| Type: | Package | 
| Title: | Classification Based MCAR Test | 
| Version: | 1.0.1 | 
| Description: | Implementation of a KL-based (Kullback-Leibler) test for MCAR (Missing Completely At Random) in the context of missing data as introduced in Michel et al. (2021) <doi:10.48550/arXiv.2109.10150>. | 
| License: | GPL-3 | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.1.1 | 
| Depends: | parallel, stats, ranger | 
| NeedsCompilation: | no | 
| Packaged: | 2021-11-05 15:14:27 UTC; lorismichel | 
| Author: | Meta-Lina Spohn [aut, cre], Loris Michel [aut], Jeffrey Naef [aut] | 
| Maintainer: | Meta-Lina Spohn <metalina.spohn@stat.math.ethz.ch> | 
| Repository: | CRAN | 
| Date/Publication: | 2021-11-05 16:10:02 UTC | 
PKLMtest: compute a p-value for testing MCAR
Description
PKLMtest: compute a p-value for testing MCAR
Usage
PKLMtest(
  X,
  num.proj = 300,
  num.trees.per.proj = 10,
  nrep = 500,
  min.node.size = 10,
  size.resp.set = 2,
  compute.partial.pvals = FALSE,
  ...
)
Arguments
| X | a numeric matrix containing missing values encoded as NA, the data. | 
| num.proj | a positive integer specifying the number of projections to consider for the score. | 
| num.trees.per.proj | a positive integer, the number of trees per projection. | 
| nrep | a positive integer, the number of permutations. | 
| min.node.size | a positive number, the minimum number of nodes in a tree. | 
| size.resp.set | an integer (>= 2), maximum number of classes allowed to be compared in each projection. | 
| compute.partial.pvals | a boolean, indicate if partial p-values shopuld be computed as well. | 
| ... | additional parameters. | 
Value
a numeric value, the p-value(s) for the MCAR test, the first value is always the global p-value and if compute.partial.pvals is set to TRUE, the next values are the partial p-values for the relative importance of each variable.
Examples
n <- 100
X <- cbind(rnorm(n),rnorm(n))
X.NA <- X
X.NA[,1] <- ifelse(stats::runif(n)<=0.2, NA, X[,1])
pval <- PKLMtest(X.NA, num.proj = 5)
Generate the test statistic
Description
Generate the test statistic
Usage
genU(st, lab)
Arguments
| st | a ranger forest object. | 
| lab | an integer value containing the class labels | 
Value
the likelihood-based test statistic
Truncation of probability
Description
Truncation of probability
Usage
truncProb(p)
Arguments
| p | a numeric value between 0 and 1 to be truncated | 
Value
a numeric value with truncated probabilities