Overview of the package BuyseTest

Brice Ozenne

July 7, 2025

This vignette describes the main functionalities of the **BuyseTest** package, focusing on software (and not statistical) aspects, and assume that the reader is familar with the GPC framework ¹.

The BuyseTest package implements the Generalized Pairwise Comparisons (GPC) as defined in Buyse (2010) for complete observations, and extended in Péron et al. (2018) to deal with right-censoring and Piffoux et al. (2024) to incorporate a restriction time. When considering a single endpoint, the GPC procedure can be summarized as follow. Denote the endpoint by Y in the treatment group and by X in the control group. Given a threshold of clinical relevance τ , the aim of GPC is to estimate the proportion in favor of treatment² $\mathbb{P}[Y \ge X + \tau]$ and the proportion in favor of control $\mathbb{P}[X \ge Y + \tau]$. Their difference $\mathbb{P}[Y \ge X + \tau] - \mathbb{P}[X \ge Y + \tau]$ leads to the net treatment benefit and their ratio $\frac{\mathbb{P}[Y \ge X + \tau]}{\mathbb{P}[X \ge Y + \tau]}$ to the win ratio. The software also evaluate the proportion of neutral pairs $\mathbb{P}[|X - Y| < \tau]$ and which can be included to obtain the probabilistic index $\mathbb{P}[Y \ge X + \tau] + 0.5\mathbb{P}[|X - Y| < \tau]$ or win odds $\frac{\mathbb{P}[Y \ge X + \tau] + 0.5\mathbb{P}[|X - Y| < \tau]}{\mathbb{P}[X \ge Y + \tau] + 0.5\mathbb{P}[|X - Y| < \tau]}$.

- the function BuyseTest performs the GPC procedure and is the main function of the package. The user can interact with its output via various methods:
 - summary to obtain an overview of the results, including the estimated net treatment benefit.
 The result table at the end of the output can be directly access using model.tables.
 - coef to extract the estimates.
 - confint or model.tables to extract estimates, confidence intervals, and p.values.
 - plot for a graphical display of the scoring of the pair per endpoint.
 - sensitivity to perform a sensitivity analysis on the choice of the threshold(s).
 - nobs to extract the number of observations and pairs.
 - getIid to extract the iid decomposition of the estimator.
 - getPairScore to extract the contribution of each pair to the net treatment benefit.
 - getSurvival to extract the estimates of the survival used for right-censored endpoints.
 - BuyseMultComp to adjust p-values and confidence intervals for multiple comparisons.
- the powerBuyseTest function performs simulation studies, e.g. to estimate the statistical power or assess the bias / type 1 error rate of a test for a specific design. The simBuyseTest function can facilitate the definition of the data generating mechanism.

¹ if not, Buyse (2010) is a good place to start.

² in absence of ties this equals the Wilcoxon-Mann-Whitney parameter

• the BuyseTest.options function enables the user to access the default values used in the BuyseTest package. The function can also change the default values to better match the user needs.

Another vignette, "Wilcoxon test via GPC", details connexions between GPC and the Wilcoxon rank sum test. Before going further we need to load the **BuyseTest** package in the R session:

library(BuyseTest)
library(data.table)

To illustrate the functionalities of the package, we will used the **veteran** dataset from the **survival** package:

```
data(cancer, package = "survival")
veteran <- cbind(id = 1:NROW(veteran), veteran)
veteran$trt <- factor(veteran$trt,1:2,c("Pl","Exp"))
head(veteran)</pre>
```

	id	trt	celltype	time	status	karno	diagtime	age	prior
1	1	Pl	squamous	72	1	60	7	69	0
2	2	Pl	squamous	411	1	70	5	64	10
3	3	Pl	squamous	228	1	60	3	38	0
4	4	Pl	squamous	126	1	60	9	63	10
5	5	Pl	squamous	118	1	70	11	65	10
6	6	Pl	squamous	10	1	20	5	49	0

See ?veteran for a presentation of the database.

<u>Note:</u> the **BuyseTest** package is under active development. Newer package versions may include additional functionalities and fix previous bugs. The version of the package that is being is:

```
utils::packageVersion("BuyseTest")
```

[1] '3.3.1'

For completness, the details of the R session used to generate this document are:

sessionInfo()

```
R version 4.3.3 (2024-02-29)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.5 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
locale:
  [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8
  [4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
```

```
[7] LC_PAPER=en_US.UTF-8
                                LC_NAME=C
                                                            LC_ADDRESS=C
                                LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
[10] LC_TELEPHONE=C
time zone: Europe/Copenhagen
tzcode source: system (glibc)
attached base packages:
[1] stats
              graphics grDevices utils
                                            datasets methods
                                                                 base
other attached packages:
[1] data.table_1.17.2 BuyseTest_3.3.1
                                          Rcpp_1.0.14
                                                              prodlim_2025.04.28
[5] ggplot2_3.5.2
                       survival_3.5-8
loaded via a namespace (and not attached):
 [1] Matrix_1.6-5
                         gtable_0.3.6
                                              future.apply_1.11.3 dplyr_1.1.4
 [5] compiler_4.3.3
                                             MatrixModels_0.5-3 parallel_4.3.3
                         tidyselect_1.2.1
 [9] globals_0.18.0
                                                                  lattice_0.22-5
                         splines_4.3.3
                                             scales_1.4.0
[13] R6_2.6.1
                                                                  tibble_3.2.1
                         generics_0.1.3
                                             future_1.49.0
[17] pillar_1.10.2
                         RColorBrewer_1.1-3
                                             rlang_1.1.6
                                                                  cli_3.6.5
[21] withr_3.0.2
                         magrittr_2.0.3
                                                                  grid_4.3.3
                                             digest_0.6.37
                         lava_1.8.1
[25] lifecycle_1.0.4
                                             vctrs_0.6.5
                                                                  SparseM_1.81
[29] glue_1.8.0
                         farver_2.1.2
                                             listenv_0.9.1
                                                                  codetools_0.2-19
[33] stats4_4.3.3
                         colorspace_2.1-1
                                             parallelly_1.44.0
                                                                  tools_4.3.3
[37] pkgconfig_2.0.3
```

```
3
```

1 Performing generalized pairwise comparisons (GPC)

To perform generalized pairwise comparisons, the **BuyseTest** function needs:

• where the data are stored	- argument data
• the name of the endpoints	- argument endpoint
• the type of each endpoint	- argument type
• the variable defining the two treatment groups	- argument treatment
The BuyseTest function has many optional arguments. For example:	
• the threshold of clinical relevance associated to each endpoint	- argument threshold
• the censoring associated to each endpoint (for time to event endpoints)	- argument status

There are two equivalent ways to define the GPC:

• using a separate argument for each element:

BT <- BuyseTest(data = veteran,

```
endpoint = "time",
type = "timeToEvent",
treatment = "trt",
status = "status",
threshold = 20)
```

Generalized Pairwise Comparisons

Settings

```
- 2 groups : Control = Pl and Treatment = Exp
- 1 endpoint:
    priority endpoint type operator threshold event
    1 time time to event higher is favorable 20 status (0 1)
- right-censored pairs: probabilistic score based on the survival curves
```

Point estimation and calculation of the iid decomposition

```
Estimation of the estimator's distribution - method: moments of the U-statistic
```

Gather the results in a S4BuyseTest object

- or via a formula interface. In the formula interface, endpoints are wrapped by parentheses, preceded by a character string indicated their type:
 - binary (b, bin, or binary)
 - continuous (c, cont, or continuous)
 - time to event (t, tte, or timetoevent)

For instance:

where we also set the argument trace to FALSE to execute silently the function. We can check that the two approaches are equivalent:

```
BT.f@call <- list(); BT@call <- list();
testthat::expect_equal(BT.f,BT)
```

1.1 Displaying the results

The results of the GPC can be displayed using the summary method:

summary(BT)

Generalized pairwise comparisons with 1 endpoint

```
: net treatment benefit (delta: endpoint specific, Delta: global)
- statistic
- null hypothesis : Delta == 0
- confidence level: 0.95
                 : H-projection of order 1 after atanh transformation
- inference
- treatment groups: Exp (treatment) vs. Pl (control)
- censored pairs : probabilistic score based on the survival curves
- results
endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%)
                                                                            Delta
               20
                       100
                                  37.78
                                                  46.54
                                                             15.68
                                                                          0 -0.0877
   time
CI [2.5%; 97.5%] p.value
 [-0.2735;0.1045] 0.37162
```

It displays information about each endpoint, percentage of pairs classified as favorable, unfavorable, neutral, and uninformative, as well as the estimated net treatment benefit (column Delta), its confidence interval, and the corresponding p-value testing the absence of a group difference. To display the number of pairs instead of the percentage of pairs that are favorable/unfavorable/neutral/uniformative, one can set the argument percentage to FALSE. See help(S4BuyseTest-summary) for more details about the summary method, its input and output.

