Package 'NHSRwaitinglist'

April 3, 2025

Title Waiting List Metrics Using Queuing Theory

Version 0.1.0

Maintainer Chris Mainey <c.mainey1@nhs.net>

Description Waiting list management using queuing theory to analyse, predict and manage queues, based on the approach described in Fong et al. (2022) <doi:10.1101/2022.08.23.22279117>. Aimed at UK National Health Service (NHS) applications, waiting list summary statistics, target-value calculations, waiting list simulation, and scheduling functions are included.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

URL https://nhs-r-community.github.io/NHSRwaitinglist/

Config/testthat/edition 3

Imports cli, dplyr, rlang, utils, stats, randomNames, methods

Suggests ggplot2, knitr, rmarkdown, testthat (>= 3.0.0)

Depends R (>= 3.5.0)

LazyData true

NeedsCompilation no

Author Neil Walton [aut] (<https://orcid.org/0000-0002-5241-9765>), Jacqueline Grout [ctb], Zoë Turner [ctb] (<https://orcid.org/0000-0003-1033-9158>), Matt Dray [aut], Paul Fenton [ctb], Peter Shakeshaft [ctb], Tom Smith [aut], Chris Mainey [cre, aut] (<https://orcid.org/0000-0002-3018-6171>), NHS-R community [cph]

Repository CRAN

Date/Publication 2025-04-03 15:50:02 UTC

Contents

Index

calc_queue_load Calculate Queue Load

Description

Calculates the queue load. The queue load is the number of arrivals that occur for every patient leaving the queue (given that the waiting list did not empty). It could also be described as the rate of service at the queue. The queue load is calculated by dividing the demand by the capacity: queue_load = demand / capacity.

Usage

calc_queue_load(demand, capacity)

Arguments

demand	Numeric value of rate of demand in same units as target wait - e.g. if target wait is weeks, then demand in units of patients/week.
capacity	Numeric value of the number of patients that can be served (removals) from the waiting list each week.

Value

Numeric value of load which is the ratio between demand and capacity.

calc_relief_capacity

Examples

```
# If 30 patients are added to the waiting list each week (demand) and 27
# removed (capacity) this results in a queue load of 1.11 (30/27).
calc_queue_load(30, 27)
```

calc_relief_capacity Relief Capacity

Description

Calculates required relief capacity to achieve target queue size in a given period of time as a function of demand, queue size, target queue size and time period. Relief Capacity is required if Queue Size > 2 * Target Queue Size.

Relief Capacity = Current Demand + (Queue Size - Target Queue Size)/Time Steps

WARNING!: make sure units match. I.e. if demand is measured per week then time_to_target should be weeks or if demand is per day then time_to_target is per day

Usage

```
calc_relief_capacity(
  demand,
  queue_size,
  target_queue_size,
  time_to_target = 26,
  num_referrals = 0,
  cv_demand = 0
)
```

Arguments

demand	Numeric value of rate of demand in same units as target wait e.g. if target wait is weeks, then demand in units of patients/week.
queue_size	Numeric value of current number of patients in queue.
target_queue_size	
	Numeric value of desired number of patients in queue.
time_to_target	Numeric value of desired number of time-steps to reach the target queue size by.
num_referrals	Numeric value of the number of referrals per time step.
cv_demand	To be completed

Value

A numeric value of the required rate of capacity to achieve a target queue size in a given period of time.

Examples

```
# If demand is 30 patients per week, the current queue size is 1200 and the
# target is to achieve a queue size of 390 in 26 weeks, then
# Relief Capacity = 30 + (1200 - 390)/26 = 61.15 patients per week.
calc_relief_capacity(30, 1200, 390, 26)
```

calc_target_capacity Target Capacity

Description

Applies Kingman/Marchal's Formula :

capacity = demand + (cvd**2 + cvc**2) / waiting_time

where cvd = coefficient of variation of time between arrivals cvd = coefficient of variation of service times waiting_time = target_wait / factor

Usage

```
calc_target_capacity(
  demand,
  target_wait,
  factor = 4,
  cv_demand = 1,
  cv_capacity = 1
)
```

Arguments

demand	Numeric value of rate of demand in same units as target wait e.g. if target wait is weeks, then demand in units of patients/week.
target_wait	Numeric value of number of weeks that has been set as the target within which the patient should be seen.
factor	the amount we divide the target by in the waiting list e.g. if target is 52 weeks the mean wait should be 13 for a factor of 4 $$
cv_demand	coefficient of variation of time between arrivals
cv_capacity	coefficient of variation between removals due to operations completed

Value

numeric. The capacity required to achieve a target waiting time.

calc_target_mean_wait

Examples

```
demand <- 4 # weeks
target_wait <- 52 # weeks
# number of operations per week to have mean wait of 52/4
calc_target_capacity(demand, target_wait)</pre>
```

calc_target_mean_wait Average Waiting Time

Description

This calculates the target mean wait given the two inputs of target_wait and a numerical value for factor. The average wait is actually the target mean wait and is calculated as follows: target_wait / factor. If we want to have a chance between 1.8%-0.2% of making a waiting time target, then the average patient should have a waiting time between a quarter and a sixth of the target. Therefore: The mean wait should sit somewhere between target_wait/factor=6 < Average Waiting Time < target_wait/factor=4.

