Type
Title

Package ‘LaMa’

June 7, 2024
Package

Fast Numerical Maximum Likelihood Estimation for Latent Markov
Models

Version 1.0.0

Description The class of latent Markov models, including hidden Markov models,

URL

hidden semi-Markov models, state space models, and point processes, is a very popular and pow-

erful framework for inference of time series driven by latent processes.

Furthermore, all these models can be fitted using direct numerical maximum likelihood estima-

tion using the so-called forward algorithm as discussed in
Zucchini et al. (2016) <doi:10.1201/b20790>.
However, due to their great flexibility, researchers using these models in applied work of-

ten need to build highly customized models for which standard software implementation is lack-

ing,

or the construction of such models in said software is as complicated as writing fully tai-
lored 'R’ code.

While providing greater flexibility and control, the latter suffers from slow estima-

tion speeds that make custom solutions inconvenient.

We address the above issues in two ways. First, standard blocks of code, com-

mon to all these model classes, are implemented as simple-to-use func-

tions that can be added like Lego blocks to an otherwise fully custom likelihood function, mak-

ing writing custom code much easier.

Second, under the hood, these functions are written in 'C++', allowing for 10-

20 times faster evaluation time, and thus drastically speeding up model estimation.
To aid in building fully custom likelihood functions, several vignettes are in-

cluded that show how to simulate data from and estimate all the above model classes.

https://janoleko.github.io/software/,
https://github.com/janoleko/LaMa

License GPL-3
Encoding UTF-8
Imports Rcpp, mgev

LinkingTo Rcpp, ReppArmadillo
Depends R (>=3.5.0)
RoxygenNote 7.3.1

https://doi.org/10.1201/b20790
https://janoleko.github.io/software/
https://github.com/janoleko/LaMa

2 calc_trackInd

Suggests knitr, rmarkdown, testthat (>= 3.0.0), PHSMM

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation yes

Author Jan-Ole Koslik [aut, cre] (<https://orcid.org/0009-0004-1556-9053>)
Maintainer Jan-Ole Koslik <jan-ole.koslik@uni-bielefeld.de>

Repository CRAN

Date/Publication 2024-06-04 09:47:46 UTC

Contents
calc_trackInd L e 2
forward L e e e e 3
forward_g e e 5
forward_p 6
forward_s e 8
forward_sp e 10
SLAtEPIODS e e e e e e e 11
SEAtEPIODS_Z . . o o o e e e e e e e e e e e e 12
StAteprobs_P e e e 13
StAtiONArY e e e 14
StAtIONATY_ P+ v v v v v e 15
PID . . . e 16
PIM_CONE L o e e e 16
IPIN_E . o o e e e e e e e e e 17
tpm_hsmm e 18
PIN_P . . o o o e e e e e 19
tpm_phsmm e 21
tpm_thinned 22
trigBasisEXp e e 23
Viterbl . . . L e e e e 24
VIterbi_g e 25
VIETDI P . . . o o o e e e e e e e 25

Index 27

calc_trackInd Calculate the index of the first observation of each track based on an
ID variable
Description

Function to conveniently calculate the trackInd variable that is needed when fitting a model to
longitudinal data with multiple tracks.

https://orcid.org/0009-0004-1556-9053

forward 3

Usage

calc_trackInd(ID)

Arguments

1D ID variable of track IDs that is of the same length as the data to be analyzed

Details

Preferably, this function should not be used inside the likelihood function, as it may slow down the
computation speed. Instead, it can be called once and the result can then be passed as an argument
to the likelihood function.

Value
A vector of indices of the first observation of each track which can be passed to the forward and
forward_g to sum likelihood contributions of each track

Examples

uniqueID = c("Animall”, "Animal2", "Animal3")
ID = rep(uniquelD, c(100, 200, 300))
trackInd = calc_trackInd(ID)

forward Rhrefhitps://www.taylorfrancis.com/books/mono/10.1201/b20790/hidden-
markov-models-time-series-walter-zucchini-iain-macdonald-roland-
langrockForward algorithm with homogeneous transition probability
matrix

Description

Forward algorithm with homogeneous transition probability matrix

Usage

forward(delta, Gamma, allprobs, trackInd = NULL)

Arguments
delta Initial or stationary distribution of length N, or matrix of dimension c(k,N) for k
independent tracks, if trackInd is provided
Gamma Transition probability matrix of dimension c¢(N,N), or array of k transition prob-

ability matrices of dimension c(N,N,k), if trackInd is provided.

allprobs Matrix of state-dependent probabilities/ density values of dimension c(n, N)

https://www.taylorfrancis.com/books/mono/10.1201/b20790/hidden-markov-models-time-series-walter-zucchini-iain-macdonald-roland-langrock

4 forward

trackInd Optional vector of length k containing the indices that correspond to the begin-
ning of separate tracks. If provided, the total log-likelihood will be the sum
of each track’s likelihood contribution. In this case, Gamma can be a matrix,
leading to the same transition probabilities for each track, or an array of dimen-
sion c(N,N,k), with one (homogeneous) transition probability matrix for each
track. Furthermore, instead of a single vector delta corresponding to the initial
distribution, a delta matrix of initial distributions, of dimension c(k,N), can be
provided, such that each track starts with it’s own initial distribution.