The print method provides a more concise display of the results:

print(BT, percentage = FALSE)

endpoint threshold total favorable unfavorable neutral uninf Delta CI [2.5%; 97.5%]
 time 20 4692 1772.59 2183.89 735.52 0 -0.0877 [-0.2735;0.1045]
p.value
0.37162

To access these values, we recommand using the model.tables method that outputs the information from the previous table in a data.frame format:

```
model.tables(BT, percentage = FALSE)
```

```
endpoint threshold total favorable unfavorable neutral uninf Delta lower.ci

1 time 20 4692 1772.593 2183.886 735.5205 0 -0.08765836 -0.2735301

upper.ci p.value

1 0.1045245 0.371617
```

An even more concise output can be obtained via the **confint** method:

confint(BT)

estimate se lower.ci upper.ci null p.value time_t20 -0.08765836 0.09760901 -0.2735301 0.1045245 0 0.371617

or coef method:

coef(BT)

time_t20 -0.08765836

1.2 What about other summary statistics?

Results for other summary statistics are also accessible:

- proportion in favor of treatment (favorable): $\mathbb{P}[Y \ge X + \tau]$
- proportion in favor of control (unfavorable): $\mathbb{P}[X \ge Y + \tau]$
- win ratio (winRatio): $\frac{\mathbb{P}[Y \ge X + \tau]}{\mathbb{P}[X \ge Y + \tau]}$

For instance, to display the estimated win ratio instead of the estimated net treatment benefit, use: summary(BT, statistic = "winRatio")

- argument statistic

Generalized pairwise comparisons with 1 endpoint

```
- statistic
                  : win ratio (delta: endpoint specific, Delta: global)
- null hypothesis : Delta == 1
- confidence level: 0.95
- inference
                  : H-projection of order 1 after log transformation
- treatment groups: Exp (treatment) vs. Pl (control)
- censored pairs : probabilistic score based on the survival curves
- results
endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta
                                   37.78
                                                  46.54
   time
                20
                        100
                                                             15.68
                                                                          0 0.8117
CI [2.5%; 97.5%] p.value
  [0.5134;1.2833] 0.37195
```

In presence of ties, the null distribution of the proportion in favor of treatment or control depends on the data generative mechanism and the threshold of clinical relevance. This is why, unless the argument null is provided by the user, the confint method will not produce any p.value:

confint(BT, statistic = "favorable")

```
estimate se lower.ci upper.ci null p.value
time t20 0.3777905 0.04902199 0.2874747 0.477467 NA NA
```

A permutation test may be used to empirically estimate a value for the null hypothesis:

 estimate
 se lower.ci upper.ci
 null
 p.value

 time_t20
 0.3777905
 0.04770182
 NA
 NA
 0.4205855
 0.3636364

which, in this example, is around 0.42. It worth noting that testing an inadequate null hypothesis can have dramatic consequences on the p-value:

estimateselower.ciupper.cinullp.valuetime_t200.37779050.049021990.28747470.4774670.420.39826735time_t2010.37779050.049021990.28747470.4774670.500.01673643

Considering the proportion of neutral pairs in the summary statistics: - argument add.halfNeutral

- Wilcoxon-Mann-Whitney parameter or probabilistic index: $\mathbb{P}[Y \ge X + \tau] + 0.5\mathbb{P}[|Y X| < \tau].$
- win odds: $\frac{\mathbb{P}[Y \ge X + \tau] + 0.5\mathbb{P}[|Y X| < \tau]}{\mathbb{P}[X \ge Y + \tau] + 0.5\mathbb{P}[|Y X| < \tau]}.$

have been recommended (e.g. Ajufo et al. (2023)) over the win ratio. These summary statistics can be output by specifying the argument add.halfNeutral to TRUE when calling BuyseTest:

```
BT.half <- BuyseTest(trt \sim tte(time, threshold = 20, status = "status"),
                     data = veteran, trace = FALSE, add.halfNeutral = TRUE)
confint(BT.half, statistic = "favorable")
```

```
se lower.ci upper.ci null
         estimate
                                                       p.value
time_t20 0.4561708 0.04880921 0.3632263 0.5522714 0.5 0.3716632
```

confint(BT.half, statistic = "winRatio")

estimate se lower.ci upper.ci null p.value time_t20 0.8388127 0.1650208 0.5704361 1.233454 1 0.3716211

Testing a net treatment benefit of 0, a win odds of 1, or a Wilcoxon-Mann-Whitney parameter of 0.5 corresponds to the same hypothesis and therefore the same p-value should be obtained. The (small) discrepancy in p-values observed in this example (0.371617 vs. 0.3716211 vs. 0.3716632) are due to small sample approximation. Such discrepancies will not arise when using non-parametric bootstrap or permutation tests using quantiles of the bootstrap or permutation distribution, e.g.:

```
BT.halfperm <- BuyseTest(trt \sim tte(time, threshold = 20, status = "status"),
                         data = veteran, trace = FALSE, add.halfNeutral = TRUE,
                         method.inference = "bootstrap", seed = 10)
Mstat <- rbind(netBenefit = confint(BT.halfperm, statistic = "netBenefit"),</pre>
               winRatio = confint(BT.halfperm, statistic = "winRatio"),
               favorable = confint(BT.halfperm, statistic = "favorable"))
Mstat
```

estimate lower.ci upper.ci null p.value se netBenefit -0.08765836 0.10021632 -0.2720510 0.1033974 0.0 0.383 winRatio 0.83881270 0.17440155 0.5722640 1.2306429 1.0 0.383 favorable 0.45617082 0.05010816 0.3639745 0.5516987 0.5 0.383

1.3 Stratified GPC

GPC can be performed for subgroups of a categorical variable

- argument strata

For instance, the celltype may have huge influence on the survival time and the investigator would like to only compare patients that have the same celltype. In the formula interface this is achieved by adding this variable wrapped by parenthesis and preceded by the character string strata in the formula:

```
ffstrata <- trt \sim tte(time, threshold = 20, status = "status") + strata(celltype)
BTstrata <- BuyseTest(ffstrata, data = veteran, trace = 0)
```

When doing a stratified analysis, the summary method displays strata-specific and global results³:

Generalized pairwise comparisons with 1 endpoint and 4 strata

- statistic	: net trea	atment benefit	t (delta: endpo	oint specif:	ic, Delta	global)			
- null hypothesis : Delta == 0									
- confidence level	: 0.95								
- inference	: H-projec	ction of order	r 1 after atanh	transformat	tion				
- treatment groups	: Exp (tre	eatment) vs. H	Pl (control)						
- strata weights	: 26.38%,	34.63%, 18.47	7%, 20.52%						
- uninformative pa	irs: no co	ontribution							
- results									
endpoint strata	total(%)	<pre>favorable(%)</pre>	unfavorable(%)	neutral(%)	uninf(%)	delta	Delta		
time global	100.00	36.06	45.77	17.33	0.85	-0.0997	-0.0997		
squamous	25.38	14.33	8.77	2.28	0.00	0.2193			
smallcell	45.69	12.69	20.88	11.27	0.85	-0.1792			
adeno	13.71	4.74	6.15	2.81	0.00	-0.1034			
large	15.23	4.30	9.97	0.96	0.00	-0.3722			

The percentage of pairs in the total/favorable/unfavorable/neutral/uninf columns are relative to the overall number of pairs whereas the column delta presents the endpoint and strata-specific net treatment benefits (in the last 4 lines). The last column (Delta) displays the global (i.e. pooled over strata), conditional, net treatment benefit.

