2. If
α ≤ 2Pr{W ≤ m},

where W ∼ Bin(n, 1/2), then the membership function of the fuzzy confidence
interval with coverage 1− α is one for

X(m+1) < µ < X(n−m). (6)

If the only m satisfying the condition have m+1 ≥ n−m, then the assertion
of the theorem is vacuously true.

Proof. If (6) holds, then we have at least m + 1 data values below µ and at
least m+ 1 above. Hence we also have at most n−m− 1 data values below µ
and at most n−m− 1 above, and the latent test statistic is at most n−m− 1.
Hence the fuzzy P -value has support bounded below by 2Pr(W > n−m−1) =
2Pr(W ≤ m) ≥ α. Hence we accept this µ with probability one, and the fuzzy
confidence interval is one at this µ.
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Thus we see that if we chose m to satisfy

2Pr{W < m} < α ≤ 2Pr{W ≤ m}, (7)

where W ∼ Bin(n, 1/2), then we only need to calculate the membership func-
tion of the fuzzy confidence interval at the points X(m), X(m+1), X(n−m), and
X(n−m+1), which need not be distinct, and on the intervals (X(m), X(m+1)) and
(X(n−m), X(n−m+1)), if nonempty, on which the membership function is con-
stant. Thus there are at most 6 numbers to calculate. Theorems 1 and 2 give
the membership function everywhere else.

These six numbers are calculated by carrying out the fuzzy two-tailed test
for the relevant hypothesized value of µ and then calculating Pr{P > α}, where
P is the fuzzy P -value.

2.3.1 No Ties

Conventional theory says, when the distribution of the Xi is continuous, that
the interval (X(k), X(n+1−k)) is a 1 − 2Pr{W < k} confidence interval for the
true unknown population median, where W ∼ Bin(n, 1/2).

Suppose we want coverage 1 − α. Then either one of the intervals already
discussed has coverage 1−α or there is a unique α/2 quantile of the Bin(n, 1/2)
distribution. Call it m. Then

1− 2Pr{W < m} > 1− α > 1− 2Pr{W ≤ m}

and the left hand side is the coverage of (X(m), X(n+1−m)) and the right hand
side is the coverage of (X(m+1), X(n−m)). Thus a mixture of these two confi-
dence intervals is a randomized confidence interval with coverage 1 − α. The
corresponding fuzzy confidence interval has membership function that is 1.0 on
(X(m+1), X(n−m)), is γ on the part of (X(m), X(n+1−m)) not in the narrower
interval, and zero elsewhere, where γ is determined as follows. The coverage of
this interval is

γ
[
1− 2Pr{W < m}

]
+ (1− γ)

[
1− 2Pr{W ≤ m}

]
Setting this equal to 1− α and solving for γ gives

γ =
2Pr{W ≤ m} − α

2Pr{W = m}
(8)

and the condition that m is a unique α/2 quantile of W guarantees 0 < γ < 1.
Note that this discussion agrees with Theorems 1 and 2. We have sim-

ply obtained more information. Now we know that the membership func-
tion of the fuzzy confidence interval is γ on the intervals (X(m), X(m+1)) and
(X(n−m), X(n−m+1)). Under the assumption that the distribution of the Xi is
continuous, the values at the jumps of the membership function do not matter
because single points occur with probability zero (assuming “no ties” results
from having a continuous data distribution).
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Caveat The above discussion is predicated on m + 1 < n −m, which is the
same as m < (n − 1)/2. This can only fail for ridiculously small coverage
probabilities. If m ≥ (n − 1)/2, then either m = (n − 1)/2 when n is odd or
m = n/2 when n is even, and

1− α < 1− 2Pr{W < m} =

{
2Pr{W = (n− 1)/2}, n odd

Pr{W = n/2}, n even

and either 1− α is very small or n is very small or both.
In this case our fuzzy confidence interval is zero outside the closure of the

interval (X(m), X(n−m+1)) and is γ on this interval, where the coverage is now

1− α = γ
[
1− 2Pr{W < m}

]
so γ is now given by

γ =
1− α

1− 2Pr{W < m}
(9)

and the “core” of the fuzzy confidence interval (the set on which its membership
function is one) is empty.