Value

Log-likelihood for given data and parameters

Examples

generating data from homogeneous 2-state HMM

mu = c(0@, 6)

sigma = c(2, 4)

Gamma = matrix(c(@.5, 0.05, 0.15, 0.85), nrow = 2, byrow = TRUE)

delta = c(0.5, 0.5)

simulation

s = x = rep(NA, 500)

s[1] = sample(1:2, 1, prob = delta)

x[1] = rnorm(1, muls[1]], sigmals[1]])

for(t in 2:500){
s[t] = sample(1:2, 1, prob = Gamma[s[t-1],])
x[t] = rnorm(1, muls[t1], sigmals[t1])

3

negative log likelihood function
mllk = function(theta.star, x){
parameter transformations for unconstraint optimization
Gamma = tpm(theta.star[1:2])
delta = stationary(Gamma) # stationary HMM
mu = theta.star[3:4]
sigma = exp(theta.star[5:6])
calculate all state-dependent probabilities
allprobs = matrix(1, length(x), 2)
for(j in 1:2){ allprobs[,j] = dnorm(x, mu[j], sigmaljl) }
return negative for minimization
-forward(delta, Gamma, allprobs)
3

fitting an HMM to the data
theta.star = c¢(-2,-2,0,5,10g(2),1log(3))
mod = stats::nlm(mllk, theta.star, x = x)

forward_g 5

forward_g General Rhrefhitps.//www.taylorfrancis.com/books/mono/10.1201/b20790/hidden-
markov-models-time-series-walter-zucchini-iain-macdonald-roland-
langrockforward algorithm with time-varying transition probability
matrix

Description

General forward algorithm with time-varying transition probability matrix

Usage
forward_g(delta, Gamma, allprobs, trackInd = NULL)

Arguments

delta Initial distribution of length N, or matrix of dimension c(k,N) for k independent
tracks, if trackInd is provided.

Gamma Array of transition probability matrices of dimension ¢(N,N,n-1), as in a time
series of length n, there are only n-1 transitions. If you provide an array of di-
mension ¢c(N,N,n), the first slice will be ignored.

If the elements of T'(*) depend on covariate values at t or covariates t+1 is your
choice in the calculation of the array, prior to using this function. When con-
ducting the calculation by using tpm_g(), the choice comes down to including
the covariate matrix Z[-1,] oder Z[-n,].

If tracklInd is provided, Gamma needs to be an array of dimension c(N,N,n),
matching the number of rows of allprobs. For each track, the transition matrix
at the beginning will be ignored. If the parameters for Gamma are pooled across
tracks or not, depends on your calculation of Gamma. If pooled, you can use
tpm_g(Z, beta) to calculate the entire array of transition matrices when Z is of
dimension c(n,p).

This function can also be used to fit continuous-time HMMs, where each array
entry is the Markov semigroup I'(At) = exp(QAt) and @ is the generator of
the continuous-time Markov chain.

allprobs Matrix of state-dependent probabilities/ density values of dimension c(n, N)

trackInd Optional vector of length k containing the indices that correspond to the begin-
ning of separate tracks. If provided, the total log-likelihood will be the sum of
each track’s likelihood contribution. In this case, Gamma needs to be an ar-
ray of dimension c(N,N,n), matching the number of rows of allprobs. For each
track, the transition matrix at the beginning of the track will be ignored (as there
is no transition between tracks). Furthermore, instead of a single vector delta
corresponding to the initial distribution, a delta matrix of initial distributions,
of dimension c(k,N), can be provided, such that each track starts with it’s own
initial distribution.

https://www.taylorfrancis.com/books/mono/10.1201/b20790/hidden-markov-models-time-series-walter-zucchini-iain-macdonald-roland-langrock

6 forward_p

Value

Log-likelihood for given data and parameters

Examples

generating data from inhomogeneous 2-state HMM

mu = c(0Q, 6)

sigma = c(2, 4)

beta = matrix(c(-2,-2,0.5,-0.5),nrow=2)

delta = c(0.5, 0.5)

simulation

n = 2000

s = x = rep(NA, n)

z = rnorm(n, @, 2)

s[1] = sample(1:2, 1, prob = delta)

x[1] = rnorm(1, muls[1]], sigmals[1]])

for(t in 2:n){
Gamma = diag(2)
Gamma[!Gamma] = exp(betal,1]+betal,2]xz[t])
Gamma = Gamma / rowSums(Gamma)
s[t] = sample(1:2, 1, prob = Gamma[s[t-1],])
x[t] = rnorm(1, muls[t]], sigmals[t]])

3

negative log likelihood function
mllk = function(theta.star, x, z){
parameter transformations for unconstraint optimization
beta = matrix(theta.star[1:4], 2, 2)
Gamma = tpm_g(Z = z, beta = beta)
delta = c(plogis(theta.star[5]), 1-plogis(theta.star[5]))
mu = theta.star[6:7]
sigma = exp(theta.star[8:9])
calculate all state-dependent probabilities
allprobs = matrix(1, length(x), 2)
for(j in 1:2){ allprobs[,j] = dnorm(x, mu[j], sigmal[jl) }
return negative for minimization
-forward_g(delta, Gamma, allprobs)
3

fitting an HMM to the data
theta.star = ¢(-2,-2,1,-1,0,0,5,1log(2),log(3))
mod = nlm(mllk, theta.star, x = x, z = z)

forward_p Rhrefhttps://www.taylorfrancis.com/books/mono/10.1201/b20790/hidden-
markov-models-time-series-walter-zucchini-iain-macdonald-roland-
langrockForward algorithm with (only) periodically varying transition
probability matrix

forward_p 7

Description

When the transition probability matrix only varies periodically (e.g. as a function of time of day),
there are only L unique matrices if L is the period length (e.g. L = 24 for hourly data and time-
of-day variation). Thus, it is much more efficient to only calculate these L matrices and index them
by a time variable (e.g. time of day or day of year) instead of calculating such a matrix for each
index in the data set (which would be redundant). This function allows for that, by only expecting
a transition probability matrix for each time point in a period, and an integer valued (1, ..., L) time
variable that maps the data index to the according time.

