DynTxRegime: Methods for Estimating Optimal Dynamic Treatment Regimes
Methods to estimate dynamic treatment regimes using Interactive
Q-Learning, Q-Learning, weighted learning, and value-search methods based on
Augmented Inverse Probability Weighted Estimators and Inverse Probability
Weighted Estimators. Dynamic Treatment Regimes: Statistical Methods for
Precision Medicine, Tsiatis, A. A., Davidian, M. D., Holloway, S. T., and Laber, E. B.,
Chapman & Hall/CRC Press, 2020, ISBN:978-1-4987-6977-8.
Version: |
4.15 |
Depends: |
methods, modelObj, stats |
Imports: |
kernlab, rgenoud, dfoptim |
Suggests: |
MASS, rpart, nnet |
Published: |
2023-11-24 |
DOI: |
10.32614/CRAN.package.DynTxRegime |
Author: |
S. T. Holloway, E. B. Laber, K. A. Linn, B. Zhang, M. Davidian, and A. A. Tsiatis |
Maintainer: |
Shannon T. Holloway <shannon.t.holloway at gmail.com> |
License: |
GPL-2 |
NeedsCompilation: |
no |
Materials: |
NEWS |
In views: |
CausalInference |
CRAN checks: |
DynTxRegime results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=DynTxRegime
to link to this page.