Usage

```
calc_target_mean_wait(target_wait, factor = 4)
```

Arguments

target_wait	Numeric value of the number of weeks that has been set as the target within which the patient should be seen.
factor	Numeric factor used in average wait calculation - to get a quarter of the target use factor=4 and one sixth of the target use factor = 6 etc. Defaults to 4.

Value

Numeric value of target mean waiting time to achieve a given target wait.

Examples

```
# If the target wait is 52 weeks then the target mean wait with a factor of 4
# would be 13 weeks and with a factor of 6 it would be 8.67 weeks.
calc_target_mean_wait(52, 4)
```

calc_target_queue_size

Target Queue Size

Description

Uses Little's Law to calculate the target queue size to achieve a target waiting time as a function of observed demand, target wait and a variability factor used in the target mean waiting time calculation.

Target Queue Size = Demand * Target Wait / 4.

The average wait should sit somewhere between target_wait/factor=6 < Average Waiting Time < target_wait/factor=4 The factor defaults to 4.

Only applicable when Capacity > Demand.

Usage

```
calc_target_queue_size(demand, target_wait, factor = 4)
```

Arguments

demand	Numeric value of rate of demand in same units as target wait e.g. if target wait is weeks, then demand in units of patients/week.
target_wait	Numeric value of number of weeks that has been set as the target within which the patient should be seen.
factor	Numeric factor used in average wait calculation
	• to get a quarter of the target use factor=4
	• to get one sixth of the target use factor = 6 etc. Defaults to 4.

Value

Numeric target queue length.

Examples

If demand is 30 patients per week and the target wait is 52 weeks, then the # Target queue size = $30 \times 52/4 = 390$ patients.

```
calc_target_queue_size(30, 52, 4)
```

calc_waiting_list_pressure

Calculate Waiting List Pressure

Description

For a waiting list with target waiting time, the pressure on the waiting list is twice the mean delay divided by the waiting list target. The pressure of any given waiting list should be less than 1. If the pressure is greater than 1 then the waiting list is most likely going to miss its target. The waiting list pressure is calculated as follows: pressure = $2 * \text{mean}_\text{wait} / \text{target}_\text{wait}$.

Usage

```
calc_waiting_list_pressure(mean_wait, target_wait)
```

Arguments

mean_wait	Numeric value of target mean waiting time to achieve a given target wait.
target_wait	Numeric value of the number of weeks that has been set as the target within
	which the patient should be seen.

Value

Numeric value of wait_pressure which is the waiting list pressure.

Examples

calc_waiting_list_pressure(63, 52)

create_waiting_list Create Waiting List

Description

Creates a waiting list using the parameters specified

Usage

```
create_waiting_list(
    n,
    mean_arrival_rate,
    mean_wait,
    start_date = Sys.Date(),
    limit_removals = TRUE,
    sd = 0,
    rott = 0,
    ...
)
```

Arguments

n	Numeric value of rate of demand in same units as target wait
	• e.g. if target wait is weeks, then demand in units of patients/week.
<pre>mean_arrival_ra</pre>	ate
	Numeric value of mean daily arrival rate.
mean_wait	Numeric value of mean wait time for treatment/on waiting list.
start_date	Character value of date from which to start generated waiting list.
limit_removals	Defaults to TRUE
sd	Numeric value, standard deviation. Defaults to 0.
rott	Numeric value, proportion of referrals to be randomly flagged as ROTT. Defaults to 0.
	Container for the list

Value

A tibble of a random generated list of patients with addition_date, removal_date, wait_length and rott status for each patient

Examples

create_waiting_list(366, 50, 21, "2024-01-01", 10, 0.1)

demographic_data demographic data

Description

demographic data

Usage

data(demographic_data)

Format

Data frame with 9 columns

hospital_site ODS hospital site code

... Others to do with file is updated

Examples

data(demographic_data)

opcs4

Description

OPCS4 data

Usage

data(opcs4)

Format

Data frame with 9 columns

code_1digit The first digit of the OPCS4 code, or 'chapter'
name_1digit The name/group of 'chapter' of the OPCS4 code

... Others to do with file is updated

Source

https://biobank.ndph.ox.ac.uk/ukb/coding.cgi?id=240

Examples

data(opcs4)

sim_patients

Generator of NHS patients

Description

Generates simulated NHS patients

Usage

sim_patients(n_rows = 10, start_date = NULL)

Arguments

n_rows	Number of rows/patients to generate
start_date	Start date (needed to generate patient ages)

Value

data.frame. Empty waiting list.