With the default way of pooling results across strata, the proportion of favorable pairs minus the proportion of unfavorable pairs (36.06%-45.77%=9.71%) does not equal the global net treatment benefit (9.97%). To retrieve this value of the Net Treatment Benefit, one should first extract the number of pairs per strata using the method nobs:

```
strata.obs <- as.data.frame(nobs(BTstrata, strata = TRUE))
strata.obs</pre>
```

```
Pl Exp pairs squamous 15 20 300
```

³the strata-specific results can be removed by setting the argument strata to "global" when calling summary.

smallcell	30	18	540
adeno	9	18	162
large	15	12	180

and use the method model.tables to extract the number of favorable and unfavorable pairs per strata:

	strata	total	favorable	unfavorable
2	squamous	300	169.40260	103.6104
3	smallcell	540	150.00000	246.7778
4	adeno	162	56.00000	72.7500
5	large	180	50.83333	117.8333

We retrieve the strata-specific net treatment benefits by comparing, in each strata, the number of favorable and unfavorable pairs relative to the number of pairs⁴:

delta <- (dfStrata\$favorable - dfStrata\$unfavorable)/strata.obs\$pairs
delta</pre>

[1] 0.2193074 -0.1792181 -0.1033951 -0.3722222

The global net treatment benefit is then the sum of the strata-specific net treatment benefits weighted by the strata weights:

```
weightCMH <- strata.obs$pairs/(strata.obs$Pl + strata.obs$Exp)
list(estimate = sum(delta * weightCMH/sum(weightCMH)),
    weight = 100*weightCMH/sum(weightCMH))</pre>
```

\$estimate [1] -0.09967584

\$weight

[1] 26.38329 34.62807 18.46830 20.52034

The approach is true for the probabilistic index but not for the win ratio/odds: the ratio between the global proportions is taken, i.e., pooling is performed at the numerator and at the denominator instead of pooling fractions - see Dong et al. (2018), equation 1.

⁴Alernatively one could compute, from the summary, the difference between the percentage of favorable and unfavorable pairs relative to the percentage of pairs in the strata, e.g. $(14.33\% - 8.77\%)/25.38\% \approx 21.93\%$

The default weighting scheme is CMH, standing for Cochran-Mantel-Haenszel, which has been recommaned in the litterature (Dong et al., 2018). It is efficient under the assumption of a common multiplicative effect (across strata) on the odds ratio scale.

Other weighting schemes can be used. - argument pool.strata. When considering additive effect, one should instead weight proportionnaly to the number of pairs:

BTstrata2 <- BuyseTest(ffstrata, data = veteran, trace = 0, pool.strata = "buyse") summary(BTstrata2, type.display = keep.colStrata)

Generalized pairwise comparisons with 1 endpoint and 4 strata : net treatment benefit (delta: endpoint specific, Delta: global) - statistic - null hypothesis : Delta == 0 - confidence level: 0.95 : H-projection of order 1 after atanh transformation - inference - treatment groups: Exp (treatment) vs. Pl (control) - strata weights : 25.38%, 45.69%, 13.71%, 15.23% - uninformative pairs: no contribution - results strata total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) endpoint Delta delta time global 100.00 36.06 45.77 17.33 0.85 -0.0971 -0.0971 squamous 25.38 14.33 8.77 2.28 0.00 0.2193 smallcell 0.85 -0.1792 45.69 12.69 20.88 11.27 13.71 4.74 6.15 2.81 0.00 -0.1034 adeno large 15.23 4.30 9.97 0.96 0.00 -0.3722

The strata-specifc net treatment benefits are unchanged: the weighting scheme only affects the evaluation of the overall net treatment benefit. With this weighting scheme it now equals the difference between the overall proportion of favorable vs. unfavorable pairs (36.06%-45.77%). While extractors will by default output global estimates (i.e. after pooling the results over strata)

confint(BTstrata2)

estimate se lower.ci upper.ci null p.value time_t20 -0.09706901 0.0977929 -0.2829348 0.09582321 0 0.323961

one can specify the argument **strata** to extract strata-specific estimates:

```
confint(BTstrata, strata = TRUE)
```

	estimate	se	lower.ci	upper.ci	null p.value	е
time_t20.squamous	0.2193074	0.1911515	-0.1690137	0.5486919	0 0.2669352	2
<pre>time_t20.smallcell</pre>	-0.1792181	0.1540933	-0.4567640	0.1301230	0 0.2551275	5
time_t20.adeno	-0.1033951	0.2465197	-0.5314450	0.3667172	0 0.6771002	2
time_t20.large	-0.3722222	0.2190018	-0.7110335	0.1068610	0 0.1240457	7

The pooled estimator presented in this section has a conditional interpretation, as they summarize comparisons made between observations from the same strata. They will generally differ from the marginal (i.e. non-adjusted) Net Treatment Benefit and tend to be more extreme (i.e. away from 0) in presence of group difference.

1.4 Standardization

When the interest lies in a marginal effect but one wish to adjust on baseline covariates to obtain more precise estimate, one should *not* restrict the comparisons between pairs of observations from the same strata. Instead one should estimate a Net Treatment Nenefit for each possible combinations of strata and pool the results (Buyse et al. (2025), chapter 9). This is what is being done when setting the argument pool.strata to "standardization":

BTstd <- BuyseTest(ffstrata, data = veteran, trace = 0, pool.strata = "standardization")
model.tables(BTstd)[,c("strata","total","delta","Delta","lower.ci","upper.ci","p.value")]</pre>

	strata	total	delta	Delta	lower.ci	upper.ci	p.value
1	global	100.000000	-0.11874500	-0.118745	-0.2857534	0.0552638	0.1805479
2	squamous	6.393862	0.21930736	NA	NA	NA	NA
3	<pre>smallcell.squamous</pre>	12.787724	0.35699653	NA	NA	NA	NA
4	adeno.squamous	3.836317	0.41018519	NA	NA	NA	NA
5	large.squamous	6.393862	0.03622106	NA	NA	NA	NA
6	squamous.smallcell	5.754476	-0.50654161	NA	NA	NA	NA
7	smallcell	11.508951	-0.17921811	NA	NA	NA	NA
8	adeno.smallcell	3.452685	-0.25308642	NA	NA	NA	NA
9	large.smallcell	5.754476	-0.80740741	NA	NA	NA	NA
10	squamous.adeno	5.754476	-0.41165224	NA	NA	NA	NA
11	<pre>smallcell.adeno</pre>	11.508951	-0.02906379	NA	NA	NA	NA
12	adeno	3.452685	-0.10339506	NA	NA	NA	NA
13	large.adeno	5.754476	-0.76311728	NA	NA	NA	NA
14	squamous.large	3.836317	-0.04494949	NA	NA	NA	NA
15	<pre>smallcell.large</pre>	7.672634	0.25946502	NA	NA	NA	NA
16	adeno.large	2.301790	0.21296296	NA	NA	NA	NA
17	large	3.836317	-0.37222222	NA	NA	NA	NA

Here strata equal to squamous means that the comparison betwen the active and control group was made using only patients whose lung cancer cell type were squamous. We retrive the same results as when setting pool.strata to "buyse" or "CMH". However now additional strata have been added like "smallcell.squamous" where control patients whose lung cancer cell type were smallcell are being compared to active patients whose lung cancer cell type were squamous. Indeed:

```
endpoint threshold Delta
time 20 0.357
```

leads, up to rounding, to the same result.

<u>Note</u>: it is possible to extract the strata-specific estimate (e.g. coef(BTstd, strata = TRUE)) but the software does not keep track of the strata-specific uncertainty via the H-decomposition and thus not able to output confidence intervals. A resampling method could be used if those are of interest:

Estimated p-value of 1 - consider increasing the number of boostrap samples

	estimate	se	lower.ci	upper.ci	null	p.value
time_t20.squamous	0.21930736	0.1928818	-0.23620851	0.52173313	0	0.26000000
<pre>time_t20.smallcell.squamous</pre>	0.35699653	0.1672720	-0.00620671	0.62983611	0	0.05000000
time_t20.adeno.squamous	0.41018519	0.1853448	0.02059982	0.72023944	0	0.0400000
<pre>time_t20.large.squamous</pre>	0.03622106	0.2231223	-0.41553367	0.46671491	0	0.88000000
<pre>time_t20.squamous.smallcell</pre>	-0.50654161	0.1655352	-0.79085529	-0.19423414	0	0.00990099
<pre>time_t20.smallcell</pre>	-0.17921811	0.1535131	-0.47130077	0.09038033	0	0.25000000

Here **n.resampling** was set to a low value only to save computation time but this may lead to unreliable confidence intervals/p-values: larger values are recommended (e.g. 10000).

