library(ggplot2)
library(ComplexUpset)
movies = as.data.frame(ggplot2movies::movies)
head(movies, 3)
title | year | length | budget | rating | votes | r1 | r2 | r3 | r4 | ⋯ | r9 | r10 | mpaa | Action | Animation | Comedy | Drama | Documentary | Romance | Short | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<chr> | <int> | <int> | <int> | <dbl> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | ⋯ | <dbl> | <dbl> | <chr> | <int> | <int> | <int> | <int> | <int> | <int> | <int> | |
1 | $ | 1971 | 121 | NA | 6.4 | 348 | 4.5 | 4.5 | 4.5 | 4.5 | ⋯ | 4.5 | 4.5 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | |
2 | $1000 a Touchdown | 1939 | 71 | NA | 6.0 | 20 | 0.0 | 14.5 | 4.5 | 24.5 | ⋯ | 4.5 | 14.5 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |
3 | $21 a Day Once a Month | 1941 | 7 | NA | 8.2 | 5 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 24.5 | 24.5 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
genres = colnames(movies)[18:24]
genres
Convert the genre indicator columns to use boolean values:
movies[genres] = movies[genres] == 1
t(head(movies[genres], 3))
1 | 2 | 3 | |
---|---|---|---|
Action | FALSE | FALSE | FALSE |
Animation | FALSE | FALSE | TRUE |
Comedy | TRUE | TRUE | FALSE |
Drama | TRUE | FALSE | FALSE |
Documentary | FALSE | FALSE | FALSE |
Romance | FALSE | FALSE | FALSE |
Short | FALSE | FALSE | TRUE |
To keep the examples fast to compile we will operate on a subset of the movies with complete data:
movies[movies$mpaa == '', 'mpaa'] = NA
movies = na.omit(movies)
Utility for changing output parameters in Jupyter notebooks (IRKernel kernel), not relevant if using RStudio or scripting R from terminal:
set_size = function(w, h, factor=1.5) {
s = 1 * factor
options(
repr.plot.width=w * s,
repr.plot.height=h * s,
repr.plot.res=100 / factor,
jupyter.plot_mimetypes='image/png',
jupyter.plot_scale=1
)
}
There are two required arguments:
Additional arguments can be provided, such as name
(specifies xlab()
for intersection matrix) or width_ratio
(specifies how much space should be occupied by the set size panel). Other such arguments are discussed at length later in this document.
set_size(8, 3)
upset(movies, genres, name='genre', width_ratio=0.1)
We will focus on the intersections with at least ten members (min_size=10)
and on a few variables which are significantly different between the intersections (see 2. Running statistical tests).
When using min_size
, the empty groups will be skipped by default (e.g. Short movies would have no overlap with size of 10). To keep all groups pass keep_empty_groups=TRUE
:
set_size(8, 3)
(
upset(movies, genres, name='genre', width_ratio=0.1, min_size=10, wrap=TRUE, set_sizes=FALSE)
+ ggtitle('Without empty groups (Short dropped)')
+ # adding plots is possible thanks to patchwork
upset(movies, genres, name='genre', width_ratio=0.1, min_size=10, keep_empty_groups=TRUE, wrap=TRUE, set_sizes=FALSE)
+ ggtitle('With empty groups')
)
When empty columns are detected a warning will be issued. The silence it, pass warn_when_dropping_groups=FALSE
. Complimentary max_size
can be used in tandem.
You can also select intersections by degree (min_degree
and max_degree
):
set_size(8, 3)
upset(
movies, genres, width_ratio=0.1,
min_degree=3,
)
Or request a constant number of intersections with n_intersections
:
set_size(8, 3)
upset(
movies, genres, width_ratio=0.1,
n_intersections=15
)
There are four modes defining the regions of interest on corresponding Venn diagram:
exclusive_intersection
region: intersection elements that belong to the sets defining the intersection but not to any other set (alias: distinct), defaultinclusive_intersection
region: intersection elements that belong to the sets defining the intersection including overlaps with other sets (alias: intersect)exclusive_union
region: union elements that belong to the sets defining the union, excluding those overlapping with any other setinclusive_union