There is a somewhat more complicated form that manages to be either (8)
or (9), whichever is valid

γ =
Pr{W ≤ m orW ≥ n−m} − α

Pr{W = m orW = n−m}
(10)

2.3.2 With Ties

We claim that the same solution works with ties, except that when ties are
possible we must be careful about how the membership function of the fuzzy
interval is defined at jumps. We claim the fuzzy interval still has the same form
with membership function

I(µ) =



0, µ < X(m)

β1, µ = X(m)

γ, X(m) < µ < X(m+1)

β2, µ = X(m+1)

1, X(m+1) < µ < X(n−m)

β3, µ = X(n−m)

γ, X(n−m) < µ < X(n−m+1)

β4, µ = X(n−m+1)

0, µ > X(n−m+1)

(11)

where m is chosen so that (7) holds.
Any or all of the intervals on which I(µ) is nonzero may be empty either

because of ties or, as mentioned in the “caveat” in the preceding section because

8



m+ 1 ≥ n−m. Any or all of the betas may also be forced to be equal because
the order statistics they go with are tied. We may have X(m) = −∞ and
X(n−m+1) = +∞, in which case the corresponding betas are irrelevant.

Theorem 3. When (11) is as described above, γ in (11) is given by (10).

If both of the intervals (X(m), X(m+1)) and (X(n−m), X(n−m+1)) are empty,
then the theorem is vacuous.

Proof. For X(m) < µ < X(m+1) we have exactly m data values below µ and
exactly n−m above, and the latent test statistic is n−m. The fuzzy P -value
is uniform on the interval with endpoints 2Pr{W < m} and 2Pr{W ≤ m}
in case m + 1 < n −m and otherwise uniform on the interval with endpoints
2Pr{W < m} and one. The lower endpoint is the same in both cases, and we
can write the upper endpoint as Pr{W ≤ morW ≥ n−m} in both cases. Hence
the probability the fuzzy P -value is greater than α is given by (10), and this
is the value of I(µ) for this µ. The case X(n−m) < µ < X(n−m+1) follows by
symmetry.

Now we know everything about the fuzzy confidence interval except for the
betas, which can be determined by inverting the fuzzy test (as can the value at
all points), so now we are down to inverting the test at at most four points X(m),
X(m+1), X(n−m), and X(n−m+1), any or all of which may be tied. When they
are tied, there is no simple formula for the corresponding beta (the simplest
description is the one just given: invert the fuzzy test, the value is one minus
the fuzzy decision). Thus we make no attempt at providing such a formula for
the general case.

However, we can say a few things about the betas.

Theorem 4. The fuzzy confidence interval given by (11) is convex.

Convexity of a fuzzy set with membership function I is the property that all
of the sets {µ : I(u) ≥ u } are convex.

Proof. First consider the case when X(m+1) < X(n−m) so there are points µ
where I(µ) = 1. Then, since all of the betas are probabilities, convexity only
requires β1 ≤ γ ≤ β2 ifX(m) < X(m+1) and β4 ≤ γ ≤ β3 ifX(n−m) < X(n−m+1),
and the latter follows from the former by symmetry.

So consider X(m) = µ < X(m+1). Say we have l, t, and u data values below,
tied with, and above µ, respectively. Then we have l+t = m and u = n−m and
t ≥ 1. The latent test statistic is n−m+ T , where T ∼ Bin(t, 1/2). The CDF
of the fuzzy P -value has knots 2Pr{W > n−m+ t− k} and values Pr{T < k},
where k = 0, . . . , t+1. We can rewrite the knots 2Pr{W < m−t+k}. The two
largest are 2Pr{W < m} and 2Pr{W ≤ m}, which bracket α. The probability
of accepting µ is thus the probability that a uniform on this interval is greater
than α, which is γ given by (8) times Pr{T = t}. Hence we do have β1 ≤ γ.
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Then considerX(m) < µ = X(m+1). With l, t, and u as above, we have l = m
and u + t = n −m and t ≥ 1. Now the two smallest knots are 2Pr{W < m}
and 2Pr{W ≤ m}. The probability of accepting µ is now

β2 = Pr{T > 0}+ γ · Pr{T = 0}

so β2 > γ. That finishes the case X(m+1) < X(n−m).
We turn now to the case X(m+1) = X(n−m). We conjecture (still to be

proved) that β2 = β3 is the maximum of the membership function, in which
case convexity requires β1 ≤ γ ≤ β2 if X(m) < X(m+1) and β4 ≤ γ ≤ β3 if
X(n−m) < X(n−m+1). But we have already proved these, because the proofs
above did not assume anything about whether X(m+1) was equal or unequal to
X(n−m). Thus the only issue is whether β2 = β3 is the maximum.

If X(m) < X(m+1), then we have proved β1 ≤ γ ≤ β2 which implies that the
maximum does not occur to the left of β2 = β3. If X(m) = X(m+1), then we
have β1 = β2 = β3, which also implies that the maximum does not occur to the
left of β2 = β3. By symmetry, the maximum also does not occur to the right of
β2 = β3. That finishes the case X(m+1) = X(n−m).