1.5 Using multiple endpoints

More than one endpoint can be considered by indicating a vector of endpoints, types, and thresholds. In the formula interface, the different endpoints must be separated with a "+" on the right hand side of the formula:

```
ff2 <- trt \sim tte(time, threshold = 20, status = "status") + cont(karno, threshold = 0)
BT.H <- BuyseTest(ff2, data = veteran, trace = 0)
summary(BT.H)
```

Generalized pairwise comparisons with 2 prioritized endpoints

```
: net treatment benefit (delta: endpoint specific, Delta: global)
- statistic
- null hypothesis : Delta == 0
- confidence level: 0.95
- inference
                  : H-projection of order 1 after atanh transformation
- treatment groups: Exp (treatment) vs. Pl (control)
- censored pairs : probabilistic score based on the survival curves
- neutral pairs
                  : re-analyzed using lower priority endpoints
- results
endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%)
                                                                               delta
                                                                                       Delta
    time
                20
                     100.00
                                   37.78
                                                  46.54
                                                              15.68
                                                                           0 -0.0877 -0.0877
  karno
                      15.68
                                    5.78
                                                   7.11
                                                               2.78
                                                                           0 -0.0133 -0.1009
CI [2.5%; 97.5%] p.value
 [-0.2735;0.1045] 0.37162
 [-0.2901;0.0959] 0.31478
```

The hierarchy of the endpoint is defined from left (most important endpoint, here time) to right (least important endpoint, here karno). In the summary output, the confidence intervals and p.values are computed for the column Delta, i.e. here -8.77% is the net treatment benefit for the first endpoint (line 1) and -10.09% is the net treatment benefit for the first and second endpoint (line 2). In other words, the last confidence interval and p-value is the one for the analysis over all endpoints (generally the one to report).

A graphical representation of the GPC procedure can be obtained by the plot method. It will display the percentage of favorable, unfavorable, neutral, and uninformative pairs per endpoint. Three (equivalent) graphical display are possible, the first one ("hist") being the recommanded one:

plot(BT.H, type = "hist")
plot(BT.H, type = "pie")
plot(BT.H, type = "racetrack")

It is also possible to perform the comparisons on all pairs for all endpoints by setting the argument hierarchical to FALSE:

```
BT.nH <- BuyseTest(ff2, hierarchical = FALSE, data = veteran, trace = 0)
summary(BT.nH)</pre>
```

Generalized pairwise comparisons with 2 endpoints

```
- statistic
                  : net treatment benefit (delta: endpoint specific, Delta: global)
- null hypothesis : Delta == 0
- confidence level: 0.95
- inference
                  : H-projection of order 1 after atanh transformation
- treatment groups: Exp (treatment) vs. Pl (control)
- censored pairs : probabilistic score based on the survival curves
- results
endpoint threshold weight total(%) favorable(%) unfavorable(%) neutral(%) uninf(%)
                                                                                      delta
                                          37.78
    time
                20
                      0.5
                               100
                                                         46.54
                                                                     15.68
                                                                                  0 -0.0877
  karno
                      0.5
                               100
                                          41.82
                                                         44.95
                                                                     13.24
                                                                                  0 -0.0313
 Delta CI [2.5%; 97.5%] p.value
-0.0438 [-0.1388;0.0519] 0.36977
-0.0595 [-0.2267;0.1111] 0.49514
```

In that case the score of a pair is the weighted sum of the score relative to each endpoint. By default, the weights are all set to the same value but this behavior can be changed by setting the argument weight when calling BuyseTest, e.g.:

endpoint threshold weight total favorable unfavorable neutral uninf delta 0.8 100 37.77905 46.54489 15.67606 1 2e+01 0 -0.08765836 time 1e-12 0.2 100 41.81586 44.94885 13.23529 3 0 -0.03132992 karno lower.ci upper.ci p.value Delta 1 -0.07012668 -0.2203714 0.08336855 0.3707289 3 -0.07639267 -0.2503756 0.10237001 0.4026905

This has been referred as the O'Brien test in the litterature (Verbeeck et al. (2019), section 3.2). Alternatively, one may be interested in the endpoint specific results. This can be performed by applying the BuyseTest function separately to each endpoint, e.g.:

confint(BuyseTest(trt \sim cont(karno, threshold = 0), data = veteran, trace = 0))

estimate se lower.ci upper.ci null p.value karno -0.03132992 0.09787113 -0.2197111 0.1593037 0 0.7490407

or setting the argument cumulative to FALSE when calling the confint function:

confint(BT.nHw, cumulative = FALSE)

estimateselower.ciupper.cinullp.valuetime_t20-0.087658360.09760901-0.27353010.104524500.3716170karno-0.031329920.09787113-0.21971110.159303700.7490407

Note: the apparent discrepency in p-value between the hierarchical and non-hierarchical GPC at the first priority (0.3762 vs 0.3698 vs 0.3707) is due to the use of a transformation that makes the p-value dependent on the estimate. Otherwise the p-value would be the same at the first priority, e.g.:

confint(BT.nHw, transform = FALSE)

estimateselower.ciupper.cinullp.valuetime_t20-0.070126680.07808721-0.22317480.0829214300.3691557karno-0.076392670.09093303-0.25461810.1018328000.4008534

1.6 Statistical inference

Uncertainty about the estimates can be quantified using:

- argument method.inference

• **permutation test** ("**permutation**"). Assuming exchangeability under the null hypothesis, this approach gives valid p-values (regardless to the sample size) for testing the absence of a difference between the groups.

```
Generalized pairwise comparisons with 1 endpoint
```

- statistic	net treatment benefit (delta: endpoint specific, Delta: global)								
- null hypothesis	Delta == 0								
- confidence level	0.95								
- inference	permutation test with 1000 samples								
	p-value computed using the permutation distribution								
- treatment groups	Exp (treatment) vs. Pl (control)								
- censored pairs	probabilistic score based on the survival curves								
- results									
endpoint threshold	<pre>total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta p.value</pre>								
time 20	100 37.78 46.54 15.68 0 -0.0877 0.35265								

• **bootstrap resampling** ("bootstrap"). In large enough samples, this approach gives valid p-values and confidence intervals.

```
summary(BT.boot)
```

```
Generalized pairwise comparisons with 1 endpoint
```

```
- statistic
                  : net treatment benefit (delta: endpoint specific, Delta: global)
- null hypothesis : Delta == 0
- confidence level: 0.95
- inference
                  : bootstrap resampling with 1000 samples
                    CI computed using the percentile method; p-value by test inversion
- treatment groups: Exp (treatment) vs. Pl (control)
- censored pairs : probabilistic score based on the survival curves
- results
endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%)
                                                                              Delta
                                   37.78
                                                  46.54
                                                             15.68
   time
                20
                        100
                                                                          0 -0.0877
CI [2.5%; 97.5%] p.value
 [-0.2721;0.1034] 0.383
```

• asymptotic distribution ("u-statistic"). In large enough samples, this approach gives valid p-values and confidence intervals (Ozenne et al., 2021).

Generalized pairwise comparisons with 1 endpoint : net treatment benefit (delta: endpoint specific, Delta: global) - statistic - null hypothesis : Delta == 0 - confidence level: 0.95 : H-projection of order 1 after atanh transformation - inference - treatment groups: Exp (treatment) vs. Pl (control) - censored pairs : probabilistic score based on the survival curves - results endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta 20 100 37.78 46.54 15.68 0 -0.0877 time CI [2.5%; 97.5%] p.value

The first two approaches require simulating a large number of samples and applying the GPC to each of these samples. The **seed** argument is used to generate a seed for each sample. The number of samples is set using the arugment **n.resampling** and it should large enough to limit the Monte Carlo error when estimating the p-value. Typically should be at least 10000 to get, roughtly, 2-digit precision, as examplified below:

```
set.seed(10)
sapply(1:10, function(i){mean(rbinom(1e4, size = 1, prob = 0.05))})
```

$[1] \ 0.0511 \ 0.0491 \ 0.0489 \ 0.0454 \ 0.0516 \ 0.0522 \ 0.0468 \ 0.0483 \ 0.0491 \ 0.0508 \\$

[-0.2735;0.1045] 0.37162

Indeed, here we get a reasonnable approximation of 0.05 (if we round and only keep 2 digits). Note that to get 3 digits precision we would need more samples. The last method does not rely on resampling but on the computation of the influence function of the estimator. Fortunately, when using the Gehan's scoring rule, this does not really involve any extra-calculations and this is therefore very fast to perform. When using the Peron's scoring rule, more serious extra-calculations are involved so the computation time is expected to increase by a factor 5 to 10 compared to the point estimate alone (i.e. method.inference equal to "none").