region: union elements that belong to the sets defining the union, including those overlapping with any other set (alias: union)Example: given three sets \(A\), \(B\) and \(C\) with number of elements defined by the Venn diagram below
abc_data = create_upset_abc_example()
abc_venn = (
ggplot(arrange_venn(abc_data))
+ coord_fixed()
+ theme_void()
+ scale_color_venn_mix(abc_data)
)
(
abc_venn
+ geom_venn_region(data=abc_data, alpha=0.05)
+ geom_point(aes(x=x, y=y, color=region), size=1)
+ geom_venn_circle(abc_data)
+ geom_venn_label_set(abc_data, aes(label=region))
+ geom_venn_label_region(
abc_data, aes(label=size),
outwards_adjust=1.75,
position=position_nudge(y=0.2)
)
+ scale_fill_venn_mix(abc_data, guide='none')
)
For the above sets \(A\) and \(B\) the region selection modes correspond to region of Venn diagram defined as follows:
and have the total number of elements as in the table below:
members mode | exclusive int. | inclusive int. | exclusive union | inclusive union |
---|---|---|---|---|
(A, B) | 10 | 11 | 110 | 123 |
(A, C) == (B, C) | 6 | 7 | 256 | 273 |
(A) == (B) | 50 | 67 | 50 | 67 |
(C) | 200 | 213 | 200 | 213 |
(A, B, C) | 1 | 1 | 323 | 323 |
() | 2 | 2 | 2 | 2 |
set_size(6, 6.5)
simple_venn = (
abc_venn
+ geom_venn_region(data=abc_data, alpha=0.3)
+ geom_point(aes(x=x, y=y), size=0.75, alpha=0.3)
+ geom_venn_circle(abc_data)
+ geom_venn_label_set(abc_data, aes(label=region), outwards_adjust=2.55)
)
highlight = function(regions) scale_fill_venn_mix(
abc_data, guide='none', highlight=regions, inactive_color='NA'
)
(
(
simple_venn + highlight(c('A-B')) + labs(title='Exclusive intersection of A and B')
| simple_venn + highlight(c('A-B', 'A-B-C')) + labs(title='Inclusive intersection of A and B')
) /
(
simple_venn + highlight(c('A-B', 'A', 'B')) + labs(title='Exclusive union of A and B')
| simple_venn + highlight(c('A-B', 'A-B-C', 'A', 'B', 'A-C', 'B-C')) + labs(title='Inclusive union of A and B')
)
)
When customizing the intersection_size()
it is important to adjust the mode accordingly, as it defaults to exclusive_intersection
and cannot be automatically deduced when user customizations are being applied:
set_size(8, 4.5)
abc_upset = function(mode) upset(
abc_data, c('A', 'B', 'C'), mode=mode, set_sizes=FALSE,
encode_sets=FALSE,
queries=list(upset_query(intersect=c('A', 'B'), color='orange')),
base_annotations=list(
'Size'=(
intersection_size(
mode=mode,
mapping=aes(fill=exclusive_intersection),
size=0,
text=list(check_overlap=TRUE)
) + scale_fill_venn_mix(
data=abc_data,
guide='none',
colors=c('A'='red', 'B'='blue', 'C'='green3')
)
)
)
)
(
(abc_upset('exclusive_intersection') | abc_upset('inclusive_intersection'))
/
(abc_upset('exclusive_union') | abc_upset('inclusive_union'))
)
To display all possible intersections (rather than only the observed ones) use intersections='all'
.
Note 1: it is usually desired to filter all the possible intersections down with max_degree
and/or min_degree
to avoid generating all combinations as those can easily use up all available RAM memory when dealing with multiple sets (e.g. all human genes) due to sheer number of possible combinations
Note 2: using intersections='all'
is only reasonable for mode different from the default exclusive intersection.
set_size(8, 3)
upset(
movies, genres,
width_ratio=0.1,
min_size=10,
mode='inclusive_union',
base_annotations=list('Size'=(intersection_size(counts=FALSE, mode='inclusive_union'))),
intersections='all',
max_degree=3
)
We can add multiple annotation components (also called panels) using one of the three methods demonstrated below:
set_size(8, 8)
set.seed(0) # keep the same jitter for identical plots
upset(
movies,
genres,
annotations = list(
# 1st method - passing list:
'Length'=list(
aes=aes(x=intersection, y=length),
# provide a list if you wish to add several geoms
geom=geom_boxplot(na.rm=TRUE)
),
# 2nd method - using ggplot
'Rating'=(
# note that aes(x=intersection) is supplied by default and can be skipped
ggplot(mapping=aes(y=rating))
