dPLS
)In this vignette, we consider approximating multiple matrices as a product of ternary (or non-negative) low-rank matrices (a.k.a., factor matrices).
Test data is available from toyModel
.
You will see that there are five blocks in the data matrix as follows.
Here, we introduce the ternary regularization to take {-1,0,1} values in \(V_{k}\) as below:
\[
\max{\mathrm{tr} \left( V_{j}'X_{j}'X_{k}V_{k} \right)}\
\mathrm{s.t.}\ j ≠k, V \in \{-1,0,1\},
\] where \(j\) and \(k\) range from \(1\) to \(K\), \(K\)
is the number of matrices, \(X_{k}\)
(\(N \times M_{k}\)) is a \(k\)-th data matrix and \(V_{k}\) (\(M_{k}
\times J\)) is a \(k\)-th
ternary loading matrix. In dcTensor
package, the object
function is optimized by combining gradient-descent algorithm (Tsuyuzaki 2020) and ternary regularization.
In STSMF, a rank parameter \(J\)
(\(\leq \min(N, M)\)) is needed to be
set in advance. Other settings such as the number of iterations
(num.iter
) are also available. For the details of arguments
of dPLS, see ?dPLS
. After the calculation, various objects
are returned by dPLS
. STSMF is achieved by specifying the
ternary regularization parameter as a large value like the below:
## List of 6
## $ U :List of 3
## ..$ : num [1:100, 1:3] 8722 8926 8821 8626 8589 ...
## ..$ : num [1:100, 1:3] 5888 5898 6044 5910 5695 ...
## ..$ : num [1:100, 1:3] 3879 3904 3961 3806 3909 ...
## $ V :List of 3
## ..$ : num [1:300, 1:3] 0.96 0.966 0.973 0.95 0.925 ...
## ..$ : num [1:200, 1:3] 0.887 0.892 0.881 0.913 0.913 ...
## ..$ : num [1:150, 1:3] 0.0252 0.0332 0.0286 0.0346 0.0244 ...
## $ RecError : Named num [1:101] 1.00e-09 1.88e+06 1.87e+06 1.83e+06 1.79e+06 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
## $ TrainRecError: Named num [1:101] 1.00e-09 1.88e+06 1.87e+06 1.83e+06 1.79e+06 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
## $ TestRecError : Named num [1:101] 1e-09 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
## $ RelChange : Named num [1:101] 1.00e-09 9.92e-01 5.11e-03 2.20e-02 2.12e-02 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
The reconstruction error (RecError
) and relative error
(RelChange
, the amount of change from the reconstruction
error in the previous step) can be used to diagnose whether the
calculation is converged or not.
layout(t(1:2))
plot(log10(out_dPLS$RecError[-1]), type="b", main="Reconstruction Error")
plot(log10(out_dPLS$RelChange[-1]), type="b", main="Relative Change")
The products of \(U_{k}\) and \(V_{k}\) (\(k = 1
\ldots K\)) show whether the original data matrices are
well-recovered by dPLS
.
recX <- lapply(seq_along(X), function(x){
out_dPLS$U[[x]] %*% t(out_dPLS$V[[x]])
})
layout(rbind(1:3, 4:6))
image.plot(t(X[[1]]))
image.plot(t(X[[2]]))
image.plot(t(X[[3]]))
image.plot(t(recX[[1]]))
image.plot(t(recX[[2]]))
image.plot(t(recX[[3]]))
The histograms of \(V_{k}\)s show that all the factor matrices \(V_{k}\) looks ternary.
## R version 4.3.1 (2023-06-16)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] nnTensor_1.2.0 fields_15.2 viridisLite_0.4.2 spam_2.9-1
## [5] dcTensor_1.3.0
##
## loaded via a namespace (and not attached):
## [1] gtable_0.3.4 jsonlite_1.8.7 highr_0.10 compiler_4.3.1
## [5] maps_3.4.1 Rcpp_1.0.11 plot3D_1.4 tagcloud_0.6
## [9] jquerylib_0.1.4 scales_1.2.1 yaml_2.3.7 fastmap_1.1.1
## [13] ggplot2_3.4.3 R6_2.5.1 tcltk_4.3.1 knitr_1.43
## [17] MASS_7.3-60 dotCall64_1.0-2 misc3d_0.9-1 tibble_3.2.1
## [21] munsell_0.5.0 pillar_1.9.0 bslib_0.5.1 RColorBrewer_1.1-3
## [25] rlang_1.1.1 utf8_1.2.3 cachem_1.0.8 xfun_0.40
## [29] sass_0.4.7 cli_3.6.1 magrittr_2.0.3 digest_0.6.33
## [33] grid_4.3.1 rTensor_1.4.8 lifecycle_1.0.3 vctrs_0.6.3
## [37] evaluate_0.21 glue_1.6.2 fansi_1.0.4 colorspace_2.1-0
## [41] rmarkdown_2.24 pkgconfig_2.0.3 tools_4.3.1 htmltools_0.5.6