It is possible to relax the exchangeability assumption using a studentized permutation. A studentized bootstrap is also possible to improve on the better small samples properties of the bootstrap confidence intervals. Both rely on the asymptotic approach to estimate standard errors and are more numerically intensive.

1.7 What if smaller is better?

By default BuyseTest will always assume that higher values of an endpoint are favorable. This behavior can be changed by specifying operator = "<0" for an endpoint:

```
ffop <- trt \sim tte(time, status = "status", threshold = 20, operator = "<0")
BTinv <- BuyseTest(ffop, data = veteran, trace = 0)
summary(BTinv)
```

```
Generalized pairwise comparisons with 1 endpoint
                 : net treatment benefit (delta: endpoint specific, Delta: global)
- statistic
- null hypothesis : Delta == 0
- confidence level: 0.95
                 : H-projection of order 1 after atanh transformation
- inference
- treatment groups: Exp (treatment) vs. Pl (control)
- censored pairs : probabilistic score based on the survival curves
- results
endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta
                                                                         0 0.0877
                                  46.54
                                                 37.78
               20 100
                                                            15.68
   time
CI [2.5%; 97.5%] p.value
 [-0.1045;0.2735] 0.37162
```

Internally BuyseTest will compute the favorable and unfavorable score as usual and then switch them around if the operator equals "<0".

1.8 Stopping comparison for neutral pairs

In presence of neutral pairs, BuyseTest will, by default, continue the comparison on the endpoints with lower priority. For instance let consider a dataset with one observation in each treatment arm:

dt.sim

	Id	${\tt treatment}$	tumor	size
	<int></int>	<char></char>	<char></char>	<num></num>
1:	1	Yes	Yes	15
2:	2	No	Yes	20

If we use the GPC with tumor as the first endpoint and size as the second endpoint:

Generalized pairwise comparisons with 2 prioritized endpoints

- statist	ic	: net treatme	ent benefit (de	elta: endpoi	nt specif:	ic, De	elta: į	global)	
- treatme	nt groups	s: Yes (treat	nent) vs. No (co	ontrol)					
- neutral	- neutral pairs : re-analyzed using lower priority endpoints								
- results	1								
endpoint	total(%)	<pre>favorable(%)</pre>	unfavorable(%)	neutral(%)	uninf(%)	delta	Delta		
tumor	100	0	0	100	0	0	0		
size	100	100	0	0	0	1	1		

the outcome of the comparison is neutral for the first priority, but favorable for the second. Setting the argument neutral.as.uninf to FALSE will stop the comparison when a pair is classified as neutral:

Generalized pairwise comparisons with 2 prioritized endpoints

- statist	ic	: net treatme	ent benefit (d	elta: endpoi	Int specif	ic, De	elta: g	lobal)		
- treatme	- treatment groups: Yes (treatment) vs. No (control)									
- neutral	- neutral pairs : ignored at lower priority endpoints									
- results	- results									
endpoint	total(%)	<pre>favorable(%)</pre>	unfavorable(%)	neutral(%)	uninf(%)	delta	Delta			
tumor	100	0	0	100	0	0	0			
size	0	0	0	0	0	0	0			

So in this case no pair is analyzed at second priority.

1.9 Is multiple testing a concern with GPC?

Yes, as with any other statistical method. Having a pre-defined statistical plan (i.e. written before looking at the data) specifying the hierarchy of endpoints, their threshold of clinical relevance is recommanded. When planning multiple GPC, summarize the results can be done via one of two principles:

• intersection union principle: one rejects the (global) null hypothesis if there is evidence for an effect in all the GPC analyses. This is typically a sensitivity analysis: checking that the results are not too sensitive to the choice of an hyperparameter. No multiplicity adjustment is needed other than considering the largest p-value among all tests. For instance, when checking whether the estimated net treatment benefit is similar across a range of threshold of clincial relevance, we would obtain a p-value of 0.76

	time	estimate	se	lower.ci	upper.ci	null	p.value
1	0.00000	-0.08752774	0.10041203	-0.27851884	0.11012263	0	0.3858177
2	55.55556	-0.08095829	0.08957699	-0.25229456	0.09530004	0	0.3682107
3	111.11111	-0.03170177	0.07463991	-0.17629003	0.11422560	0	0.6712414
4	166.66667	0.01896964	0.06452954	-0.10713643	0.14447503	0	0.7688360
5	222.22222	0.03315614	0.05523512	-0.07506821	0.14060850	0	0.5486177
6	277.77778	0.04217485	0.04654025	-0.04914025	0.13279075	0	0.3653982
7	333.33333	0.04112991	0.03946828	-0.03631838	0.11808708	0	0.2979105
8	388.88889	0.04075638	0.03300933	-0.02402114	0.10519310	0	0.2174545
9	444.44444	0.04097871	0.03027888	-0.01844156	0.10011054	0	0.1764199
10	500.00000	0.03517173	0.02769280	-0.01915553	0.08929191	0	0.2044340

• union intersection principle: one rejects the (global) null hypothesis if there is evidence for an effect for at least on of the GPC analyses. This is a typical exploratory analysis where one look for the most promising outcome. Adjustment for multiplicity is needed. Since estimates from GPC procedure are typically highly correlated, one can improve on bonferroni adjustment using a max-test adjustment. This is what is performed via the BuyseMultComp function:

BuyseMultComp(BT.H, endpoint = 1:2)

```
- Univariate tests:

estimate se lower.ci upper.ci null p.value lower.band upper.band

time_t20 -0.08765836 0.09760901 -0.2735301 0.10452446 0 0.371617 -0.2798817 0.1113226

karno -0.10092285 0.09971277 -0.2901336 0.09588144 0 0.314777 -0.2965716 0.1028561

adj.p.value

time_t20 0.4117239

karno 0.3508339
```

Here we look at whether there is a benefit in survival alone (first priority time_t20) or a benefit over both endpoint (second priority karno). Setting the argument cumulative to FALSE when considering nonhierarchical GPC analyses enables to efficiently adjust endpoint-specific GPC for multiple comparisons:

BuyseMultComp(BT.nH, cumulative = FALSE, endpoint = 1:2)

One can also consider the global endpoint of two different GPC analyses:

BuyseMultComp(list(hierarchical = BT.H, Obrien = BT.nH), cluster = "id")

```
- Univariate tests:
                estimate
                                 se
                                      lower.ci
                                                 upper.ci null
                                                                 p.value lower.band
hierarchical -0.10092285 0.09971277 -0.2901336 0.09588144
                                                            0 0.3147770 -0.3014645
            -0.05949414 0.08700807 -0.2266953 0.11111326
                                                             0 0.4951361 -0.2368800
Obrien
             upper.band adj.p.value
hierarchical 0.1081696
                          0.3831444
Obrien
              0.1217304
                          0.5851872
```

Finally the **sensitivity** method can also be used to adjust for multiple comparisons over multiple thresholds:

	time	estimate	lower.ci	upper.ci	p.value	lower.band	upper.band	adj.p.value
1	0.00000	-0.08752774	-0.27851884	0.11012263	0.3858177	-0.32450860	0.1597923	0.7746620
2	55.55556	-0.08095829	-0.25229456	0.09530004	0.3682107	-0.29401340	0.1397613	0.7528122
3	111.11111	-0.03170177	-0.17629003	0.11422560	0.6712414	-0.21223939	0.1509285	0.9810295
4	166.66667	0.01896964	-0.10713643	0.14447503	0.7688360	-0.13892698	0.1759257	0.9969925
5	222.22222	0.03315614	-0.07506821	0.14060850	0.5486177	-0.10250127	0.1676028	0.9257172
6	277.77778	0.04217485	-0.04914025	0.13279075	0.3653982	-0.07236883	0.1556205	0.7492675
7	333.33333	0.04112991	-0.03631838	0.11808708	0.2979105	-0.05604663	0.1375345	0.6544816
8	388.88889	0.04075638	-0.02402114	0.10519310	0.2174545	-0.04053858	0.1215153	0.5206881
9	444.44444	0.04097871	-0.01844156	0.10011054	0.1764199	-0.03359858	0.1151022	0.4429140
10	500.00000	0.03517173	-0.01915553	0.08929191	0.2044340	-0.03301187	0.1030295	0.4967546