# checkout ggbeeswarm::geom_quasirandom for better results!
+ geom_jitter(aes(color=log10(votes)), na.rm=TRUE)
+ geom_violin(alpha=0.5, na.rm=TRUE)
),
# 3rd method - using `upset_annotate` shorthand
'Budget'=upset_annotate('budget', geom_boxplot(na.rm=TRUE))
),
min_size=10,
width_ratio=0.1
)
You can also use barplots to demonstrate differences in proportions of categorical variables:
set_size(8, 5)
upset(
movies,
genres,
annotations = list(
'MPAA Rating'=(
ggplot(mapping=aes(fill=mpaa))
+ geom_bar(stat='count', position='fill')
+ scale_y_continuous(labels=scales::percent_format())
+ scale_fill_manual(values=c(
'R'='#E41A1C', 'PG'='#377EB8',
'PG-13'='#4DAF4A', 'NC-17'='#FF7F00'
))
+ ylab('MPAA Rating')
)
),
width_ratio=0.1
)
Use upset_mode
to change the mode of the annotation:
set_size(8, 8)
set.seed(0)
upset(
movies,
genres,
mode='inclusive_intersection',
annotations = list(
# if not specified, the mode will follow the mode set in `upset()` call (here: `inclusive_intersection`)
'Length (inclusive intersection)'=(
ggplot(mapping=aes(y=length))
+ geom_jitter(alpha=0.2, na.rm=TRUE)
),
'Length (exclusive intersection)'=(
ggplot(mapping=aes(y=length))
+ geom_jitter(alpha=0.2, na.rm=TRUE)
+ upset_mode('exclusive_intersection')
),
'Length (inclusive union)'=(
ggplot(mapping=aes(y=length))
+ geom_jitter(alpha=0.2, na.rm=TRUE)
+ upset_mode('inclusive_union')
)
),
min_size=10,
width_ratio=0.1
)
upset_test(movies, genres)
[1] "year, length, budget, rating, votes, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, mpaa differ significantly between intersections"
variable | p.value | statistic | test | fdr | |
---|---|---|---|---|---|
<chr> | <dbl> | <dbl> | <chr> | <dbl> | |
length | length | 6.511525e-71 | 422.88444 | Kruskal-Wallis rank sum test | 1.106959e-69 |
rating | rating | 1.209027e-46 | 301.72764 | Kruskal-Wallis rank sum test | 1.027673e-45 |
budget | budget | 3.899860e-44 | 288.97476 | Kruskal-Wallis rank sum test | 2.209921e-43 |
r8 | r8 | 9.900004e-39 | 261.28815 | Kruskal-Wallis rank sum test | 4.207502e-38 |
mpaa | mpaa | 3.732200e-35 | 242.77939 | Kruskal-Wallis rank sum test | 1.268948e-34 |
r9 | r9 | 1.433256e-30 | 218.78160 | Kruskal-Wallis rank sum test | 4.060891e-30 |
r1 | r1 | 2.211600e-23 | 180.32740 | Kruskal-Wallis rank sum test | 5.371029e-23 |
r4 | r4 | 1.008119e-18 | 154.62772 | Kruskal-Wallis rank sum test | 2.142254e-18 |
r3 | r3 | 2.568227e-17 | 146.70217 | Kruskal-Wallis rank sum test | 4.851095e-17 |
r5 | r5 | 9.823827e-16 | 137.66310 | Kruskal-Wallis rank sum test | 1.670051e-15 |
r7 | r7 | 9.201549e-14 | 126.19243 | Kruskal-Wallis rank sum test | 1.422058e-13 |
r2 | r2 | 2.159955e-13 | 124.00604 | Kruskal-Wallis rank sum test | 3.059936e-13 |
r10 | r10 | 1.283470e-11 | 113.38113 | Kruskal-Wallis rank sum test | 1.678384e-11 |
votes | votes | 2.209085e-10 | 105.79588 | Kruskal-Wallis rank sum test | 2.682460e-10 |
r6 | r6 | 3.779129e-05 | 70.80971 | Kruskal-Wallis rank sum test | 4.283013e-05 |
year | year | 2.745818e-02 | 46.55972 | Kruskal-Wallis rank sum test | 2.917431e-02 |
title | title | 2.600003e-01 | 34.53375 | Kruskal-Wallis rank sum test | 2.600003e-01 |
Kruskal-Wallis rank sum test
is not always the best choice.
You can either change the test for:
test=your.test
), ortests=list(variable=some.test)
argument)The tests are called with (formula=variable ~ intersection, data)
signature, such as accepted by kruskal.test
. The result is expected to be a list with following members:
p.value
statistic
method
It is easy to adapt tests which do not obey this signature/output convention; for example the Chi-squared test and anova can be wrapped with two-line functions as follows:
chisq_from_formula = function(formula, data) {
chisq.test(
ftable(formula, data)
)
}
anova_single = function(formula, data) {
result = summary(aov(formula, data))
list(
p.value=result[[1]][['Pr(>F)']][[1]],
method='Analysis of variance Pr(>F)',
statistic=result[[1]][['F value']][[1]]
)
}
custom_tests = list(
mpaa=chisq_from_formula,
budget=anova_single
)
head(upset_test(movies, genres, tests=custom_tests))
Warning message in chisq.test(ftable(formula, data)):
“Chi-squared approximation may be incorrect”
[1] "year, length, budget, rating, votes, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, mpaa differ significantly between intersections"
variable | p.value | statistic | test | fdr | |
---|---|---|---|---|---|
<chr> | <dbl> | <dbl> | <chr> | <dbl> | |
length | length | 6.511525e-71 | 422.88444 | Kruskal-Wallis rank sum test | 1.106959e-69 |
budget | budget | 1.348209e-60 | 13.66395 | Analysis of variance Pr(>F) | 1.145977e-59 |
rating | rating | 1.209027e-46 | 301.72764 | Kruskal-Wallis rank sum test | 6.851151e-46 |
mpaa | mpaa | 9.799097e-42 | 406.33814 | Pearson’s Chi-squared test | 4.164616e-41 |
r8 | r8 | 9.900004e-39 | 261.28815 | Kruskal-Wallis rank sum test | 3.366002e-38 |
r9 | r9 | 1.433256e-30 | 218.78160 | Kruskal-Wallis rank sum test | 4.060891e-30 |
Many tests will require at least two observations in each group. You can skip intersections with less than two members with min_size=2
.
