flexBCF: Fast & Flexible Implementation of Bayesian Causal Forests

A faster implementation of Bayesian Causal Forests (BCF; Hahn et al. (2020) <doi:10.1214/19-BA1195>), which uses regression tree ensembles to estimate the conditional average treatment effect of a binary treatment on a scalar output as a function of many covariates. This implementation avoids many redundant computations and memory allocations present in the original BCF implementation, allowing the model to be fit to larger datasets. The implementation was originally developed for the 2022 American Causal Inference Conference's Data Challenge. See Kokandakar et al. (2023) <doi:10.1353/obs.2023.0024> for more details.

Version: 1.0.2
Imports: Rcpp
LinkingTo: Rcpp, RcppArmadillo
Published: 2025-11-25
DOI: 10.32614/CRAN.package.flexBCF (may not be active yet)
Author: Sameer K. Deshpande ORCID iD [aut, cre], Ajinkya H. Kokandakar ORCID iD [aut]
Maintainer: Sameer K. Deshpande <sameer.deshpande at wisc.edu>
License: GPL (≥ 3)
URL: https://github.com/skdeshpande91/flexBCF
NeedsCompilation: yes
Citation: flexBCF citation info
CRAN checks: flexBCF results

Documentation:

Reference manual: flexBCF.html , flexBCF.pdf

Downloads:

Package source: flexBCF_1.0.2.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: flexBCF_1.0.2.zip
macOS binaries: r-release (arm64): flexBCF_1.0.2.tgz, r-oldrel (arm64): flexBCF_1.0.2.tgz, r-release (x86_64): flexBCF_1.0.2.tgz, r-oldrel (x86_64): flexBCF_1.0.2.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=flexBCF to link to this page.