Usage

forward_p(delta, Gamma, allprobs, tod)

Arguments
delta Initial or periodically stationary distribution of length N
Gamma Array of transition probability matrices of dimension c(N,N,L).
Here we use the definition Pr(S; = j | S;—1 =) = fyi(;) such that the transition
probabilities between time point ¢ — 1 and ¢ are an element of T'(*),
allprobs Matrix of state-dependent probabilities/ density values of dimension c(n, N)
tod (Integer valued) time variable in 1, ..., L, mapping the data index to a generalized
time of day (length n). For half-hourly data L = 48. It could, however, also be
day of year for daily data and L = 365.
Value

Log-likelihood for given data and parameters

Examples

generating data from periodic 2-state HMM
mu = c(0Q, 6)
sigma = c(2, 4)
beta = matrix(c(-2,-2,1,-1, 1, -1),nrow=2)
delta = c(0.5, 0.5)
simulation
n = 2000
s = x = rep(NA, n)
tod = rep(1:24, ceiling(2000/24))
s[1] = sample(1:2, 1, prob = delta)
x[1] = rnorm(1, muls[1]], sigmals[1]])
24 unique t.p.m.s
Gamma = array(dim = c(2,2,24))
for(t in 1:24){
G = diag(2)
G[!G] = exp(betal,1]+betal,2]xsin(2xpi*t/24)+
betal,3]xcos(2xpi*t/24)) # trigonometric link
Gammal,,t] = G / rowSums(G)

8 forward_s

}
for(t in 2:n){
s[t] = sample(1:2, 1, prob = Gamma[s[t-1],,tod[t]1])
x[t] = rnorm(1, mu[s[t]], sigmals[t1])
3
we can also use function from LaMa to make building periodic tpms much easier
Gamma = tpm_p(1:24, 24, beta, degree = 1)

negative log likelihood function
mllk = function(theta.star, x, tod){
parameter transformations for unconstraint optimization
beta = matrix(theta.star[1:6], 2, 3)
Gamma = tpm_p(tod=tod, L=24, beta=beta)
delta = stationary_p(Gamma, t=tod[1])
mu = theta.star[8:9]
sigma = exp(theta.star[10:11])
calculate all state-dependent probabilities
allprobs = matrix(1, length(x), 2)
for(j in 1:2){ allprobs[,j] = dnorm(x, mu[j], sigmal[jl) }
return negative for minimization
-forward_p(delta, Gamma, allprobs, tod)
}

fitting an HMM to the data
theta.star = c¢(-2,-2,1,-1,1,-1,0,0,5,1l0g(2),1log(3))
mod = nlm(mllk, theta.star, x = x, tod = tod)

forward_s Rhrefhttps://www.taylorfrancis.com/books/mono/10.1201/b20790/hidden-
markov-models-time-series-walter-zucchini-iain-macdonald-roland-
langrockForward algorithm for hidden semi-Markov models with
homogeneous transition probability matrix

Description

Hidden semi-Markov models (HSMMs) are a flexible extension of HMMSs. For direct numerical
maximum likelhood estimation, HSMMs can be represented as HMMs on an enlarged state space
(of size M) and with structured transition probabilities.

Usage

forward_s(delta, Gamma, allprobs, sizes)

Arguments

delta Initial or stationary distribution of length M (where M is the number of approx-
imating states)

Gamma Transition probability matrix of dimension c(M,M)

forward_s 9

allprobs Matrix of state-dependent probabilities/ density values of dimension c(n, N),
where N is the number of semi-Markovian states. This will automatically be
converted to the appropriate dimension.

sizes State aggregate sizes that are used for the approximation of the semi-Markov
chain.

Value

Log-likelihood for given data and parameters

Examples

generating data from homogeneous 2-state HSMM
mu = c(0@, 6)
lambda = c(6, 12)
omega = matrix(c(0,1,1,0), nrow = 2, byrow = TRUE)
simulation
for a 2-state HSMM the embedded chain always alternates between 1 and 2
s = rep(1:2, 100)
C = x = numeric(@)
for(t in 1:100){
dt = rpois(1, lambda[s[t]])+1 # shifted Poisson
C = c(C, rep(s[t], dt))
x = c(x, rnorm(dt, mu[s[t]], 1.5)) # fixed sd 2 for both states
3

negative log likelihood function
mllk = function(theta.star, x, sizes){
parameter transformations for unconstraint optimization
omega = matrix(c(0,1,1,0), nrow = 2, byrow = TRUE) # omega fixed (2-states)
lambda = exp(theta.star[1:2]) # dwell time means
dm = list(dpois(1:sizes[1]-1, lambda[1]), dpois(1:sizes[2]-1, lambda[2]))
Gamma = tpm_hsmm(omega, dm)
delta = stationary(Gamma) # stationary
mu = theta.star[3:4]
sigma = exp(theta.star[5:6])
calculate all state-dependent probabilities
allprobs = matrix(1, length(x), 2)
for(j in 1:2){ allprobs[,j] = dnorm(x, mu[j], sigmal[jl) }
return negative for minimization
-forward_s(delta, Gamma, allprobs, sizes)