bartlett_results = suppressWarnings(upset_test(movies, genres, test=bartlett.test, min_size=2))
tail(bartlett_results)
[1] "NA, year, length, budget, rating, votes, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, NA differ significantly between intersections"
variable | p.value | statistic | test | fdr | |
---|---|---|---|---|---|
<chr> | <dbl> | <dbl> | <chr> | <dbl> | |
year | year | 1.041955e-67 | 386.53699 | Bartlett test of homogeneity of variances | 1.302444e-67 |
length | length | 3.982729e-67 | 383.70148 | Bartlett test of homogeneity of variances | 4.595457e-67 |
budget | budget | 7.637563e-50 | 298.89911 | Bartlett test of homogeneity of variances | 8.183103e-50 |
rating | rating | 3.980194e-06 | 66.63277 | Bartlett test of homogeneity of variances | 3.980194e-06 |
title | title | NA | NA | Bartlett test of homogeneity of variances | NA |
mpaa | mpaa | NA | NA | Bartlett test of homogeneity of variances | NA |
You may want to exclude variables which are:
In the movies example, the title variable is not a reasonable thing to compare. We can ignore it using:
# note: title no longer present
rownames(upset_test(movies, genres, ignore=c('title')))
[1] "year, length, budget, rating, votes, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, mpaa differ significantly between intersections"
The counts over the bars can be disabled:
set_size(8, 3)
upset(
movies,
genres,
base_annotations=list(
'Intersection size'=intersection_size(counts=FALSE)
),
min_size=10,
width_ratio=0.1
)
The colors can be changed, and additional annotations added:
set_size(8, 3)
upset(
movies,
genres,
base_annotations=list(
'Intersection size'=intersection_size(
text_colors=c(
on_background='brown', on_bar='yellow'
)
)
+ annotate(
geom='text', x=Inf, y=Inf,
label=paste('Total:', nrow(movies)),
vjust=1, hjust=1
)
+ ylab('Intersection size')
),
min_size=10,
width_ratio=0.1
)
Any parameter supported by geom_text
can be passed in text
list:
set_size(8, 3)
upset(
movies,
genres,
base_annotations=list(
'Intersection size'=intersection_size(
text=list(
vjust=-0.1,
hjust=-0.1,
angle=45
)
)
),
min_size=10,
width_ratio=0.1
)
set_size(8, 3)
upset(
movies,
genres,
base_annotations=list(
'Intersection size'=intersection_size(
counts=FALSE,
mapping=aes(fill=mpaa)
)
),
width_ratio=0.1
)
set_size(8, 3)
upset(
movies,
genres,
base_annotations=list(
'Intersection size'=intersection_size(
counts=FALSE,
mapping=aes(fill=mpaa)
) + scale_fill_manual(values=c(
'R'='#E41A1C', 'PG'='#377EB8',
'PG-13'='#4DAF4A', 'NC-17'='#FF7F00'
))
),
width_ratio=0.1
)
set_size(8, 3)
upset(
movies,
genres,
base_annotations=list(
'Intersection size'=intersection_size(
counts=FALSE,
mapping=aes(fill='bars_color')
) + scale_fill_manual(values=c('bars_color'='blue'), guide='none')
),
width_ratio=0.1
)
Setting height_ratio=1
will cause the intersection matrix and the intersection size to have an equal height:
set_size(8, 3)
upset(
movies,
genres,
height_ratio=1,
width_ratio=0.1
)
You can always disable the intersection size altogether:
set_size(8, 1.6)
upset(
movies,
genres,
base_annotations=list(),
min_size=10,
width_ratio=0.1
)
It can be useful to visualise which intersections are larger than expected by chance (assuming equal probability of belonging to multiple sets); this can be achieved using the intersection size/union size ratio.
set_size(8, 6)
upset(
movies, genres, name='genre', width_ratio=0.1, min_size=10,
base_annotations=list(
'Intersection size'=intersection_size(),
'Intersection ratio'=intersection_ratio()
)
)
Warning message:
“Removed 62 rows containing missing values (position_stack).”
The plot above tells us that the analysed documentary movies are almost always (in over 60% of cases) documentaries (and nothing more!), while comedies more often include elements of other genres (e.g. drama, romance) rather than being comedies alone (like stand-up shows).
text_mapping
can be used to manipulate the aesthetics of the labels. Using the intersection_size
and union_size
one can calculate percentage of items in the intersection (relative to the potential size of the intersection). A upset_text_percentage(digits=0, sep='')
shorthand is provided for convenience:
set_size(8, 6)
upset(
movies, genres, name='genre', width_ratio=0.1, min_size=10,
base_annotations=list(
# with manual aes specification:
'Intersection size'=intersection_size(text_mapping=aes(label=paste0(round(
!!get_size_mode('exclusive_intersection')/!!get_size_mode('inclusive_union') * 100
), '%'))),
# using shorthand:
'Intersection ratio'=intersection_ratio(text_mapping=aes(label=!!upset_text_percentage()))
)
)
Warning message:
“Removed 62 rows containing missing values (position_stack).”
