library(cheetahR)
library(palmerpenguins)
library(dplyr)
library(cheetahR)
library(palmerpenguins)
library(dplyr)
# Render table
cheetah(iris)
# Change some feature of some columns in the data
cheetah(
iris,columns = list(
Sepal.Length = column_def(name = "Sepal_Length", width = 120),
Sepal.Width = column_def(name = "Sepal_Width", width = 120),
Petal.Length = column_def(name = "Petal_Length", width = 120),
Petal.Width = column_def(name = "Petal_Width", width = 120),
Species = column_def(name = "Species")
) )
rownames
The default for the row names column is TRUE
if present in the data; however, to modify it, include a column definition with “rownames” as the designated column name.
# Example of customizing rownames with color and width
cheetah(
mtcars,columns = list(
rownames = column_def(width = 150, style = list(color = "red"))
) )
The column_type
parameter in column_def()
allows you to specify different types of columns. There are 6 possible options:
"text"
: For text columns"number"
: For numeric columns"check"
: For checkbox columns"image"
: For image columns"radio"
: For radio button columns"multilinetext"
: For multiline text columns"menu"
: For dropdown menu selection columnsThe column_type
parameter is optional. If it is not specified, the column type will be inferred from the data type.
# Using checkbox column type to indicate NA values
head(airquality, 10) %>%
mutate(
has_na = if_any(everything(), is.na),
has_na = ifelse(has_na, "true", "false"),
.before = 1
%>%
) cheetah(
columns = list(
has_na = column_def(
name = "Contains NA",
column_type = "check",
style = list(
uncheckBgColor = "#FDD",
checkBgColor = "rgb(255, 73, 72)",
borderColor = "red"
)
)
) )
Note! The check column is not clickable. This is because a corresponding value of “check” is required for the action parameter to activate the interactivity of the column.
The action
parameter in column_def()
allows you to define interactive behaviors for columns. There are 4 possible actions:
"input"
: Makes the column editable with text input"check"
: Makes the column editable with checkboxes"radio"
: Makes the column editable with radio buttons"inline_menu"
: Makes the column editable with a dropdown menu (requires column_type = "menu"
and menu_options
)The action type must be compatible with the column type. For example, "check"
action can only be used with "check"
column type.
head(airquality, 10) %>%
mutate(
has_na = if_any(everything(), is.na),
has_na = ifelse(has_na, "true", "false"),
.before = 1
%>%
) cheetah(
columns = list(
has_na = column_def(
name = "Contains NA",
column_type = "check",
action = "check",
style = list(
uncheckBgColor = "#FDD",
checkBgColor = "rgb(255, 73, 72)",
borderColor = "red"
)
)
) )
The cheetah
widget supports displaying images in table cells by setting column_type = "image"
. You can customize how images are displayed using style properties like imageSizing
.
<- c(
img_url "https://assets.shannons.com.au/JD166AU033OKSAEF/Z8E73PWLE94D365M/7g7i8dxq4xdx0g61-me9867ab4krp0uio/jpg/2000x1500x3/vehicle/1973-mazda-rx4.jpg",
"https://live.staticflickr.com/2529/3854349010_4783baf575_o.jpg",
"https://photos.classiccars.com/cc-temp/listing/129/6646/18583131-1974-datsun-710-std.jpg",
"https://tse2.mm.bing.net/th?id=OIP.qV1ZAVktze35RwUpEgtPmwAAAA&pid=Api&P=0&h=180",
"https://tse1.mm.bing.net/th?id=OIP.OA_V14TTdu8nx36mC6VUeAHaEo&pid=Api&P=0&h=180",
"https://res.cloudinary.com/carsguide/image/upload/f_auto,fl_lossy,q_auto,t_cg_hero_low/v1/editorial/dp/albums/album-3483/lg/Valiant-50-years-_6_.jpg"
)
<- mutate(head(mtcars), image = img_url, .before = 1)
data cheetah(
data,columns = list(
rownames = column_def(width = 150),
image = column_def("images", width = 100, column_type = "image", style = list(imageSizing = "keep-aspect-ratio" ))
) )
There are two ways to add cell messages for validation
htmlwidget::JS()
. This function takes a single parameter rec
which refers to data row. It must return an object with 2 properties:type
: the message type. Valid types are "info"
, "warning"
and "error"
.message
: the message content. As shown below, you can use a ternary operator to check whether a condition is respected, for instance rec.Species === 'setosa'
check if the recorded specie is "setosa"
. Since rec
refers to an entire data row, you can also target multiple columns in your check logic.cheetah(
iris,columns = list(
Species = column_def(
action = "input",
message = htmlwidgets::JS(
"function(rec) {
return {
type: 'error',
message: rec.Species === 'setosa' ? 'Invalid specie type.' : null,
}
}"
)
)
) )
add_cell_message()
. A R helper function which provides a simpler interface to create cell messages. The function takes two arguments:type
: Message type ("error"
, "warning"
, or "info"
). Defaults to "error"
.message
: A string or JavaScript expression. If the message contains rec.