We turn now to the case X(m+1) > X(n−m), in which case we must have
m = n − m, β1 = β3, and β2 = β4. There are two cases to consider. If
X(m) < X(m+1), then we conjecture that γ is the maximum of the membership
function, in which case convexity requires β1 ≤ γ and β4 ≤ γ, but these have
already been proved. If X(m) = X(m+1), then β1 = β2 = β3 = β4 is the only
nonzero value of I(µ) and convexity holds trivially.

2.3.3 No Ties, Continued

We can refine the calculations above in the most common case.

Theorem 5. When there are no ties among the data, the membership function
(11) is equal to the average of its left and right limits.

This means

β1 = β4 = γ/2 (12a)

β2 = β3 = γ/2 + 1/2 (12b)

in the case m+1 < n−m. When m+1 = n−m, we still have (12a), but (12b)
is replaced by β2 = β3 = γ. When m = n−m, we still have (12a), but (12b) is
replaced by β1 = β2 = β3 = β4.

Proof. When there are no ties and X(m) = µ, then we have m − 1 data values
below, one tied with, and n−m above µ, respectively. The latent test statistic is
n−m+T , where T ∼ Bin(1, 1/2). The distribution function of the fuzzy P -value
is continuous and piecewise linear with knots 2Pr{W < m− 1}, 2 Pr{W < m},
and Pr{W ≤ m or W ≥ n − m} and values at these knots 0, 1/2, and 1.
As always, the probability of accepting µ is Pr{P > α}, and by (7) we have
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2Pr{W < m} < α < Pr{W ≤ morW ≥ n−m}, so the probability of accepting
µ is γ/2, where γ is given by (10).

When there are no ties and X(m+1) = µ and m+1 < n−m, the distribution
function of the fuzzy P -value is continuous and piecewise linear with knots
2Pr{W < m}, 2 Pr{W ≤ m}, and Pr{W ≤ m+1orW ≥ n−m−1} and values
at these knots 0, 1/2, and 1. Again, 2Pr{W < m} < α < 2Pr{W ≤ m}, so
Pr{P > α} = γ/2 + 1/2, where γ is given by (8).

When there are no ties and X(m+1) = µ and m + 1 = n − m, we have
Pr{W ≤ m} = 1/2, and the fuzzy P -value is uniformly distributed on the
interval with endpoints 2Pr{W < m} and one. and the probability of accepting
µ is is (1− α)/[1− 2Pr{W < m}], which is (9).

When there are no ties and X(m+1) = µ and m = n−m, there is nothing to
prove because β1 = β3 and β2 = β4 follow from m = n−m.

2.4 One-Sided Confidence Intervals

From the preceding, one-sided intervals should now be obvious. We merely
record a few specific details. A lower bound interval has the form

I(µ) =



0, µ < X(m)

β1, µ = X(m)

γ, X(m) < µ < X(m+1)

β2, µ = X(m+1)

1, X(m+1) < µ <∞

(13)

where m is chosen so that

Pr{W < m} < α ≤ Pr{W ≤ m} (14)

and

γ =
Pr{W ≤ m} − α

Pr{W = m}
(15)

Theorem 4 and Theorem 5 still apply and the betas can still be determined
by inverting the fuzzy test.

3 The Rank Sum Test

Now we have two samples X1, . . ., Xm and Y1, . . ., Yn. The test is based on
the differences

Zij = Xi − Yj , i = 1, . . . ,m, j = 1, . . . , n.

Let Z(i), i = 1, . . ., mn be the order statistics of the Zij . If we assume (1)
the two samples are independent, (2) each sample is IID, (3) the distribution
of the Xi is continuous, and (4) the distribution of the Yj is the same as the
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distribution of the Xi except for a shift, then (i) the marginal distribution of
the Zij is symmetric about the shift µ and (ii) the number of Zij less than µ has
the distribution of the Mann-Whitney form of the test statistic for the Wilcoxon
rank sum test.

Thus all of the theory is nearly the same as in the preceding section but with
the following differences.

• The Z(i) now play the role formerly played by the X(i).

• The Mann-Whitney distribution now plays the role formerly played by the
binomial distribution.

• We have Zij tied with µ when Xi is tied with Yj+µ. Infinitesimal jittering
only breaks ties within one class of tied Xi and Yj+µ values. The number
of Zij < µ coming from such a class with mk of the Xi tied with nk of
the Yj + µ has the Mann-Whitney distribution for sample sizes mk and
nk. The total number is the sum over each tied class.

3.1 One-Tailed Tests

Let MannWhit(m,n) denote the Mann-Whitney distribution, the distribu-
tion of the number of negative Zij when there are no ties. The range of this
distribution is zero to N = mn. It is symmetric, with center of symmetry N/2.
Let W ∼ MannWhit(m,n).