Also see 10. Display percentages.
set_size(8, 3)
upset(
movies, genres, width_ratio=0.1,
base_annotations = list(
'Intersection size'=(
intersection_size()
+ ylim(c(0, 700))
+ theme(plot.background=element_rect(fill='#E5D3B3'))
+ ylab('# observations in intersection')
)
),
min_size=10
)
When using thresholding or selection criteria (such as min_size
or n_intersections
) the change in number of elements in each set size is not reflected in the set sizes plot by default. You can change this by providing filter_intersections=TRUE
to upset_set_size
.
set_size(8, 2.5)
upset(
movies, genres,
min_size=200,
set_sizes=upset_set_size()
) | upset(
movies, genres,
min_size=200,
set_sizes=upset_set_size(filter_intersections=TRUE)
)
To rotate the labels modify corresponding theme:
set_size(4, 3)
upset(
movies, genres,
min_size=100,
width_ratio=0.15,
set_sizes=(
upset_set_size()
+ theme(axis.text.x=element_text(angle=90))
)
)
To display the ticks:
set_size(4, 3)
upset(
movies, genres, width_ratio=0.3, min_size=100, wrap=TRUE,
set_sizes=(
upset_set_size()
+ theme(axis.ticks.x=element_line())
)
)
Arguments of the geom_bar
can be adjusted in upset_set_size
; it can use a different geom, or be replaced with a custom list of layers altogether:
set_size(8, 3)
(
upset(
movies, genres, width_ratio=0.5, max_size=100, min_size=15, wrap=TRUE,
set_sizes=upset_set_size(
geom=geom_bar(width=0.4)
)
)
+
upset(
movies, genres, width_ratio=0.5, max_size=100, min_size=15, wrap=TRUE,
set_sizes=upset_set_size(
geom=geom_point(
stat='count',
color='blue'
)
)
)
+
upset(
movies, genres, width_ratio=0.5, max_size=100, min_size=15, wrap=TRUE,
set_sizes=(
upset_set_size(
geom=geom_point(stat='count'),
mapping=aes(y=..count../max(..count..)),
)
+ ylab('Size relative to the largest')
)
)
)
In order to use a log scale we need to pass additional scale to in layers
argument. However, as the bars are on flipped coordinates, we need a reversed log transformation. Appropriate function, reverse_log_trans()
is provided:
set_size(5, 3)
upset(
movies, genres,
width_ratio=0.1,
min_size=10,
set_sizes=(
upset_set_size()
+ theme(axis.text.x=element_text(angle=90))
+ scale_y_continuous(trans=reverse_log_trans())
),
queries=list(upset_query(set='Drama', fill='blue'))
)
We can also modify the labels to display the logged values:
set_size(5, 3)
upset(
movies, genres,
min_size=10,
width_ratio=0.2,
set_sizes=upset_set_size()
+ scale_y_continuous(
trans=reverse_log_trans(),
labels=log10
)
+ ylab('log10(set size)')
)
To display the count add geom_text()
:
set_size(5, 3)
upset(
movies, genres,
min_size=10,
width_ratio=0.3,
encode_sets=FALSE, # for annotate() to select the set by name disable encoding
set_sizes=(
upset_set_size()
+ geom_text(aes(label=..count..), hjust=1.1, stat='count')
# you can also add annotations on top of bars:
+ annotate(geom='text', label='@', x='Drama', y=850, color='white', size=3)
+ expand_limits(y=1100)
+ theme(axis.text.x=element_text(angle=90))
)
)
set_size(5, 3)
upset(
movies, genres,
min_size=10,
width_ratio=0.3,
set_sizes=(
upset_set_size(
geom=geom_bar(
aes(fill=mpaa, x=group),
width=0.8
),
position='right'
)
),
# moves legends over the set sizes
guides='over'
)
set_size(5, 3)
upset(
movies, genres,
min_size=10,
set_sizes=FALSE
)
Change the colors:
set_size(6, 4)
upset(
movies,
genres,
min_size=10,
width_ratio=0.2,
stripes=c('cornsilk1', 'deepskyblue1')
)
You can use multiple colors:
set_size(6, 4)
upset(
movies,
genres,
min_size=10,
width_ratio=0.2,
stripes=c('cornsilk1', 'deepskyblue1', 'grey90')
)
Or, set the color to white to effectively disable the stripes:
set_size(6, 4)
upset(
movies,
genres,
min_size=10,
width_ratio=0.2,
stripes='white'
)
Advanced customization using upset_stripes()
:
set_size(6, 4)
upset(
movies,
genres,
min_size=10,
width_ratio=0.2,
stripes=upset_stripes(
geom=geom_segment(size=5),
colors=c('cornsilk1', 'deepskyblue1', 'grey90')
)
)
Mapping stripes attributes to data using upset_stripes()
:
set_size(6, 4)
genre_metadata = data.frame(
set=c('Action', 'Animation', 'Comedy', 'Drama', 'Documentary', 'Romance', 'Short'),
shown_in_our_cinema=c('no', 'no', 'on weekends', 'yes', 'yes', 'on weekends', 'no')
)
upset(
movies,
genres,
min_size=10,
width_ratio=0.2,
stripes=upset_stripes(
mapping=aes(color=shown_in_our_cinema),
colors=c(
'yes'='green',
'no'='red',
'on weekends'='orange'
),
data=genre_metadata
)
)
Adding title with ggtitle
with add it to the intersection matrix:
set_size(6, 4)
upset(movies, genres, min_size=10) + ggtitle('Intersection matrix title')
In order to add a title for the entire plot, you need to wrap the plot:
set_size(6, 4)
upset(movies, genres, min_size=10, wrap=TRUE) + ggtitle('The overlap between genres')
You need to set the plot background to transparent and adjust colors of stripes to your liking:
set_size(6, 4)
(
upset(
movies, genres, name='genre', width_ratio=0.1, min_size=10,
stripes=c(alpha('grey90', 0.45), alpha('white', 0.3))
)
& theme(plot.background=element_rect(fill='transparent', color=NA))
)
Use ggsave('upset.png', bg="transparent")
when exporting to PNG.