Here by setting the argument band to TRUE (and adj.p.value to TRUE), we obtain confidence intervals (and p-values) adjusted for multiple comparisons. Said otherwise, the columns lower.ci and upper.ci provide a (pointwise) confidence interval with 95% coverage for a given threshold while the columns lower.band and upper.band provide a (simutaneous) confidence interval with 95% coverage across all given thresholds. The difference can be visualized using the autoplot method:

Simultaneous and pointwise confidence intervals are here of similar width due to the very high correlation between estimates across thresholds:

```
BTse.cor <- cor(lava::iid(BTse.ustat))
range(BTse.cor[lower.tri(BTse.cor)])</pre>
```

[1] 0.3716902 0.9848999

Note that with multiple endpoints, the thresholds can be specified using a list:

	time	karno	estimate	se	lower.ci	upper.ci	null	p.value
1	0.00000	0	-0.08754474	0.10044847	-0.2786016	0.11017738	0	0.3858987
2	55.55556	0	-0.11177487	0.09915501	-0.2995661	0.08435417	0	0.2636263
3	111.11111	0	-0.08618872	0.09822940	-0.2732475	0.10715096	0	0.3826244
4	166.66667	0	-0.05180121	0.09818252	-0.2400240	0.14017526	0	0.5984319
5	222.22222	0	-0.03668720	0.09810141	-0.2253052	0.15458146	0	0.7086747
6	277.77778	0	-0.02906324	0.09773146	-0.2172647	0.16122161	0	0.7663054

or a matrix:

```
grid <- expand.grid(list("time_t20" = seq(0,500,length = 10), "karno" = c(0,40,80)))
cbind(head(grid)," " = " ... ",tail(grid))
BTse.H2 <-sensitivity(BT.H, threshold = grid, trace = FALSE)
range(BTse.H-BTse.H2)</pre>
```

	time_t20	karno	time_t20	karno
1	0.00000	0	 222.2222	80
2	55.55556	0	 277.7778	80
3	111.11111	0	 333.3333	80
4	166.66667	0	 388.8889	80
5	222.22222	0	 444.4444	80
6	277.77778	0	 500.0000	80
[1] 0 0			

The latter should be used when the same endpoint is used at different priorities (each column correspond to the threshold that should be used at a priority). As before we can display the results using the autoplot function:

The autoplot function can only be used when 1 or 2 thresholds are varied at the same time.

2 Getting additional inside: looking at the pair level

So far we have looked at the overall score and probabilities. But it is also possible to extract the score relative to each pair, as well as to "manually" compute this score. This can give further inside on what the software is actually doing and what is the contribution of each individual on the evaluation of the treatment.

2.1 Extracting the contribution of each pair to the statistic

The net treatment benefit or the win ratio statistics can be expressed as a sum of a score over all pairs of patients. The argument keep.pairScore enables to export the score relative to each pair in the output of BuyseTest:

The method getPairScore can then be used to extract the contribution of each pair. For instance the following code extracts the contribution for the first endpoint:

getPairScore(BT.keep, endpoint = 1)

```
Key: <index.Exp, index.Pl>
       index.Pl index.Exp favorable unfavorable neutral uninf weight
           <num>
                       <num>
                                   <num>
                                                  <num>
                                                            <num> <num>
                                                                           <num>
                1
                          70
                                                      0
                                                                0
                                                                        0
                                                                                1
   1:
                                        1
   2:
               2
                          70
                                        1
                                                       0
                                                                0
                                                                        0
                                                                                1
               3
                          70
                                        1
                                                       0
                                                                0
                                                                        0
                                                                                1
   3:
                4
                                        1
                                                       0
                                                                0
                          70
                                                                        0
                                                                                1
   4:
   5:
               5
                          70
                                        1
                                                       0
                                                                0
                                                                        0
                                                                                1
  ___
                                        0
                                                                0
                                                                        0
4688:
              65
                         137
                                                       1
                                                                                1
4689:
              66
                         137
                                        0
                                                       1
                                                                0
                                                                        0
                                                                                1
4690:
              67
                         137
                                        0
                                                       1
                                                                0
                                                                        0
                                                                                1
                                        0
                                                                0
              68
                                                       1
                                                                        0
                                                                                1
4691:
                         137
              69
                                        0
                                                       1
                                                                0
                                                                                1
4692:
                         137
                                                                        0
```

Each line corresponds to different comparison between a pair from the control arm and the treatment arm. The column strata store to which strata the pair belongs (first, second, ...). The columns favorable, unfavorable, neutral, uninformative contains the result of the comparison, e.g. the first pair was classified as favorable while the last was classified as favorable with a weight of 1. The second and third columns indicates the rows in the original dataset corresponding to the pair:

veteran[c(70,1),]

	id	trt	celltype	time	status	karno	diagtime	age	prior
70	70	Exp	squamous	999	1	90	12	54	10
1	1	Pl	squamous	72	1	60	7	69	0

For the first pair, the event was observed for both observations and since 999 > 72 + 20 the pair is rated favorable. Substracting the average probability of the pair being favorable minus the average probability of the pair being unfavorable:

getPairScore(BT.keep, endpoint = 1)[, mean(favorable) - mean(unfavorable)]

[1] -0.08765836

gives the net treatment benefit in favor of the treatment for the first endpoint:

BT.keep

```
endpoint threshold delta Delta
time 20 -0.0877 -0.0877
karno -0.0133 -0.1009
```

More examples and explanation can be found in the documentation of the method getPairScore.

2.2 Extracting the survival probabilities

When using scoring.rule equals "Peron", survival probabilities at event time, and event times +/threshold in the control and treatment arms are used to score the pair. Setting keep.survival to TRUE and precompute to FALSE in BuyseTest.options enables to export the survival probabilities in the output of BuyseTest:

The method getSurvival can then be used to extract these survival probabilities. For instance the following code extracts the survival for the first endpoint:

```
outSurv <- getSurvival(BT.keep2, endpoint = 1, strata = 1)
str(outSurv)</pre>
```

List of 5

```
$ survTimeC: num [1:69, 1:13] 72 411 228 126 118 10 82 110 314 100 ...
..- attr(*, "dimnames")=List of 2
....$ : NULL
....$ : chr [1:13] "time" "survivalC-threshold" "survivalC_0" "survivalC+threshold" ...
$ survTimeT: num [1:68, 1:13] 999 112 87 231 242 991 111 1 587 389 ...
..- attr(*, "dimnames")=List of 2
....$ : NULL
....$ : NULL
....$ : chr [1:13] "time" "survivalC-threshold" "survivalC_0" "survivalC+threshold" ...
$ survJumpC: num [1:57, 1:6] 3 4 7 8 10 11 12 13 16 18 ...
..- attr(*, "dimnames")=List of 2
....$ : NULL
....$ : NULL
....$ : NULL
....$ : NULL
```

```
$ survJumpT: num [1:51, 1:6] 1 2 7 8 13 15 18 19 20 21 ...
..- attr(*, "dimnames")=List of 2
....$ : NULL
....$ : chr [1:6] "time" "survival" "dSurvival" "index.survival" ...
$ lastSurv : num [1:2] 0 0
```

2.2.1 Computation of the score with only one censored event

Let's look at pair 91:

getPairScore(BT.keep2, endpoint = 1, rm.withinStrata = FALSE)[91]

Ke	Key: <index.exp, index.pl=""></index.exp,>										
	index.Pl	index.E	xp in	dexWithinStrata.Pl	<pre>indexWithinStrata.Exp</pre>	favorable	unfavorable				
	<num></num>	<nu< td=""><td>m></td><td><num></num></td><td><num></num></td><td><num></num></td><td><num></num></td></nu<>	m>	<num></num>	<num></num>	<num></num>	<num></num>				
1:	22		71	22	2	0	0.6950827				
	neutral	uninf	weigh	ıt							
	<num></num>	<pre>> <num></num></pre>	<num< td=""><td>1></td><td></td><td></td><td></td></num<>	1>							
1:	0.3049173	3 0		1							

In the dataset this corresponds to:

	id	trt	celltype	time	status	karno	diagtime	age	prior
22	22	Pl	smallcell	97	0	60	5	67	0
71	71	Exp	squamous	112	1	80	6	60	0