}

fitting an HSMM to the data
theta.star = c(log(5), log(10), 1, 4, log(2), log(2))
mod = nlm(mllk, theta.star, x = x, sizes = c(20, 30), stepmax = 5)

10 forward_sp
forward_sp Rhrefhttps://www.taylorfrancis.com/books/mono/10.1201/b20790/hidden-
markov-models-time-series-walter-zucchini-iain-macdonald-roland-
langrockForward algorithm for hidden semi-Markov models with
periodically varying transition probability matrices
Description

Hidden semi-Markov models (HSMMs) are a flexible extension of HMMSs. For direct numerical
maximum likelhood estimation, HSMMs can be represented as HMMs on an enlarged state space
(of size M) and with structured transition probabilities such that approximate inference is possible.
Recently, this inference procedure has been generalized to allow either the dwell-time distributions
or the conditional transition probabilities to depend on external covariates such as the time of day.
This special case is implemented here. This function allows for that, by expecting a transition
probability matrix for each time point in a period, and an integer valued (1,..., L) time variable
that maps the data index to the according time.

Usage

forward_sp(delta, Gamma, allprobs, sizes, tod)

Arguments

delta

Gamma

allprobs

sizes

tod

Value

Initial or periodically stationary distribution of length M (where M is the number
of approximating states)

Array of transition probability matrices of dimension c(M,M,L).
)
ij
probabilities between time point t — 1 and ¢ are an element of T'(*).

Here we use the definition Pr(S; = j | Si—1 =) = such that the transition

Matrix of state-dependent probabilities/ density values of dimension c(n, N),
where N is the number of semi-Markovian states. This will automatically be
converted to the appropriate dimension.

State aggregate sizes that are used for the approximation of the semi-Markov
chain.

(Integer valued) time variable in 1, ..., L, mapping the data index to a generalized
time of day (length n). For half-hourly data L = 48. It could, however, also be
day of year for daily data and L = 365.

Log-likelihood for given data and parameters

stateprobs

Examples

generating data from homogeneous 2-state HSMM

mu = c(0@, 6)

beta = matrix(c(log(4),log(6),-0.2,0.2,-0.1,0.4), nrow=2)
time varying mean dwell time

Lambda = exp(cbind(1, trigBasisExp(1:24, 24, 1))%*%t(beta))
omega = matrix(c(0,1,1,0), nrow = 2, byrow = TRUE)

simulation

for a 2-state HSMM the embedded chain always alternates between 1 and 2

s = rep(1:2, 100)

C = x = numeric(@)
tod = rep(1:24, 50) # time of day variable

time = 1
for(t in 1:100){

dt = rpois(1, Lambda[tod[time], s[t]])+1 # dwell time depending on time of day
time = time + dt

c(x, rnorm(dt, mu[s[t]], 1.5)) # fixed sd 2 for both states

C = c(C, rep(s[t], dt))
X:

3

tod = tod[1:1length(x)]

negative log likelihood function

mllk = function(t
parameter tra
omega = matrix(

heta.star, x, sizes, tod){
nsformations for unconstraint optimization
c(0,1,1,0), nrow = 2, byrow = TRUE) # omega fixed (2-states)

mu = theta.star[1:2]
sigma = exp(theta.star[3:4])

beta = matrix(t
time varying

heta.star[5:10], nrow=2)
mean dwell time

Lambda = exp(cbind(1, trigBasisExp(1:24, 24, 1))%*%t(beta))

dm = list()
for(j in 1:2){

dm[[j]1] = sapply(1:sizes[j]-1, dpois, lambda = Lambdal,j])

}

Gamma = tpm_phs
delta = station
calculate all

mm(omega, dm)
ary_p(Gamma, tod[1])
state-dependent probabilities

allprobs = matrix(1, length(x), 2)
for(j in 1:2){ allprobs[,j] = dnorm(x, mulj], sigmaljl) }
return negative for minimization

-forward_sp(del
3

ta, Gamma, allprobs, sizes, tod)

fitting an HSMM to the data

theta.star = c(1,

mod = nlm(mllk, t

4, log(2), log(2), # state-dependent parameters
log(4), log(6), rep(0,4)) # state process parameters dm
heta.star, x = x, sizes = c(10, 15), tod = tod, stepmax = 5)

11

stateprobs

Calculate conditional local state probabilities for homogeneous
HMMs

12 stateprobs_g

Description

Computes

Pr(St :] | le "'7XT)

Usage

stateprobs(delta, Gamma, allprobs)

Arguments

delta Initial or stationary distribution of length N

Gamma Transition probability matrix of dimension c(N,N)

allprobs Matrix of state-dependent probabilities/ density values of dimension c(n, N)
Value

Matrix of conditional state probabilities of dimension c(n,N)