If there are no ties and the observed value of the Mann-Whitney statistic is
w, then the fuzzy P -value for a upper-tailed test is uniformly distributed on the
interval with endpoints Pr{W < w} and Pr{W ≤ w}.

If there are ties, then let mk and nk be the number of Xi and the number
of Yj + µ tied at the k-th tie value, let Tk ∼ MannWhit(mk, nk), and let

T = T1 + . . .+ TK ,

where K is the number of distinct tie values. There is no “brand name” for the
distribution of T . The Mann-Whitney distribution obviously does not have an
“addition rule” like the binomial: MannWhit(m1 + . . .+mK , n1 + · · ·+ nK) is
clearly not the distribution of T . We know the distribution of the Tk. We must
simply calculate the distribution of T by brute force and ignorance (BFI) using
the convolution of probability vectors. T ranges from zero to

t =

K∑
i=1

mknk

Denote its distribution function by G.
Now let l be the number of Zij less than µ. The latent test statistic is

l+ T . The fuzzy P -value has a continuous, piecewise linear CDF with knots at
Pr{W < l + k} and values G(k) for k = 0, . . ., t+ 1.

The lower-tailed test is the same (merely swap X’s and Y ’s or use the sym-
metry of the Mann-Whitney distribution and replace l by N − l − t).
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3.2 Two-Tailed Tests

The problem with two-tailed tests is much the same as we saw with the sign
test. If P is the one-tailed fuzzy P -value, then the two-tailed fuzzy P -value is
min(2P, 1− 2P ).

3.3 Confidence Intervals

Everything is the same as with the sign test. Merely replace the X(i) there
with the Z(i) here and replace the binomial distribution with the Mann-Whitney
distribution.

4 The Signed Rank Test

Now we have one sampleX1, . . .,Xn. The test is based on theN = n(n+1)/2
Walsh averages

Xi +Xj

2
, i ≤ j. (16)

Let Z(k), k = 1, . . ., N be the order statistics of the Walsh averages. If we
assume (1) the sample is IID (2) the distribution of the Xi is continuous, (3)
the distribution of the Xi is symmetric about µ, then the distribution of the
number of Walsh averages greater than µ is symmetric about N/2 and has the
distribution of the test statistic for the Wilcoxon signed rank test.

Thus all of the theory is nearly the same as for the sign test but with the
following differences.

• The Z(k) now play the role formerly played by the X(i).

• The signed rank distribution now plays the role formerly played by the
binomial distribution.

• We have Z(k) tied with µ in one of two cases.

– Some number m of the Xi are tied with µ. (Each Xi is a Walsh
average, the case i = j in (16).) Infinitesimal jittering only breaks
ties within one class of tied values. In this case the number of thesem
Walsh averages that are greater than µ after jittering has the signed
rank distribution with sample size m.

– Some number k of the Xi are tied with each other and less than µ,
another number m of the Xi are tied with each other and greater
than µ, and (Xi + Xj)/2 = µ for Xi in the former class and Xj in
the latter. Again, infinitesimal jittering only breaks ties within these
classes of tied values. In this case, the number of these mn Walsh
averages that are greater than µ after jittering has the Mann-Whitney
distribution with sample size k and m.
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Thus we see that both the signed rank and Mann-Whitney distributions are
involved in calculating fuzzy P -values and fuzzy confidence intervals associated
with the signed rank test.

4.1 One-Tailed Tests

Let MannWhit(m,n) denote the Mann-Whitney distribution, with sample
sizes m and n, and let SignRank(n) denote the Wilcoxon signed rank distribu-
tion for sample size n.

If there are no ties, if W is a random variable having the SignRank(n)
distribution, and if the observed value of the signed rank statistic (the number
of Walsh averages greater than µ) is w, then the fuzzy P -value for a upper-
tailed test is uniformly distributed on the interval with endpoints Pr{W < w}
and Pr{W ≤ w}.

If there are ties, then T denote a random variable having the distribution of
the number of Walsh averages that were tied with µ before infinitesimal jittering
and are greater than µ after jittering. Let G denote the cumulative distribution
function of this distribution.

As in the preceding section, the distribution of T is, in general, not a brand
name distribution. Rather it is the sum of random variables having Wilcoxon
signed rank or Mann-Whitney distributions.

Now let l be the number of observed Walsh averages less than µ. The latent
test statistic is l+T . The fuzzy P -value has a continuous, piecewise linear CDF
with knots at Pr{W < l + k} and values G(k) for k = 0, . . ., t+ 1.

The lower-tailed test is the same except let l be the number of observed
Walsh averages greater than µ.

4.2 Two-Tailed Tests and Confidence Intervals

The issues here are similar to those for the signed test and rank sum test.
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