Use intersection_matrix()
to modify the matrix parameters:
set_size(8, 4)
upset(
movies, genres, name='genre', min_size=10,
encode_sets=FALSE, # for annotate() to select the set by name disable encoding
matrix=(
intersection_matrix(
geom=geom_point(
shape='square',
size=3.5
),
segment=geom_segment(
linetype='dotted'
),
outline_color=list(
active='darkorange3',
inactive='grey70'
)
)
+ scale_color_manual(
values=c('TRUE'='orange', 'FALSE'='grey'),
labels=c('TRUE'='yes', 'FALSE'='no'),
breaks=c('TRUE', 'FALSE'),
name='Is intersection member?'
)
+ scale_y_discrete(
position='right'
)
+ annotate(
geom='text',
label='Look here →',
x='Comedy-Drama',
y='Drama',
size=5,
hjust=1
)
),
queries=list(
upset_query(
intersect=c('Drama', 'Comedy'),
color='red',
fill='red',
only_components=c('intersections_matrix', 'Intersection size')
)
)
)
The themes for specific components are defined in upset_themes
list, which contains themes for:
names(upset_themes)
You can substitute this list for your own using themes
argument. While you can specify a theme for every component, if you omit one or more components those will be taken from the element named default
.
set_size(8, 4)
upset(movies, genres, min_size=10, themes=list(default=theme()))
You can also add themes for your custom panels/annotations:
set_size(8, 8)
upset(
movies,
genres,
annotations = list(
'Length'=list(
aes=aes(x=intersection, y=length),
geom=geom_boxplot(na.rm=TRUE)
),
'Rating'=list(
aes=aes(x=intersection, y=rating),
geom=list(
geom_jitter(aes(color=log10(votes)), na.rm=TRUE),
geom_violin(alpha=0.5, na.rm=TRUE)
)
)
),
min_size=10,
width_ratio=0.1,
themes=modifyList(
upset_themes,
list(Rating=theme_void(), Length=theme())
)
)
Modify all the default themes as once with upset_default_themes()
:
set_size(8, 4)
upset(
movies, genres, min_size=10, width_ratio=0.1,
themes=upset_default_themes(text=element_text(color='red'))
)
To modify only a subset of default themes use upset_modify_themes()
:
set_size(8, 4)
upset(
movies, genres,
base_annotations=list('Intersection size'=intersection_size(counts=FALSE)),
min_size=100,
width_ratio=0.1,
themes=upset_modify_themes(
list(
'intersections_matrix'=theme(text=element_text(size=20)),
'overall_sizes'=theme(axis.text.x=element_text(angle=90))
)
)
)
Pass a list of lists generated with upset_query()
utility to the optional queries
argument to selectively modify aesthetics of specific intersections or sets.
Use one of the arguments: set
or intersect
(not both) to specify what to highlight: - set
will highlight the bar of the set size, - intersect
will highlight an intersection on all components (by default), or on components chosen with only_components
- all other parameters will be used to modify the geoms
set_size(8, 6)
upset(
movies, genres, name='genre', width_ratio=0.1, min_size=10,
annotations = list(
'Length'=list(
aes=aes(x=intersection, y=length),
geom=geom_boxplot(na.rm=TRUE)
)
),
queries=list(
upset_query(
intersect=c('Drama', 'Comedy'),
color='red',
fill='red',
only_components=c('intersections_matrix', 'Intersection size')
),
upset_query(
set='Drama',
fill='blue'
),
upset_query(
intersect=c('Romance', 'Comedy'),
fill='yellow',
only_components=c('Length')
)
)
)
By degree:
set_size(8, 3)
upset(movies, genres, width_ratio=0.1, sort_intersections_by='degree')
By ratio:
set_size(8, 4)
upset(
movies, genres, name='genre', width_ratio=0.1, min_size=10,
sort_intersections_by='ratio',
base_annotations=list(
'Intersection size'=intersection_size(text_mapping=aes(label=!!upset_text_percentage())),
'Intersection ratio'=intersection_ratio(text_mapping=aes(label=!!upset_text_percentage()))
)
)
Warning message:
“Removed 62 rows containing missing values (position_stack).”