Examples

Gamma = tpm(c(-1,-2))
delta = stationary(Gamma)
allprobs = matrix(runif(200), nrow = 100, ncol = 2)

probs = stateprobs(delta, Gamma, allprobs)

stateprobs_g Calculate conditional local state probabilities for inhomogeneous
HMMs
Description
Computes

Pr(St :] | X17...7XT>

Usage

stateprobs_g(delta, Gamma, allprobs)

stateprobs_p 13

Arguments
delta Initial distribution of length N
Gamma Array of transition probability matrices of dimension c¢(N,N,n-1), as in a time
series of length n, there are only n-1 transitions.
allprobs Matrix of state-dependent probabilities/ density values of dimension c(n, N)
Value

Matrix of conditional state probabilities of dimension c(n,N)

Examples

Gamma = tpm_g(runif(99), matrix(c(-1,-1,1,-2), nrow = 2, byrow = TRUE))
delta = c(0.5, 0.5)
allprobs = matrix(runif(200), nrow = 100, ncol = 2)

probs = stateprobs_g(delta, Gamma, allprobs)

stateprobs_p Calculate conditional local state probabilities for periodically inho-
mogeneous HMMs
Description
Computes

Pr(St :] | X17 7XT)

Usage

stateprobs_p(delta, Gamma, allprobs, tod)

Arguments

delta Initial or periodically stationary distribution of length N

Gamma Array of transition probability matrices of dimension c(N,N,L) where L is the
cycle length.
Here we use the definition Pr(S; = j | S;—1 =) = %(;) such that the transition
probabilities between time point ¢ — 1 and ¢ are an element of T'(*).

allprobs Matrix of state-dependent probabilities/ density values of dimension c(n, N)

tod (Integer valued) time variable in 1, ..., L, mapping the data index to a generalized

time of day (length n). For half-hourly data L = 48. It could, however, also be
day of year for daily data and L = 365.

14 stationary

Value

Matrix of conditional state probabilities of dimension c(n,N)

Examples

L =24

beta = matrix(c(-1, 2, -1, -2, 1, -1), nrow = 2, byrow = TRUE)
Gamma = tpm_p(1:L, L, beta, degree = 1)

delta = stationary_p(Gamma, 1)

allprobs = matrix(runif(200), nrow = 100, ncol = 2)

tod = rep(1:24, 5)[1:100]

probs = stateprobs_p(delta, Gamma, allprobs, tod)

stationary Compute the stationary distribution of a homogeneous Markov chain

Description

A homogeneous, finite state Markov chain that is irreducible and aperiodic converges to a unique
stationary distribution, here called §. As it is stationary, this distribution satisfies

oI’ = 4, subject to Zjvzl d; =1,

where I is the transition probability matrix. This function solves the linear system of equations

above.
Usage
stationary(Gamma, tol = .Machine$double.eps)
Arguments
Gamma Transition probability matrix of dimension c(N,N)
tol The tolerance for detecting linear dependencies in the columns of Gamma. The
default is .Machine$double.eps.
Value

Stationary distribution of the Markov chain with the given transition probability matrix

Examples

Gamma = tpm(c(rep(-2,3), rep(-3,3)))
delta = stationary(Gamma)

stationary_p 15

stationary_p Compute the periodically stationary distribution of a periodically in-
homogeneous Markov chain

Description

If the transition probability matrix of an inhomogeneous Markov chain varies only periodically
(with period length L), it converges to a so-called periodically stationary distribution. This hap-
pens, because the thinned Markov chain, which has a full cycle as each time step, has homogeneous
transition probability matrix

I, =T | pE+L=D forallt =1,..., L.

The stationary distribution for time ¢ satifies 6T, = §(*).
This function calculates the periodically stationary distribution.

Usage

stationary_p(Gamma, t = NULL, tol = .Machine$double.eps)

Arguments

Gamma Array of transition probability matrices of dimension c(N,N,L).

t Integer index of the time point in the cycle, for which to calculate the stationary
distribution If t is not provided, the function calculates all stationary distribu-
tions for each time point in the cycle.

tol The tolerance for detecting linear dependencies in the columns of the thinned
transition matrix. The default is .Machine$double.eps.

Value

Either the periodically stationary distribution at time t or all periodically stationary distributions.

Examples

L =24

beta = matrix(c(-1, 2, -1, -2, 1, -1), nrow = 2, byrow = TRUE)
Gamma = tpm_p(1:L, L, beta, degree = 1)

Periodically stationary distribution for specific time point
delta = stationary_p(Gamma, 4)

All periodically stationary distributions
Delta = stationary_p(Gamma)

16 tpm_cont

tpm Build the transition probability matrix from unconstraint parameter
vector

Description

This function builds the transition probability matrix from an unconstraint parameter vector. For
each row of the matrix, the inverse multinomial logistic link is applied.