Examples

sim_patients()

sim_schedule Generator a list of dates to schedule

Description

Generates a list if dates in a given range

Usage

```
sim_schedule(n_rows = 10, start_date = NULL, daily_capacity = 1)
```

Arguments

n_rows	Number of rows/patients to generate
start_date	Start date (needed to generate patient ages)
daily_capacity	Number of patients per day

Value

data.frame. Empty waiting list.

wl_insert

Insert new referrals into the waiting list

Description

adds new referrals (removal date is set as NA)

Usage

wl_insert(waiting_list, additions, referral_index = 1)

Arguments

waiting_list	dataframe. A df of referral dates and removals
additions	character vector. A list of referral dates to add to the waiting list
referral_index	integer. The column number in the waiting_list which contains the referral dates

10

wl_join

Value

dataframe. A df of the updated waiting list

Examples

```
referrals <- c.Date("2024-01-01", "2024-01-04", "2024-01-10", "2024-01-16")
removals <- c.Date("2024-01-08", NA, NA, NA)
waiting_list <- data.frame("referral" = referrals, "removal" = removals)
additions <- c.Date("2024-01-03", "2024-01-05", "2024-01-18")
longer_waiting_list <- wl_insert(waiting_list, additions)</pre>
```

wl_join

Join two waiting list

Description

Take two waiting list and sorting in date order

Usage

```
wl_join(wl_1, wl_2, referral_index = 1)
```

Arguments

wl_1	a waiting list: dataframe consisting addition and removal dates
w1_2	a waiting list: dataframe consisting addition and removal dates
referral_index	the column index where referrals are listed

Value

updated_list a new waiting list

Examples

```
referrals <- c.Date("2024-01-01","2024-01-04","2024-01-10","2024-01-16")
removals <- c.Date("2024-01-08",NA,NA,NA)
wl_1 <- data.frame("referral" = referrals ,"removal" = removals )
referrals <- c.Date("2024-01-04","2024-01-05","2024-01-16","2024-01-25")</pre>
```

```
removals <- c.Date("2024-01-09",NA,"2024-01-19",NA)
wl_2 <- data.frame("referral" = referrals ,"removal" = removals )
wl_join(wl_1,wl_2)</pre>
```

wl_queue_size

Description

Calculates queue sizes from a waiting list

Usage

```
wl_queue_size(
  waiting_list,
  start_date = NULL,
  end_date = NULL,
  referral_index = 1,
  removal_index = 2
)
```

Arguments

waiting_list	data.frame consisting addition and removal dates
start_date	start of calculation period
end_date	end of calculation period
referral_index	the index of referrals in waiting_list
removal_index	the index of removals in waiting_list

Value

a list of dates and queue sizes

Examples

```
referrals <- c.Date("2024-01-01", "2024-01-04", "2024-01-10", "2024-01-16")
removals <- c.Date("2024-01-08", NA, NA, NA)
waiting_list <- data.frame("referral" = referrals, "removal" = removals)
wl_queue_size(waiting_list)</pre>
```

wl_referral_stats Calculate some stats about referrals

Description

Calculate some stats about referrals

wl_removal_stats

Usage

```
wl_referral_stats(
   waiting_list,
   start_date = NULL,
   end_date = NULL,
   referral_index = 1
)
```

Arguments

waiting_list	data.frame. A df of referral dates and removals
start_date	date. The start date to calculate from
end_date	date. The end date to calculate to
referral_index	the column index of referrals

Value

data.frame. A df containing number of referrals, mean demand, and the coefficient of variation of referrals

Examples

```
referrals <- c.Date("2024-01-01", "2024-01-04", "2024-01-10", "2024-01-16")
removals <- c.Date("2024-01-08", NA, NA, NA)
waiting_list <- data.frame("referral" = referrals, "removal" = removals)
referral_stats <- wl_referral_stats(waiting_list)</pre>
```

wl_removal_stats Calculate some stats about removals

Description

Calculate some stats about removals

Usage

```
wl_removal_stats(
   waiting_list,
   start_date = NULL,
   end_date = NULL,
   referral_index = 1,
   removal_index = 2
)
```

Arguments

waiting_list	data.frame. A df of referral dates and removals
start_date	date. The start date to calculate from
end_date	date. The end date to calculate to
referral_index	int. Index of the referral column in waiting_list.
<pre>removal_index</pre>	int. Index of the removal column in waiting_list.