, ?
, :
, or ends with ;
, it is treated as raw JavaScript. Otherwise, it is escaped and wrapped in quotes.Here are some examples:
# Prepare data
set.seed(123)
<- sample(nrow(iris), 10)
iris_rows <- iris[iris_rows, ] data
# Simple cell message
cheetah(
data,columns = list(
Species = column_def(
action = "input",
message = add_cell_message(type = "info", message = "Ok")
)
) )
js_ifelse()
The js_ifelse()
helper function provides a convenient way to write conditional JavaScript expressions in R. It follows the same syntax as R’s ifelse()
function but generates JavaScript code for use in cell messages. See possible examples:
cheetah(
data,columns = list(
Species = column_def(
action = "input",
message = add_cell_message(message = js_ifelse(Species == "setosa", "", "Invalid"))
)
) )
cheetah(
data,columns = list(
Species = column_def(
action = "input",
message = add_cell_message(
type = "warning",
message = js_ifelse(Sepal.Length > 5, "BigSepal", "")
)
)
) )
cheetah(
data,columns = list(
Species = column_def(
action = "input",
message = add_cell_message(
type = "warning",
message = js_ifelse(Sepal.Width <= 3, "NarrowSepal", "WideSepal")
)
)
) )
cheetah(
data,columns = list(
Species = column_def(
action = "input",
message = add_cell_message(
type = "info",
message = js_ifelse(Sepal.Length > 5 & Species %notin% c("setosa"), "E", "X")
)
)
) )
%in%
and %notin%
cheetah(
data,columns = list(
Species = column_def(
action = "input",
message = add_cell_message(
message = js_ifelse(Species %in% c("setosa", "virginica"), "Bad")
)
)
) )
cheetah(
data,columns = list(
Species = column_def(
action = "input",
message = add_cell_message(
type = "info",
message = js_ifelse(Species %notin% c("setosa"), "OK")
)
)
) )
grepl()
and !grepl()
cheetah(
data,columns = list(
Species = column_def(
action = "input",
message = add_cell_message(
type = "info",
message = js_ifelse(grepl("^vir", Species), "Yes")
)
)
) )
cheetah(
data,columns = list(
Species = column_def(
action = "input",
message = add_cell_message(
type = "warning",
message = js_ifelse(!grepl("set", Species), "NoSet", "")
)
)
) )
The js_ifelse()
function can check the truthiness of a variable directly, similar to JavaScript’s truthy/falsy behavior. Empty strings, NA
, null
, and undefined
are considered falsy values, while non-empty strings and other values are considered truthy. This is useful for simple existence checks.
# Add an extra column to the data
<-
check c(
"", NA,
"ok", NA,
"good", "",
"", "good",
"ok", "better"
)
<- mutate(data, Check = check, .before = 1)
data
cheetah(
data,columns = list(
Check = column_def(
name = "",
column_type = "check",
action = "check",
message = add_cell_message(
message = js_ifelse(Check, if_false = "Please check.")
)
)
) )
Finally, within add_cell_message()
you can pass raw JavaScript expressions as strings to the message
option. In this case, you can either pass the JavaScript string directly or wrap it in htmlwidgets::JS()
. The JavaScript expression should evaluate to a string that will be displayed as the message.
cheetah(
-1],
data[,columns = list(
Sepal.Width = column_def(
action = "input",
style = list(textAlign = "center"),
message = add_cell_message(
type = "warning",
message = "rec['Sepal.Width'] <= 3 ? 'NarrowSepal' : 'WideSepal';"
)
)
) )
cheetah provides powerful column formatting capabilities through the JavaScript Intl API, allowing you to format numbers, dates, and other data types with locale-aware settings.
The number_format()
helper function allows you to format numeric columns using the JavaScript Intl.NumberFormat
API. This provides locale-aware number formatting with support for currencies, units, percentages and more.