Usage

tpm(param, byrow = FALSE)

Arguments
param Unconstraint parameter vector of length N*(N-1) where N is the number of
states of the Markov chain
byrow Logical that indicates if the transition probability matrix should be filled by row.
Defaults to FALSE, but should be set to TRUE if one wants to work with a
matrix of beta parameters returned by popular HMM packages like moveHMM,
momentuHMM, or hmmTMB.
Value

Transition probability matrix of dimension c(N,N)

Examples

2 states: 2 free off-diagonal elements
paraml = rep(-1, 2)
Gammal = tpm(paraml)

3 states: 6 free off-diagonal elements
param2 = rep(-2, 6)
Gamma2 = tpm(param?2)

tpm_cont Calculation of continuous time transition probabilities

Description

A continuous-time Markov chain is described by an infinitesimal generator matrix). When ob-
serving data at time points ¢1, . . ., t,, the transition probabilites between ¢; and ¢, are caluclated as

T'(At;) = exp(QAt;),

where exp() is the matrix exponential. The mapping I'(At) is also called the Markov semigroup.
This function calculates all transition matrices based on a given generator and time differences.

tpm_g 17

Usage

tpm_cont(Q, timediff)

Arguments
Q Infinitesimal generator matrix of the continuous-time Markov chain of dimen-
sion ¢(N,N)
timediff Time differences between observations of length n-1 when based on n observa-
tions
Value

An array of transition matrices of dimension c(N,N,n-1)

Examples

building a Q matrix for a 3-state cont.-time Markov chain
Q = diag(3)

QC!Q] = rexp(6)

diag(Q) 0

diag(Q) - rowSums(Q)

draw time differences
timediff = rexp(1000, 10)

Gamma = tpm_cont(Q, timediff)

tpm_g Build all transition probability matrices of an inhomogeneous HMM

Description

In an HMM, we can model the influence of covariates on the state process, by linking them to the
transition probabiltiy matrix. Most commonly, this is done by specifying a linear predictor

1 = B + Bz 4+ B 2
for each off-diagonal element (i # j) and then applying the inverse multinomial logistic link to

each row. This function efficiently calculates all transition probabilty matrices for a given design
matrix Z and parameter matrix beta.

Usage

tpm_g(Z, beta, byrow = FALSE)

18 tpm_hsmm

Arguments
Z Covariate design matrix (excluding intercept column) of dimension c(n, p), where
p can also be one (i.e. Z can be a vector).
beta Matrix of coefficients for the off-diagonal elements of the transition probabil-
ity matrix. Needs to be of dimension c(N*(N-1), p+1), where the first column
contains the intercepts.
byrow Logical that indicates if each transition probability matrix should be filled by
row. Defaults to FALSE, but should be set to TRUE if one wants to work with a
matrix of beta parameters returned by popular HMM packages like moveHMM,
momentuHMM, or hmmTMB.
Value

Array of transition probability matrices of dimension c¢(N,N,n)

Examples

n = 1000

Z = matrix(runif(n*2), ncol = 2)

beta = matrix(c(-1, 1, 2, -2, 1, -2), nrow = 2, byrow = TRUE)
Gamma = tpm_g(Z, beta)

tpm_hsmm Build the transition probability matrix of an HSMM-approximating
HMM

Description

Hidden semi-Markov models (HSMMs) are a flexible extension of HMMs. For direct numerical
maximum likelhood estimation, HSMMs can be represented as HMMs on an enlarged state space
(of size M) and with structured transition probabilities. This function computes the transition matrix
of an HSMM.

Usage

tpm_hsmm(omega, dm, eps = 1e-10)

Arguments
omega Embedded transition probability matrix of dimension c(N,N)
dm State dwell-time distributions arranged in a list of length(N). Each list element
needs to be a vector of length N_i, where N_i is the state aggregate size.
eps Rounding value: If an entry of the transition probabily matrix is smaller, than it

is rounded to zero.

tpm_p 19

Value

The extended-state-space transition probability matrix of the approximating HMM

Examples

building the t.p.m. of the embedded Markov chain

omega = matrix(c(@,1,1,0), nrow = 2, byrow = TRUE)

defining state aggregate sizes

sizes = c(20, 30)

defining state dwell-time distributions

lambda = c(5, 11)

dm = list(dpois(1:sizes[1]-1, lambda[1]), dpois(1:sizes[2]-1, lambda[2]))
calculating extended-state-space t.p.m.

Gamma = tpm_hsmm(omega, dm)

tpm_p Build all transition probability matrices of a periodically inhomoge-
neous HMM

Description

Given a periodically varying variable such as time of day or day of year and the associated cycle
length, this function calculates the transition probability matrices by applying the inverse multino-
mial logistic link to linear predictors of the form

7]13 ﬁ(()lj) + Zk 1(ﬁ&3 Sln(27rkt) + ﬂQ’kﬂ) COS(Qﬂkt))

for the off-diagonal elements (i # j). This is relevant for modeling e.g. diurnal variation and
the flexibility can be increased by adding smaller frequencies (i.e. increasing K).

Usage

tpm_p(tod = 1:24, L = 24, beta, degree = 1, Z = NULL, byrow = FALSE)

Arguments

tod Equidistant (generalized) time of day sequence, denoting the time point in a
cycle. For time of day and e.g. half-hourly data, this could be 1, ..., Land L =
48,0r0.5,1,1.5,...,24 and L = 24.

L Length of one full cycle, on the scale of tod

beta Matrix of coefficients for the off-diagonal elements of the transition probabil-
ity matrix. Needs to be of dimension c(N*(N-1), 2*degree+1), where the first
column contains the intercepts.

degree Degree of the trigonometric link function. For each additional degree, one sine

and one cosine frequency are added.

20 tpm_p

Z Pre-calculated design matrix (excluding intercept column). Defaults to NULL
if trigonometric link should be calculated. From an efficiency perspective, Z
should be pre-calculated within the likelhood function, as the basis expansion
should not be redundantly calculated. This can be done by using trigBasisEx-
pansion().