Value

data.frame. A df containing number of removals, mean capacity, and the coefficient of variation of removals

Examples

```
referrals <- c.Date("2024-01-01", "2024-01-04", "2024-01-10", "2024-01-16")
removals <- c.Date("2024-01-08", NA, NA, NA)
waiting_list <- data.frame("referral" = referrals, "removal" = removals)
removal_stats <- wl_removal_stats(waiting_list)</pre>
```

```
wl_schedule
```

A simple operation scheduler

Description

Takes a list of dates and schedules them to a waiting list, by adding a removal date to the data.frame. This is done in referral date order, I.e. earlier referrals are scheduled first (FIFO).

Usage

```
wl_schedule(
  waiting_list,
  schedule,
  referral_index = 1,
  removal_index = 2,
  unscheduled = FALSE
)
```

Arguments

waiting_list	data.frame. A df of referral dates and removals
schedule	vector of dates. Should be formatted as year-month-date, e.g. "2024-04-01". The dates to schedule open referrals into (i.e. dates of unbooked future capacity)
referral_index	integer. The column number in the waiting_list which contains the referral dates
removal_index	integer. The column number in the waiting_list which contains the removal dates
unscheduled	logical. If TRUE, returns a list of scheduled and unscheduled procedures If FALSE, only returns the updated waiting list

14

wl_simulator

Value

data.frame. A df of the updated waiting list with removal dates added according to the schedule

Examples

```
referrals <- c.Date("2024-01-01", "2024-01-04", "2024-01-10", "2024-01-16")
removals <- c.Date("2024-01-08", NA, NA, NA)
waiting_list <- data.frame("referral" = referrals, "removal" = removals)
schedule <- c.Date("2024-01-03", "2024-01-05", "2024-01-18")
updated_waiting_list <- wl_schedule(waiting_list, schedule)</pre>
```

wl_simulator Simple simulator to create a waiting list

Description

Creates a simulated waiting list comprising referral dates, and removal dates

Usage

```
wl_simulator(
   start_date = NULL,
   end_date = NULL,
   demand = 10,
   capacity = 11,
   waiting_list = NULL,
   withdrawal_prob = NA,
   detailed_sim = FALSE
)
```

Arguments

start_date	date. The start date for the simulation.	
end_date	date. The end date for the simulation.	
demand	numeric. Weekly demand (i.e., typical referrals per week).	
capacity	numeric. Weekly capacity (i.e., typical removals per week)	
waiting_list	integer. The number of patients on the waiting list.	
withdrawal_prob		
	numeric. Probability of a patient withdrawing.	
detailed_sim	logical. If TRUE, simulation provides detailed output.	

Value

data.frame. A df of simulated referrals and removals

Examples

```
over_capacity_simulation <-
   wl_simulator("2024-01-01", "2024-03-31", 100, 110)
under_capacity_simulation <-
   wl_simulator("2024-01-01", "2024-03-31", 100, 90)</pre>
```

wl_stats

Calculate some stats about the waiting list

Description

A summary of all the key stats associated with a waiting list

Usage

```
wl_stats(waiting_list, target_wait = 4, start_date = NULL, end_date = NULL)
```

Arguments

waiting_list	data.frame. A df of referral dates and removals
target_wait	numeric. The required waiting time
start_date	date. The start date to calculate from
end_date	date. The end date to calculate to

Value

data.frame. A df of important waiting list statistics

Examples

```
referrals <- c.Date("2024-01-01", "2024-01-04", "2024-01-10", "2024-01-16")
removals <- c.Date("2024-01-08", NA, NA, NA)
waiting_list <- data.frame("referral" = referrals, "removal" = removals)
waiting_list_stats <- wl_stats(waiting_list)</pre>
```

16

Index

* datasets $demographic_data, 8$ opcs4, 9 calc_queue_load, 2 calc_relief_capacity, 3 calc_target_capacity, 4 calc_target_mean_wait, 5 calc_target_queue_size, 6 calc_waiting_list_pressure,7 create_waiting_list,7 $demographic_data, 8$ opcs4,9 sim_patients, 9 sim_schedule, 10 wl_insert, 10 wl_join, 11 wl_queue_size, 12 wl_referral_stats, 12 wl_removal_stats, 13 wl_schedule, 14 wl_simulator, 15 wl_stats, 16