The observation from the control group is censored at 97 while the observation from the treatment group has an event at 112. Since the threshold is 20, and (112-20)<97, we know that the pair is not in favor of the treatment. The formula for probability in favor of the control is $\frac{S_c(97)}{S_c(112+20)}$. The survival at the event time in the censoring group is stored in survTimeC. Since observation 22 is the 22th observation in the control group:

```
iSurv <- outSurv$survTimeC[22,]
iSurv</pre>
```

time	survivalC-threshold	survivalC_0
97.000000	0.5615232	0.5171924
survivalC+threshold	survivalT-threshold	survivalT_0
0.4235463	0.4558824	0.3643277
survivalT+threshold	<pre>index.survivalC-threshold</pre>	<pre>index.survivalC_0</pre>
0.2827500	25.000000	28.000000
index.survivalC+threshold	<pre>index.survivalT-threshold</pre>	<pre>index.survivalT_0</pre>
33.000000	27.000000	32.000000
index.survivalT+threshold		
35.000000		

Since we are interested in the survival in the control arm exactly at the event time:

```
Sc97 <- iSurv["survivalC_0"]
Sc97</pre>
```

survivalC_0 0.5171924

The survival at the event time in the treatment group is stored in survTimeC. Since observation 71 is the 2nd observation in the treatment group:

```
iSurv <- outSurv$survTimeT[2,] ## survival at time 112+20
iSurv</pre>
```

<pre>survivalC_0</pre>	survivalC-threshold	time
0.4549201	0.5319693	112.0000000
survivalT_0	survivalT-threshold	survivalC+threshold
0.2827500	0.3801681	0.3594915
<pre>index.survivalC_0</pre>	index.survivalC-threshold	survivalT+threshold
32.000000	27.000000	0.2827500
<pre>index.survivalT_0</pre>	index.survivalT-threshold	index.survivalC+threshold
35.000000	31.000000	37.000000
		index.survivalT+threshold
		35.000000

Since we are interested in the survival in the control arm at the event time plus threshold:

```
Sc132 <- iSurv["survivalC+threshold"]
Sc132</pre>
```

survivalC+threshold 0.3594915

The probability in favor of the control is then:

Sc132/Sc97

survivalC+threshold 0.6950827

2.2.2 Computation of the score with two censored events

When both observations are censored, the formula for computing the probability in favor of treatment or control involves an integral. This integral can be computed using the function calcIntegralSurv_cpp that takes as argument a matrix containing the survival and the jumps in survival, e.g.:

head(outSurv\$survJumpT)

	time	survival	dSurvival	<pre>index.survival</pre>	<pre>index.dsurvival1</pre>	<pre>index.dsurvival2</pre>
[1,]	1	0.7681159	-0.02941176	12	0	1
[2,]	2	0.7536232	-0.01470588	13	1	2
[3,]	7	0.7388463	-0.02941176	14	2	3
[4,]	8	0.7388463	-0.02941176	14	3	4
[5,]	13	0.7092924	-0.01470588	16	4	5
[6,]	15	0.6945155	-0.02941176	17	5	6

and the starting time of the integration time. For instance, let's look at pair 148:

```
getPairScore(BT.keep2, endpoint = 1, rm.withinStrata = FALSE)[148]
```

```
Key: <index.Exp, index.Pl>
```

	index.Pl	<pre>index.Exp</pre>	inde	xWithinStrata.Pl	${\tt indexWithinStrata.Exp}$	favorable	unfavorable
	<num></num>	<num></num>		<num></num>	<num></num>	<num></num>	<num></num>
1:	10	72		10	3	0.5058685	0.3770426
	neutral	uninf we	ight				
	<num></num>	<num> <</num>	num>				
1:	0.1170889	0	1				

which corresponds to the observations:

veteran[c(10,72),]

	id	trt	celltype	time	status	karno	diagtime	age	prior
10	10	Pl	squamous	100	0	70	6	70	0
72	72	Exp	squamous	87	0	80	3	48	0

The probability in favor of the treatment (p_F) and control (p_{UF}) can be computed as:

$$p_F = -\frac{1}{S_T(x)S_C(y)} \int_{t>y} S_T(t+\tau) dS_C(t)$$
$$p_{UF} = -\frac{1}{S_T(x)S_C(y)} \int_{t>x} S_C(t+\tau) dS_T(t)$$

where x = 87 and y = 100. To ease the call of calcIntegralScore_cpp we create a warper:

and then call it to compute the probabilities:

favorable unfavorable lowerBound 0.5058685 0.3770426 upperBound 0.5058685 0.3770426

Note: the lower bound is identical to the upper bound as we could estimate the full survival curve:

outSurv\$lastSurv

[1] 0 0

3 Dealing with missing values or/and right censoring

In presence of censoring or missing values, it is often not be possible to classify all pairs without a model for the censoring mechanism. The unclassified pairs, called uninformative, have a score of 0 which will typically bias the estimate of the net net treatment benefit towards 0⁵. Consider the following dataset:

	id	treatment	eventtimeUncensored	eventtime	status	toxicity	eta_toxicity	status1
	<num></num>	<fctr></fctr>	<num></num>	<num></num>	<num></num>	<fctr></fctr>	<num></num>	<num></num>
1:	1	C	0.2135567	0.2135567	1	yes	-0.07945702	1
2:	2	C	0.3422379	0.3422379	1	no	1.18175155	1
3:	3	C	1.3933222	1.3933222	1	no	2.18614406	1
4:	4	C	0.6737702	0.1961599	0	no	0.40617493	1
5:	5	C	0.5642992	0.5642992	1	yes	-0.73835910	1
6:	6	C	1.1039218	0.1764950	0	yes	-1.95648670	1

where we have the uncensored event times (eventtimeUncensored) as well as the censored event times (eventtime). The percentage of censored observations is:

100*dt[,mean(status==0)]

[1] 44

We would like to be able to recover the net treatment benefit estimated with the uncensored event times:

endpoint threshold Delta eventtimeUncensored 0.5 -0.271

using the censored survival times.

⁵While the power is typically reduced, the type 1 error will still be controled if censoring is at random

The BuyseTest function handles missing values via two arguments:

- scoring.rule indicates how pairs involving missing data are compared.
 - the Gehan's scoring rule compares the observed values. If it is not possible to decide whether one observation has a better endpoint than the other (e.g. because both are right-censoring) then the paired is scored uninformative.
 - the Peron's scoring rule compares the probability of one observation having a better endpoint than the other given the observed values. This require a model for the censoring distribution. If the full survival curve can be identified then all pairs can be fully classified otherwise some of the pair will be partially uninformative.
 - the Efron's scoring rule same as the Peron's scoring rule except that the survival curve is extrapolated to 0 when its tail is unknown. Only relevant when using a (stratified) Kaplan-Meier estimator and no competing risks.
- correction.uninf indicates what to do with the uninformative scores. For instance setting this argument to TRUE will re-distribute this score to favorable/unfavorable/neutral scores.

The Peron's scoring rule is the default (and recommanded) approach. It uses a Kaplan Meier estimator stratified on treatment and GPC strata variable (if any) as survival model. When the last observation is censored, then part of the survival curve is unknown which can be necessary to score some of the pairs (especially in presence of a threshold of clinical relevance). One can:

- use a restriction time within the time interval where the survival curve can be estimated for each group.
- still use the default Peron's scoring rule: this will lead to uninformative pairs which can be reclassified based on a lower priority endpoint.
- use the Peron's scoring rule with another survival model, using parametric assumptions to inform about the unknown part of the survival curve. This can be achieved via the model.tte argument or using the Efron's scoring rule.
- use an add-hoc correction for the uninformative pairs (correction.uninf)

The first two solutions lead to a change of estimand, the first being much more clearly defined than the second. The last two solutions correspond to make statistical assumptions, the former assumptions being more explicit than with the later solution.

3.1 Gehan's scoring rule

In the example, Gehan's scoring rule:

```
endpoint threshold total favorable unfavorable neutral uninf Delta lower.ci
1 eventtime 0.5 100 4.67 14.39 20.44 60.5 -0.0972 -0.1593869
    upper.ci p.value
1 -0.03424474 0.002514882
```

leads to many uninformative pairs (about 60%) and an estimate much closer to 0 than the truth.

3.2 Peron's scoring rule

In the example, Peron's scoring rule:

```
endpoint threshold total favorable unfavorable neutral uninf Delta lower.ci

1 eventtime 0.5 100 11.1737 43.33707 44.12373 1.365504 -0.3216337 -0.4584262

upper.ci p.value

1 -0.1699543 5.385074e-05
```

leads to no uninformative pairs. Indeed the last observation in each group is an (uncensored) event:

```
dt[,.SD[which.max(eventtime)],by="treatment"]
```

	treatment	id	eventtimeUncensored	eventtime	status	toxicity	<pre>eta_toxicity</pre>	status1
	<fctr></fctr>	<num></num>	<num></num>	<num></num>	<num></num>	<fctr></fctr>	<num></num>	<num></num>
1:	C	72	2.668629	2.668629	1	yes	-1.9256436	1
2:	Т	154	1.674053	1.588657	0	yes	-0.8647272	1

so the full survival curve could be identified. As a result the estimate is very close to the truth.