Furthermore, Z can also be a pre-calculated design matrix from mgcv::cSplineDes()
(with p columns), when one wants to use cyclic P-splines, or it can be any other
basis expansion of the cyclic variable. In that case, the dimension of beta needs

to be c(N*(N-1), p+1) and a penalty term should be added at the end of the
negative log-likelihood.

byrow Logical that indicates if each transition probability matrix should be filled by
row. Defaults to FALSE, but should be set to TRUE if one wants to work with a
matrix of beta parameters returned by popular HMM packages like moveHMM,
momentuHMM, or hmmTMB.

Value

Array of transition probability matrices of dimension c(N,N,length(tod))

Examples

hourly data

tod = seq(1, 24, by = 1)

L =24

beta = matrix(c(-1, 2, -1, -2, 1, -1), nrow = 2, byrow = TRUE)
Gamma = tpm_p(tod, L, beta, degree = 1)

half-hourly data

integer tod sequence

tod = seq(1, 48, by = 1)

L =48

beta = matrix(c(-1, 2, -1, -2, 1, -1), nrow = 2, byrow = TRUE)
Gammal = tpm_p(tod, L, beta, degree = 1)

equivalent specification

tod = seq(0.5, 24, by = 0.5)

L =24

beta = matrix(c(-1, 2, -1, -2, 1, -1), nrow = 2, byrow = TRUE)
Gamma2 = tpm_p(tod, L, beta, degree = 1)

Gammal-Gamma2 # same result

cubic P-splines

set.seed(123)

nk = 8 # number of basis functions

tod = seq(@.5, 24, by = 0.5)

L =24

k =L x 0:nk / nk # equidistant knots

Z = mgev::cSplineDes(tod, k) ## cyclic spline design matrix

beta = matrix(c(-1, runif(8, -2, 2), # 9 parameters per off-diagonal element

tpm_phsmm 21

-2, runif(8, -2, 2)), nrow = 2, byrow = TRUE)
Gamma = tpm_p(tod, L, beta, Z = Z)

tpm_phsmm Build all transition probability matrices of an periodic-HSMM-
approximating HMM

Description

Hidden semi-Markov models (HSMMs) are a flexible extension of HMMs. For direct numerical
maximum likelhood estimation, HSMMs can be represented as HMMs on an enlarged state space
(of size M) and with structured transition probabilities. This function computes the transition ma-
trices of a periodically inhomogeneos HSMMs.

Usage

tpm_phsmm(omega, dm, eps = 1e-10)

Arguments
omega Embedded transition probability matrix. Either a matrix of dimension c(N,N)
for homogeneous conditional transition probabilities, or an array of dimension
c¢(N,N,L) for inhomogeneous conditional transition probabilities.
dm State dwell-time distributions arranged in a list of length(N). Each list element
needs to be a matrix of dimension c(L, N_i), where each row t is the (approxi-
mate) probability mass function of state i at time t.
eps Rounding value: If an entry of the transition probabily matrix is smaller, than it
is rounded to zero.
Value

An array of dimension c¢(N,N,L), containing the extended-state-space transition probability matrices
of the approximating HMM for each time point of the cycle.

Examples
N =3
L =24

time-varying mean dwell times
Lambda = exp(matrix(rnorm(L*N, 2, @.5), nrow = L))
sizes = c(25, 25, 25) # approximating chain with 75 states
state dwell-time distributions
dm = list()
for(i in 1:3){

dmi = matrix(nrow = L, ncol = sizes[i])

for(t in 1:L){

dmi[t,] = dpois(1:sizes[i]-1, Lambdal[t,i])
}

22

tpm_thinned

dm[[i]] = dmi
}

homogeneous conditional transition probabilites
diagonal elements are zero, rowsums are one
omega = matrix(c(0,0.5,0.5,0.2,0,0.8,0.7,0.3,0), nrow = N, byrow = TRUE)

calculating extended-state-space t.p.m.s
Gamma = tpm_phsmm(omega, dm)

inhomogeneous conditional transition probabilites

omega can be an array

omega = array(rep(omega,L), dim = c(N,N,L))

omegal1,,4] = c(@, 0.2, 0.8) # small change for inhomogeneity

calculating extended-state-space t.p.m.s
Gamma = tpm_phsmm(omega, dm)

tpm_thinned Compute the transition probability matrix of a thinned periodically
inhomogeneous Markov chain.

Description

If the transition probability matrix of an inhomogeneous Markov chain varies only periodically
(with period length L), it converges to a so-called periodically stationary distribution. This hap-
pens, because the thinned Markov chain, which has a full cycle as each time step, has homogeneous
transition probability matrix

I, =TOPED | LD forallt =1,..., L.

This function calculates the matrix above efficiently as a preliminery step to calculating the pe-
riodically stationary distribution.

Usage

tpm_thinned(Gamma, t)

Arguments
Gamma Array of transition probability matrices of dimension c(N,N,L).
t Integer index of the time point in the cycle, for which to calculate the thinned
transition probility matrix
Value

Thinned transition probabilty matrix of dimension c(N,N)

trigBasisExp 23

Examples

setting parameters for trigonometric link
beta = matrix(c(-1, -2, 2, -1, 2, -4), nrow = 2, byrow = TRUE)
building trigonometric design matrix
Z = cbind(1,trigBasisExp(1:24, 24, 1))
calculating all 24 linear predictor vectors
Eta = Z%*%t(beta)
building all 24 t.p.m.s
Gamma = array(dim = c(2,2,24))
for(t in 1:24){
Gammal,,t] = tpm(Etalt,])
3
calculating
tpm_thinned(Gamma, 4)

trigBasisExp Trigonometric Basis Expansion

Description

Given a periodically varying variable such as time of day or day of year and the associated cycle
length, this function performs a basis expansion to efficiently calculate a linear predictor of the form

0 = B+ 22, (Buesin(3) + B cos(374)).