The other way around:
set_size(8, 3)
upset(movies, genres, width_ratio=0.1, sort_intersections='ascending')
Without any sorting:
set_size(8, 3)
upset(movies, genres, width_ratio=0.1, sort_intersections=FALSE)
First by degree then by cardinality:
set_size(8, 3)
upset(movies, genres, width_ratio=0.1, sort_intersections_by=c('degree', 'cardinality'))
User-specified order:
set_size(6, 3)
upset(
movies,
genres,
width_ratio=0.1,
sort_intersections=FALSE,
intersections=list(
'Comedy',
'Drama',
c('Comedy', 'Romance'),
c('Romance', 'Drama'),
'Outside of known sets',
'Action'
)
)
Ascending:
set_size(8, 3)
upset(movies, genres, width_ratio=0.1, sort_sets='ascending')
Without sorting - preserving the order as in genres:
genres
set_size(8, 3)
upset(movies, genres, width_ratio=0.1, sort_sets=FALSE)
Use group_by='sets'
to group intersections by set. If needed, the intersections will be repeated so that they appear in each set group. Use upset_query()
with group
argument to color the intersection matrix accordingly.
set_size(8, 3)
upset(
movies, c("Action", "Comedy", "Drama"),
width_ratio=0.2,
group_by='sets',
queries=list(
upset_query(
intersect=c('Drama', 'Comedy'),
color='red',
fill='red',
only_components=c('intersections_matrix', 'Intersection size')
),
upset_query(group='Drama', color='blue'),
upset_query(group='Comedy', color='orange'),
upset_query(group='Action', color='purple'),
upset_query(set='Drama', fill='blue'),
upset_query(set='Comedy', fill='orange'),
upset_query(set='Action', fill='purple')
)
)
Use aes_percentage()
utility preceded with !!
syntax to easily display percentages. In the examples below only percentages for the movies with R rating are shown to avoid visual clutter.
rating_scale = scale_fill_manual(values=c(
'R'='#E41A1C', 'PG'='#377EB8',
'PG-13'='#4DAF4A', 'NC-17'='#FF7F00'
))
show_hide_scale = scale_color_manual(values=c('show'='black', 'hide'='transparent'), guide='none')
set_size(8, 5)
upset(
movies, genres, name='genre', width_ratio=0.1, min_size=100,
annotations =list(
'MPAA Rating'=list(
aes=aes(x=intersection, fill=mpaa),
geom=list(
geom_bar(stat='count', position='fill', na.rm=TRUE),
geom_text(
aes(
label=!!aes_percentage(relative_to='intersection'),
color=ifelse(mpaa == 'R', 'show', 'hide')
),
stat='count',
position=position_fill(vjust = .5)
),
scale_y_continuous(labels=scales::percent_format()),
show_hide_scale,
rating_scale
)
)
)
)
Warning message:
“Removed 262 rows containing non-finite values (stat_count).”
set_size(8, 5)
upset(
movies, genres, name='genre', width_ratio=0.1, min_size=100,
annotations =list(
'MPAA Rating'=list(
aes=aes(x=intersection, fill=mpaa),
geom=list(
geom_bar(stat='count', position='fill', na.rm=TRUE),
geom_text(
aes(
label=!!aes_percentage(relative_to='group'),
group=mpaa,
color=ifelse(mpaa == 'R', 'show', 'hide')
),
stat='count',
position=position_fill(vjust = .5)
),
scale_y_continuous(labels=scales::percent_format()),
show_hide_scale,
rating_scale
)
)
)
)
Warning message:
“Removed 262 rows containing non-finite values (stat_count).”
set_size(8, 5)
upset(
movies, genres, name='genre', width_ratio=0.1, min_size=100,
annotations =list(
'MPAA Rating'=list(
aes=aes(x=intersection, fill=mpaa),
geom=list(
geom_bar(stat='count', position='fill', na.rm=TRUE),
geom_text(
aes(
label=!!aes_percentage(relative_to='all'),
color=ifelse(mpaa == 'R', 'show', 'hide')
),
stat='count',
position=position_fill(vjust = .5)
),
scale_y_continuous(labels=scales::percent_format()),
show_hide_scale,
rating_scale
)
)
)
)
Warning message:
“Removed 262 rows containing non-finite values (stat_count).”
set_size(8, 5)
upset(
movies, genres, name='genre', width_ratio=0.1, min_size=100,
annotations =list(
'MPAA Rating'=list(
aes=aes(x=intersection, fill=mpaa),
geom=list(
geom_bar(stat='count', position='fill', na.rm=TRUE),
geom_text(
aes(label=ifelse(mpaa == 'R', 'R', NA)),
stat='count',
position=position_fill(vjust = .5),
na.rm=TRUE
),
show_hide_scale,
rating_scale
)
)
)
)
set_size(8, 5)
library(patchwork)
annotations = list(
'MPAA Rating'=list(
aes=aes(x=intersection, fill=mpaa),
geom=list(
geom_bar(stat='count', position='fill')
)
)
)
set.seed(0) # for replicable example only
data_1 = movies[sample(nrow(movies), 100), ]
data_2 = movies[sample(nrow(movies), 100), ]
u1 = upset(data_1, genres, min_size=5, base_annotations=annotations)
u2 = upset(data_2, genres, min_size=5, base_annotations=annotations)
(u1 | u2) + plot_layout(guides='collect')
Warning message:
“Removed 16 rows containing non-finite values (stat_count).”