Below is an example showing various number formatting options:
<- data.frame(
numeric_data price_USD = c(125000.75, 299.99, 7890.45),
price_EUR = c(410.25, 18750.60, 1589342.80),
price_INR = c(2200.50, 134999.99, 945.75),
price_NGN = c(120000, 2100045, 1750),
liter = c(20, 35, 42),
percent = c(0.875, 0.642, 0.238)
)
cheetah(
numeric_data,columns = list(
price_USD = column_def(
name = "USD",
column_type = number_format(
style = "currency",
currency = "USD"
)
),price_EUR = column_def(
name = "EUR",
column_type = number_format(
style = "currency",
currency = "EUR",
locales = "de-DE"
)
),price_INR = column_def(
name = "INR",
column_type = number_format(
style = "currency",
currency = "INR",
locales = "hi-IN"
)
),price_NGN = column_def(
name = "NGN",
column_type = number_format(
style = "currency",
currency = "NGN"
)
),liter = column_def(
name = "Liter",
column_type = number_format(
style = "unit",
unit = "liter",
unit_display = "long"
)
),percent = column_def(
name = "Percent",
column_type = number_format(style = "percent")
)
) )
Similar to number formatting, cheetahR provides a date_format()
function to format date columns according to the locale-specific conventions. You can customize the display of date components like day, month, year, hour, minute, etc. and specify the locale:
cheetah(
data.frame(
date = as.Date(c("2023-01-15", "2023-02-28", "2023-03-10")),
datetime = as.POSIXct(c(
"2023-01-15 09:30:00",
"2023-02-28 14:45:00",
"2023-03-10 18:15:00"
))
),columns = list(
date = column_def(
name = "Date",
column_type = date_format(
locales = "en-US",
month = "long",
day = "numeric",
year = "numeric"
)
),datetime = column_def(
name = "Date & Time",
column_type = date_format(
locales = "de-DE",
date_style = "full",
time_style = "medium"
)
)
) )
By default a cheetahR table is sortable. Otherwise, set sortable = FALSE
in cheetah()
to disable this functionality:
cheetah(mtcars, rownames = FALSE, sortable = FALSE)
However, to indivdually control the sorting option of each columns in the table, pass sort = TRUE
to the column_def()
:
cheetah(
mtcars,sortable = FALSE,
columns = list(
rownames = column_def(
width = 150,
sort = TRUE
)
) )
If you want finer control over the sorting logic and provide your own, you can pass a htmlwidgets::JS
callback instead:
cheetah(
mtcars,sortable = FALSE,
columns = list(
rownames = column_def(
width = 150,
sort = htmlwidgets::JS(
"function(order, col, grid) {
// your logic
}"
)
)
) )
cheetahR allows you to group related columns together under a common header using column_group()
. This creates a hierarchical structure in your table headers, making it easier to organize and understand related data.
To group columns, use the column_group()
function to define each group and specify which columns belong to it. Then pass the list of column groups to the column_group
parameter in cheetah()
.
Here’s an example grouping the Sepal and Petal measurements in the iris dataset:
cheetah(
iris,columns = list(
Sepal.Length = column_def(name = "Length"),
Sepal.Width = column_def(name = "Width"),
Petal.Length = column_def(name = "Length"),
Petal.Width = column_def(name = "Width")
),column_group = list(
column_group(
name = "Sepal",
columns = c("Sepal.Length", "Sepal.Width"),
header_style = list(textAlign = "center", bgColor = "#fbd4dd")
),column_group(
name = "Petal",
columns = c("Petal.Length", "Petal.Width"),
header_style = list(textAlign = "center", bgColor = "#d8edfc")
)
) )
theme
option in a cheetah tableThe theme
parameter allows you to extensively customize the visual appearance of your cheetah table by providing a named list of styling options. You can modify colors, borders, fonts and other visual properties.
Here’s an example showing some theme customizations:
# Define a named list of styles
<- list(
user_theme color = "#2c3e50",
frozenRowsColor = "#2c3e50",
defaultBgColor = "#ecf0f1",
frozenRowsBgColor = "#bdc3c7",
selectionBgColor = "#d0ece7",
highlightBgColor = "#f9e79f",
underlayBackgroundColor = "#f4f6f7",
# This is also possible to change the theme apply in the state by using callback.
frozenRowsBorderColor = '
function(args) {
const { row, grid: { frozenRowCount } } = args;
if (frozenRowCount - 1 === row) {
return ["#7f8c8d", "#7f8c8d", "#34495e"];
} else {
return "#7f8c8d";
}
}',
borderColor = '
function(args) {
const { col, grid: { colCount } } = args;
if (colCount - 1 === col) {
return ["#34495e", "#7f8c8d", "#34495e", null];
} else {
return ["#34495e", null, "#34495e", null];
}
}',
highlightBorderColor = "#1abc9c",
checkbox = list(
uncheckBgColor = "#ecf0f1",
checkBgColor = "#1abc9c",
borderColor = "#16a085"
),font = "14px 'Helvetica Neue', sans-serif",
header = list(sortArrowColor = "#2980b9"),
messages = list(
infoBgColor = "#95a5a6",
errorBgColor = "#e74c3c",
warnBgColor = "#f1c40f",
boxWidth = 12,
markHeight = 15
) )
Apply the custom theme to the table:
cheetah(
data,theme = user_theme,
columns = list(
Check = column_def(
name = "",
column_type = "check",
action = "check",
message = add_cell_message(
message = js_ifelse(Check, if_false = "Please check.")
)
),Petal.Width = column_def(
action = "input",
style = list(textAlign = "center"),
message = add_cell_message(
type = "info",
message = js_ifelse(Petal.Width <= 1, "NarrowPetal", "WidePetal")
)
),Species = column_def(
action = "input",
message = add_cell_message(
type = "warning",
message = js_ifelse(!grepl("set", Species), "NoSet", "")
)
)
) )
You can filter data by setting search
to either exact
or contains
when you call cheetah()
like so:
cheetah(penguins, search = "contains")
The cheetah()
function provides several additional options to customize the grid’s appearance and behavior:
disable_column_resize
: Prevent users from resizing columns# Disable resize effect in a cheetah table
cheetah(penguins, search = "contains", disable_column_resize = TRUE)
column_freeze
: Freeze a number of columns from the left# Freeze the first column
cheetah(penguins, search = "contains", column_freeze = 1)
default_row_height
and default_col_width
: Set default sizes for rows and columns# Define default row height and column width
cheetah(penguins, search = "contains", default_row_height = 30, default_col_width = 100)
header_row_height
: Customize the height of the header row# Define default row height for the header
cheetah(penguins, search = "contains", header_row_height = 20)
font
: Set custom font properties according to the standard CSS shorthand declaration for font settings.# Define a default font setting for the table
cheetah(penguins, search = "contains", font = "8px sans-serif")
editable
: Enable or disable cell editing in the grid. When set to TRUE
, users can double-click cells to edit their values.# Make the table editable
cheetah(penguins, search = "contains", editable = TRUE)
keyboard_options
: Configure keyboard navigation and shortcuts# Move cells on tab and delete cell values on with the Delete and BackSpace keys
cheetah(
penguins,search = "contains",
editable = TRUE,
keyboard_options =
list(
deleteCellValueOnDel = TRUE,
moveCellOnTab = TRUE
) )
Note: To active deleteCellValueOnDel
, ensure editable = TRUE
or a specified column is editable.
cheetah()
usage in ShinycheetahR works seamlessly in a Shiny app. You can use it in both the UI and server components. In the UI, simply call cheetahR::cheetahOutput()
to create a placeholder for the grid. In the server, use cheetahR::renderCheetah()
to render the grid with your data and options.
The grid will automatically update when the underlying data changes, making it perfect for reactive applications. All features like filtering, sorting, and custom column definitions work exactly the same way as in standalone R usage.
One special feature that works particularly well in Shiny is the menu
column type, which allows users to select from predefined options in a dropdown menu. This is ideal for interactive data editing workflows.
By default, cheetah()
automatically detects any “factor” columns in your data and converts them into menu columns. A menu column displays a dropdown menu with predefined options that users can select from. This is particularly useful when you want to restrict input to a specific set of valid choices. For example, if you have a factor column with levels “Low”, “Medium”, and “High”, it will be displayed as a dropdown menu with these three options.
library(shiny)
library(bslib)
library(cheetahR)
<- page_fluid(cheetahOutput("grid"))
ui
<- function(input, output) {
server $grid <- renderCheetah({
outputcheetah(data = iris)
})
}
shinyApp(ui = ui, server = server)
library(shiny)
library(bslib)
library(cheetahR)
<- page_fluid(cheetahOutput("grid"))
ui
<- function(input, output) {
server $grid <- renderCheetah({
outputcheetah(data = iris,
columns = list(
Species = column_def(
column_type = "menu",
action = "inline_menu",
menu_options = list(
setosa = "Option Setosa",
versicolor = "Option Vericolor" ,
virginica = "Option Virginica"
)
)
)
)
})
}
shinyApp(ui = ui, server = server)