djNMF
)In this vignette, we consider approximating non-negative multiple matrices as a product of binary (or non-negative) low-rank matrices (a.k.a., factor matrices).
Test data is available from toyModel
.
You will see that there are some blocks in the data matrices as follows.
Here, we consider the approximation of \(K\) binary data matrices \(X_{k}\) (\(N \times M_{k}\)) as the matrix product of \(W\) (\(N \times J\)) and \(V_{k}\) (J \(M_{k}\)):
\[ X_{k} \approx (W + V_{k}) H_{k} \ \mathrm{s.t.}\ W,V_{k},H_{k} \in \{0,1\} \]
This is the combination of binary matrix factorization (BMF (Zhang 2007)) and joint non-negative matrix
decomposition (jNMF (Zi 2016; CICHOCK
2009)), which is implemented by adding binary regularization
against jNMF. See also jNMF
function of nnTensor
package.
In SBSMF, a rank parameter \(J\)
(\(\leq \min(N, M)\)) is needed to be
set in advance. Other settings such as the number of iterations
(num.iter
) or factorization algorithm
(algorithm
) are also available. For the details of
arguments of djNMF, see ?djNMF
. After the calculation,
various objects are returned by djNMF
. SBSMF is achieved by
specifying the binary regularization parameter as a large value like the
below:
## List of 7
## $ W : num [1:100, 1:4] 0.343 0.338 0.346 0.344 0.342 ...
## $ V :List of 3
## ..$ : num [1:100, 1:4] 2.04e-56 4.12e-56 2.27e-54 2.49e-55 7.58e-56 ...
## ..$ : num [1:100, 1:4] 1.65e-63 2.34e-64 2.07e-60 2.49e-62 6.55e-61 ...
## ..$ : num [1:100, 1:4] 0.156 0.143 0.157 0.155 0.15 ...
## $ H :List of 3
## ..$ : num [1:300, 1:4] 4.17e-06 3.30e-06 3.38e-06 3.85e-06 7.51e-07 ...
## ..$ : num [1:200, 1:4] 7.05e-20 7.47e-20 2.01e-20 4.33e-19 4.83e-20 ...
## ..$ : num [1:150, 1:4] 95.3 95.9 96.4 94.1 94.9 ...
## $ RecError : Named num [1:101] 1.00e-09 1.14e+04 1.03e+04 9.94e+03 9.98e+03 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
## $ TrainRecError: Named num [1:101] 1.00e-09 1.14e+04 1.03e+04 9.94e+03 9.98e+03 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
## $ TestRecError : Named num [1:101] 1e-09 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
## $ RelChange : Named num [1:101] 1.00e-09 1.95e-01 1.12e-01 3.46e-02 3.96e-03 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
The reconstruction error (RecError
) and relative error
(RelChange
, the amount of change from the reconstruction
error in the previous step) can be used to diagnose whether the
calculation is converged or not.
layout(t(1:2))
plot(log10(out_djNMF$RecError[-1]), type="b", main="Reconstruction Error")
plot(log10(out_djNMF$RelChange[-1]), type="b", main="Relative Change")
The products of \(W\) and \(H_{k}\)s show whether the original data
matrices are well-recovered by djNMF
.
recX1 <- lapply(seq_along(X), function(x){
out_djNMF$W %*% t(out_djNMF$H[[x]])
})
recX2 <- lapply(seq_along(X), function(x){
out_djNMF$V[[x]] %*% t(out_djNMF$H[[x]])
})
layout(rbind(1:3, 4:6, 7:9))
image.plot(X[[1]], legend.mar=8, main="X1")
image.plot(X[[2]], legend.mar=8, main="X2")
image.plot(X[[3]], legend.mar=8, main="X3")
image.plot(recX1[[1]], legend.mar=8, main="Reconstructed X1 (Common Factor)")
image.plot(recX1[[2]], legend.mar=8, main="Reconstructed X2 (Common Factor)")
image.plot(recX1[[3]], legend.mar=8, main="Reconstructed X3 (Common Factor)")
image.plot(recX2[[1]], legend.mar=8, main="Reconstructed X1 (Specific Factor)")
image.plot(recX2[[2]], legend.mar=8, main="Reconstructed X2 (Specific Factor)")
image.plot(recX2[[3]], legend.mar=8, main="Reconstructed X3 (Specific Factor)")
The histogram of \(W\) shows that the factor matrix \(W\) looks binary.
layout(rbind(1:4, 5:8))
hist(out_djNMF$W, main="W", breaks=100)
hist(out_djNMF$H[[1]], main="H1", breaks=100)
hist(out_djNMF$H[[2]], main="H2", breaks=100)
hist(out_djNMF$H[[3]], main="H3", breaks=100)
hist(out_djNMF$V[[1]], main="V1", breaks=100)
hist(out_djNMF$V[[2]], main="V2", breaks=100)
hist(out_djNMF$V[[3]], main="V3", breaks=100)
## R version 4.3.1 (2023-06-16)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] nnTensor_1.2.0 fields_15.2 viridisLite_0.4.2 spam_2.9-1
## [5] dcTensor_1.3.0
##
## loaded via a namespace (and not attached):
## [1] gtable_0.3.4 jsonlite_1.8.7 highr_0.10 compiler_4.3.1
## [5] maps_3.4.1 Rcpp_1.0.11 plot3D_1.4 tagcloud_0.6
## [9] jquerylib_0.1.4 scales_1.2.1 yaml_2.3.7 fastmap_1.1.1
## [13] ggplot2_3.4.3 R6_2.5.1 tcltk_4.3.1 knitr_1.43
## [17] MASS_7.3-60 dotCall64_1.0-2 misc3d_0.9-1 tibble_3.2.1
## [21] munsell_0.5.0 pillar_1.9.0 bslib_0.5.1 RColorBrewer_1.1-3
## [25] rlang_1.1.1 utf8_1.2.3 cachem_1.0.8 xfun_0.40
## [29] sass_0.4.7 cli_3.6.1 magrittr_2.0.3 digest_0.6.33
## [33] grid_4.3.1 rTensor_1.4.8 lifecycle_1.0.3 vctrs_0.6.3
## [37] evaluate_0.21 glue_1.6.2 fansi_1.0.4 colorspace_2.1-0
## [41] rmarkdown_2.24 pkgconfig_2.0.3 tools_4.3.1 htmltools_0.5.6