Warning message:
“Removed 15 rows containing non-finite values (stat_count).”
set_size(8, 3.5)
upset(
movies, genres, name='genre', width_ratio=0.1, min_size=100,
annotations =list(
'MPAA Rating'=list(
aes=aes(x=intersection, fill=mpaa),
geom=list(
geom_bar(stat='count', position='fill'),
scale_y_continuous(labels=scales::percent_format())
)
)
)
) + patchwork::plot_layout(heights=c(0.5, 1, 0.5))
Warning message:
“Removed 262 rows containing non-finite values (stat_count).”
Simple implementation of Venn diagrams is provided, taking the same input format as upset()
but only supporting up to three sets.
movies_subset = head(movies, 300)
genres_subset = c('Comedy', 'Drama', 'Action')
movies_subset$good_rating = movies_subset$rating > mean(movies_subset$rating)
arranged = arrange_venn(movies_subset, sets=genres_subset)
set_size(8, 5.5)
(
ggplot(arranged)
+ theme_void()
+ coord_fixed()
+ geom_point(aes(x=x, y=y, color=region, shape=good_rating, fill=length), size=2.7)
+ geom_venn_circle(movies_subset, sets=genres_subset, size=1)
+ geom_venn_label_set(movies_subset, sets=genres_subset, aes(label=region), outwards_adjust=2.6)
+ geom_venn_label_region(movies_subset, sets=genres_subset, aes(label=size), position=position_nudge(y=0.15))
+ geom_curve(
data=arranged[which.min(arranged$length), ],
aes(xend=x+0.01, yend=y+0.01), x=1.5, y=2.5, curvature=.2,
arrow = arrow(length = unit(0.015, "npc"))
)
+ annotate(
geom='text', x=1.9, y=2.6, size=6,
label=paste(substr(arranged[which.min(arranged$length), ]$title, 0, 9), 'is the shortest')
)
+ scale_color_venn_mix(movies, sets=genres_subset, guide='none')
+ scale_shape_manual(
values=c(
'TRUE'='triangle filled',
'FALSE'='triangle down filled'
),
labels=c(
'TRUE'='above average',
'FALSE'='below average'
),
name='Rating'
)
+ scale_fill_gradient(low='white', high='black', name='Length (minutes)')
)
set_size(8, 5.5)
(
ggplot(arranged)
+ theme_void()
+ coord_fixed()
+ geom_venn_region(movies_subset, sets=genres_subset, alpha=0.1)
+ geom_point(aes(x=x, y=y, color=region), size=2.5)
+ geom_venn_circle(movies_subset, sets=genres_subset, size=1.5)
+ geom_venn_label_set(movies_subset, sets=genres_subset, aes(label=region), outwards_adjust=2.6)
+ geom_venn_label_region(movies_subset, sets=genres_subset, aes(label=size), position=position_nudge(y=0.15))
+ scale_color_venn_mix(movies, sets=genres_subset, guide='none')
+ scale_fill_venn_mix(movies, sets=genres_subset, guide='none')
)
set_size(8, 5.5)
(
ggplot(arranged)
+ theme_void()
+ coord_fixed()
+ geom_venn_region(movies_subset, sets=genres_subset, alpha=0.2)
+ geom_point(aes(x=x, y=y, color=region), size=1.5)
+ geom_venn_circle(movies_subset, sets=genres_subset, size=2)
+ geom_venn_label_set(movies_subset, sets=genres_subset, aes(label=region), outwards_adjust=2.6)
+ scale_color_venn_mix(movies, sets=genres_subset, guide='none')
+ scale_fill_venn_mix(movies, sets=genres_subset, guide='none', highlight=c('Comedy-Action', 'Drama'), inactive_color='white')
)
The density of the points grid is determined in such a way that the all the points from the set with the largest space restrictions are fit into the available area. In case of the diagram below, its the observations that do not belong to any set that define the grid density:
set_size(6, 4.5)
genres_subset = c('Action', 'Drama')
(
ggplot(arrange_venn(movies_subset, sets=genres_subset))
+ theme_void()
+ coord_fixed()
+ geom_point(aes(x=x, y=y, color=region), size=2)
+ geom_venn_circle(movies_subset, sets=genres_subset, size=2)
+ geom_venn_label_set(movies_subset, sets=genres_subset, aes(label=region), outwards_adjust=2.6)
+ scale_color_venn_mix(movies, sets=genres_subset, guide='none')
)