The FARS
package provides a comprehensive framework for
modeling and forecasting economic scenarios based on the Multilevel
Dynamic Factor Model (MLDFM).
# Install FARS from CRAN
#install.packages("FARS")
# Install FARS from GitHub
#install.packages("devtools")
#devtools::install_github("GPEBellocca/FARS")
library(FARS)
##
## Attaching package: 'FARS'
## The following object is masked from 'package:stats':
##
## density
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library(readxl)
# Input dep variable
data_input_path <- system.file("extdata", "Data_IMF.xlsx", package = "FARS")
data_input <- read_excel(data_input_path, sheet = "data")
data_ts <- ts(data_input[, -1], frequency = 4)
data_diff <- diff(log(data_ts)) * 400
dep_variable <- data_diff[, 'United States', drop = FALSE]
dep_variable <- dep_variable[2:60]
# Input data
data_df_path <- system.file("extdata", "DataBase.xlsx", package = "FARS")
data_df <- openxlsx::read.xlsx(data_df_path, sheet = "fulldata", cols = 2:625)
data_df <- data_df[,1:519]
data <- as.matrix(data_df)
dimnames(data) <- NULL
# Generate dates
quarters <- as.yearqtr(seq(from = as.yearqtr("2005 Q2"), by = 0.25, length.out = 59))
dates <- as.Date(quarters)
This section demonstrates how to use the mldfm function to fit the Multilevel Dynamic Factor Model using the input data.
# MULTI-LEVEL DYNAMIC FACTOR MODEL
# 3 blocks
n_blocks <- 3 # 63 248 208
block_ind <- c(63,311,519)
r <- c(1,0,1,0,1,1,1)
mldfm_result <- mldfm(data,
r=r,
blocks = n_blocks,
block_ind = block_ind ,
tol = 1e-6,
max_iter = 1000,
method = 0)
## Summary of Multilevel Dynamic Factor Model (MLDFM)
## ===================================================
## Number of observations: 59
## Total number of factors: 5
## Number of nodes: 5
## Initialization method: CCA
## Number of iterations to converge: 46
##
## Factors per node:
## - 1-2-3 : 1 factor(s)
## - 1-3 : 1 factor(s)
## - 1 : 1 factor(s)
## - 2 : 1 factor(s)
## - 3 : 1 factor(s)
##
## Residual sum of squares (RSS): 15464.0395
## Average RSS per observation: 262.1024
# Subsampling
n_samples <- 100
sample_size <- 0.9
mldfm_subsampling_result <- mldfm_subsampling(data,
r=r,
blocks = n_blocks,
block_ind = block_ind ,
tol = 1e-6,
max_iter = 1000,
method = 0,
n_samples = n_samples,
sample_size = sample_size,
seed = 123)
## Generating 100 subsamples...
##
## Subsampling completed.
## Number of subsamples generated: 100
# Create stressed scenario
scenario <- create_scenario(model = mldfm_result,
subsample = mldfm_subsampling_result,
data = data,
block_ind = block_ind,
alpha=0.95)
## Constructing scenario using 100 subsamples and alpha = 0.95...
## Scenario construction completed.
# Compute Quantiles
fars_result <- compute_fars(dep_variable,
mldfm_result$Factors,
scenario = scenario,
h = 1,
edge = 0.05,
min = TRUE)
## Running Factor-Augmented Quantile Regressions (FARS)...
## Factor-Augmented Quantile Regressions (FARS)
## ===========================================
## Forecasted quantiles:
## - Time periods: 59
## - Quantile levels: 0.05 0.25 0.50 0.75 0.95
##
## Stressed scenario quantiles: YES
# Density
density <- nl_density(fars_result$Quantiles,
levels = fars_result$Levels,
est_points = 512,
random_samples = 100000,
seed = 123)
## Estimating skew-t densities from forecasted quantiles...
## FARS Density
## ====================
## Time observations : 59
## Estimation points : 512
## Random samples : 100000
## Range of x values : [ -30 , 10 ]
# Scenario Density
scenario_density <- nl_density(fars_result$Scenario_Quantiles,
levels = fars_result$Levels,
est_points = 512,
random_samples = 100000,
seed = 123)
## Estimating skew-t densities from forecasted quantiles...
## FARS Density
## ====================
## Time observations : 59
## Estimation points : 512
## Random samples : 100000
## Range of x values : [ -30 , 10 ]
# Final GaR and GiS plot
library(ggplot2)
time <- dates[-1]
MLGaRGiS <- data.frame(
time = time,
dep_variable = as.vector(dep_variable[2:59]),
GaR.05 = as.vector(GaR0.05[1:58]),
GaR.95 = as.vector(GaR0.95[1:58]),
GiS.05 = as.vector(GiS0.05[1:58]),
GiS.25 = as.vector(GiS0.25[1:58]),
GiS.75 = as.vector(GiS0.75[1:58]),
GiS.95 = as.vector(GiS0.95[1:58])
)
p <- ggplot(MLGaRGiS,aes(x=time,y=dep_variable)) +
geom_line() + theme_bw()+
geom_ribbon(aes(ymin=GiS.05,ymax=GiS.95), alpha=0.1, fill="red") +
geom_ribbon(aes(ymin=GiS.25,ymax=GiS.75), alpha=0.1, fill="grey10") +
geom_line(aes(x=time, GaR.05), linewidth=0.1, colour="black", linetype="dashed") +
geom_line(aes(x=time, GaR.95), linewidth=0.1, colour="black", linetype="dashed") +
scale_y_continuous("Growth") +
scale_x_date(date_labels = "%Y", date_breaks = "2 years") +
theme(axis.text.x = element_text(angle = 90))
fig <- plotly::ggplotly(p)
fig