This is relevant for modeling e.g. diurnal variation and the flexibility can be increased by adding
smaller frequencies (i.e. increasing K).

Usage

trigBasisExp(tod, L = 24, degree = 1)

Arguments
tod Time variable, describing the time point in a cycle. Could for example be time
of day (between 0 and 24) or day of year.
L Length of one cycle on the scale of the time variable. For time of day, this would
be 24.
degree Degree K of the trigonometric link above. Increasing K increases the flexibility.
Value

A design matrix (without intercept column of ones), ordered as sinl, cosl, sin2, cos2, ...

24 viterbi

Examples

hourly data
tod = rep(1:24, 10)
Z = trigBasisExp(tod, L = 24, degree = 2)

half-hourly data
tod = rep(1:48/2, 10) # in [0,24] > L = 24
Z1 = trigBasisExp(tod, L = 24, degree = 3)

tod = rep(1:48, 10) # in [1,48] -> L = 48
Z2 = trigBasisExp(tod, L = 48, degree = 3)

Z1 - 72
The latter two are equivalent specifications!

viterbi Viterbi algorithm for decoding states

Description

Viterbi algorithm for decoding states

Usage

viterbi(delta, Gamma, allprobs)

Arguments

delta Initial or stationary distribution of length N

Gamma Transition probability matrix of dimension c(N,N)

allprobs Matrix of state-dependent probabilities/ density values of dimension c(n, N)
Value

Vector of decoded states of length n

Examples

delta = c(0.5, 0.5)

Gamma = matrix(c(@.9, 0.1, 0.2, 0.8), nrow = 2, byrow = TRUE)
allprobs = matrix(runif(200), nrow = 100, ncol = 2)

states = viterbi(delta, Gamma, allprobs)

viterbi_g 25

viterbi_g Viterbi algorithm for decoding states of inhomogeneous HMMs

Description

Viterbi algorithm for decoding states of inhomogeneous HMMs

Usage

viterbi_g(delta, Gamma, allprobs)

Arguments
delta Initial distribution of length N
Gamma Array of transition probability matrices of dimension ¢c(N,N,n-1), as in a time
series of length n, there are only n-1 transitions. If you provide an array of di-
mension c(N,N,n), the first slice will be ignored.
allprobs Matrix of state-dependent probabilities/ density values of dimension c(n, N)
Value

Vector of decoded states of length n

Examples

delta = c(0.5, 0.5)
Gamma = array(dim = c(2,2,99))
for(t in 1:99){

gammas = rbeta(2, shapel = 0.4, shape2 = 1)

Gammal,,t] = matrix(c(1-gammas[1], gammas[1],

gammas[2], 1-gammas[2]), nrow = 2, byrow = TRUE)

3
allprobs = matrix(runif(200), nrow = 100, ncol = 2)
states = viterbi_g(delta, Gamma, allprobs)

viterbi_p Viterbi algorithm for decoding states of periodically inhomogeneous
HMMs

Description

Viterbi algorithm for decoding states of periodically inhomogeneous HMMs

Usage

viterbi_p(delta, Gamma, allprobs, tod)

26 viterbi_p
Arguments
delta Initial or periodically statioanary distribution of length N
Gamma Array of transition probability matrices of dimension c(N,N,L), where L is the
cycle length.
allprobs Matrix of state-dependent probabilities/ density values of dimension c(n, N)
tod Integer valued cyclic variable to index the transition probability matrix.
Value

Vector of decoded states of length n

Examples

delta = c(0.5, 0.5)
beta = matrix(c(-2, 1, -1,

-2, -1, 1), nrow = 2, byrow = TRUE)
Gamma = tpm_p(1:24, 24, beta)

tod = rep(1:24, 10)
n = length(tod)

allprobs = matrix(runif(2*n), nrow = n, ncol = 2)
states = viterbi_p(delta, Gamma, allprobs, tod)

Index

calc_trackInd, 2

forward, 3
forward_g, 5
forward_p, 6
forward_s, 8
forward_sp, 10

stateprobs, 11
stateprobs_g, 12
stateprobs_p, 13
stationary, 14
stationary_p, 15

tpm, 16
tpm_cont, 16
tpm_g, 17
tpm_hsmm, 18
tpm_p, 19
tpm_phsmm, 21
tpm_thinned, 22
trigBasisExp, 23

viterbi, 24
viterbi_g, 25
viterbi_p, 25

27

	calc_trackInd
	forward
	forward_g
	forward_p
	forward_s
	forward_sp
	stateprobs
	stateprobs_g
	stateprobs_p
	stationary
	stationary_p
	tpm
	tpm_cont
	tpm_g
	tpm_hsmm
	tpm_p
	tpm_phsmm
	tpm_thinned
	trigBasisExp
	viterbi
	viterbi_g
	viterbi_p
	Index