<u>Note 1</u>: the censoring model can be specified by first fitting a survival model (prodlim or survreg) for the survival time:

```
library(prodlim)
e.prodlim <- prodlim(Hist(eventtime, status) ~ treatment, data = dt)</pre>
```

Then passing the model to the BuyseTest via the model.tte argument:

endpoint threshold total favorable unfavorable neutral uninf Delta lower.ci 1 eventtime 0.5 100 11.1737 43.33707 44.12373 1.365504 -0.3216337 -0.4584262 upper.ci p.value 1 -0.1699543 5.385074e-05 When the dataset used to fit the survival model match the one used to run the GPC procedure, the overall uncertainty will be computed. Otherwise:

```
Uncertainty related to the estimation of the survival probabilities is ignored.
Consider adding an attribute "iidNuisance" to the argument 'model.tte' taking value TRUE to change
endpoint threshold total favorable unfavorable neutral uninf Delta lower.ci
1 eventtime 0.5 100 11.1737 43.33707 44.12373 1.365504 -0.3216337 -0.4187087
upper.ci p.value
1 -0.2172912 6.570106e-09
```

the survival probabilities will assumed to be known with infinite precision and only the uncertainty of the GPC procedure will be considered. Add-hoc modification of the data can be used to obtain 'conservative' estimates when considering a single endpoint, e.g.:

```
endpoint threshold total favorable unfavorable neutral uninf Delta lower.ci

1 eventtime 0.5 100 11.1737 43.97856 44.84774 0 -0.3280486 -0.4378751

upper.ci p.value

1 -0.2085751 2.25273e-07
```

Note 2: it is possible to use a parametric model via the **survreg** function:

Then passing the model to the BuyseTest via the model.tte argument:

```
endpoint threshold total favorable unfavorable neutral uninf Delta lower.ci

1 eventtime 0.5 100 11.65444 34.18937 54.14472 0.01147085 -0.2253494 -0.3476693

upper.ci p.value

1 -0.09548719 0.0007624659
```

Internally the survival curve is discretized using 1000 points starting from survival = 1 to survival = 0.001 (this is why there is a non-0 but small percentage of uninformative pairs). This is performed internally by applying the BuyseTTEM method. Another discretisation can be obtained by calling BuyseTTEM with another value for the n.grid argument:

```
e.TTEM <- BuyseTTEM(e.survreg, treatment = "treatment", iid = TRUE, n.grid = 2500)
str(e.TTEM$peron$jumpSurvHaz[[1]][[1]])</pre>
```

```
'data.frame': 2500 obs. of 3 variables:
$ index.jump: logi NA NA NA NA NA NA ...
$ time.jump : num 0 0.000307 0.000632 0.000964 0.001301 ...
$ survival : num 1 1 0.999 0.999 0.998 ...
```

and then passing to BuyseTest:

endpoint threshold total favorable unfavorable neutral uninf Delta lower.ci
1 eventtime 0.5 100 11.64894 34.18631 54.16019 0.004558007 -0.2253737 -0.3476861
 upper.ci p.value
1 -0.09551899 0.0007609754

It is therefore possible to extend the approach to other model by defining an appropriate BuyseTTEM method. Looking at the code use for defining BuyseTTEM.survreg can be helpful.

3.3 Correction via re-weighting

The weights of the non-informative pairs is redistributed to the informative pairs. This is only a good strategy when there are no neutral pairs or there are no lower priority endpoints. This gives an estimate much closer to the true net treatment benefit:

Generalized pairwise comparisons with 1 endpoint

```
statistic : net treatment benefit (delta: endpoint specific, Delta: global)
treatment groups: T (treatment) vs. C (control)
censored pairs : deterministic score or uninformative
uninformative pairs: no contribution, their weight is passed to the informative pairs using IPCW
results
endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta
eventtime 0.5 100 11.82 36.43 51.75 0 -0.2461
```

We can also see that no pair is finally classified as non informative. To get some inside about the correction we can look at the scores of the pairs:

```
iScore <- getPairScore(BT, endpoint = 1)</pre>
```

To get a synthetic view, we only look at the unique favorable/unfavorable/neutral/uniformative results:

```
iScore[,.SD[1],
.SDcols = c("favorableC","unfavorableC","neutralC","uninfC"),
by = c("favorable","unfavorable","neutral","uninf")]
```

	favorable	unfavorable	neutral	uninf	favorableC	unfavorableC	neutralC	uninfC
	<num></num>	<num></num>	<num></num>	<num></num>	<num></num>	<num></num>	<num></num>	<num></num>
1:	0	0	1	0	0.00000	0.00000	2.531646	0
2:	0	1	0	0	0.00000	2.531646	0.000000	0
3:	0	0	0	1	0.00000	0.00000	0.000000	0
4:	1	0	0	0	2.531646	0.000000	0.000000	0
3:		1 0 0	0	0 1 0	0.000000	0.000000	0.000000	0 0 0

We can see that the favorable/unfavorable/neutral pairs have seen their contribution multiplied by:

iScore[,1/mean(favorable + unfavorable + neutral)]

[1] 2.531646

i.e. the inverse probability of being informative.

3.4 Correction at the pair level

Another possible correction is to distribute the non-informative weight of a pair to the average favorable/unfavorable/neutral probability observed on the sample:

Generalized pairwise comparisons with 1 endpoint

```
statistic : net treatment benefit (delta: endpoint specific, Delta: global)
treatment groups: T (treatment) vs. C (control)
censored pairs : deterministic score or uninformative
uninformative pairs: score equals the averaged score of all informative pairs
results
endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta
eventtime 0.5 100 11.82 36.43 51.75 0 -0.2461
```

Looking at the scores of the pairs:

```
iScore <- getPairScore(BT, endpoint = 1)
iScore[,.SD[1],
    .SDcols = c("favorableC","unfavorableC","neutralC","uninfC"),
    by = c("favorable","unfavorable","neutral","uninf")]</pre>
```

t	favorable	unfavorable	neutral	uninf	favorableC	unfavorableC	neutralC	uninfC
	<num></num>	<num></num>	<num></num>	<num></num>	<num></num>	<num></num>	<num></num>	<num></num>
1:	0	0	1	0	0.0000000	0.000000	1.0000000	0
2:	0	1	0	0	0.0000000	1.0000000	0.0000000	0
3:	0	0	0	1	0.1182278	0.3643038	0.5174684	0
4:	1	0	0	0	1.0000000	0.000000	0.0000000	0

we can see that the corrected probability have not changed for the informative pairs, but for the non-informative they have been set to:

favorable unfavorable neutral <num> <num> <num> 1: 0.1182278 0.3643038 0.5174684

3.5 Note on the use of the corrections

As mentioned in Péron et al. (2021), the corrections (at the pair level or IPCW) are assumes that uninformative pairs would on average behave like informative pairs. This is typically the case under the proportional hazard assumption. However that may not be the case with other distributions, e.g.:

Here the net treatment benefit that we would have estimated with complete data:

```
BuyseTest.options(method.inference = "none")
e.ref <- BuyseTest(group ~ tte(time,status), data = df, trace = FALSE)
s.ref <- model.tables(e.ref, column = c("favorable","unfavorable","neutral","uninf","Delta"))
s.ref</pre>
```

favorable unfavorable neutral uninf Delta 1 50.2048 49.7952 0 0 0.004096

can be taken as a reference. Violation of the assumption will in this example have a substantial impact and lead to a worse estimate with the correction:

```
e.correction <- BuyseTest(group ~ tte(timeC,statusC), data = df, trace = FALSE, correction.
    uninf = TRUE)
s.correction <- model.tables(e.correction, column = c("favorable","unfavorable","neutral","
    uninf","Delta"))
```

Warning message:

In .BuyseTest(envir = envirBT, iid = outArgs\$iid, method.inference = "none", :

Some of the survival curves for endpoint(s) "timeC" are unknown beyond a survival of 0.25. The correction of uninformative pairs assume that uninformative pairs would on average behave like This can be a strong assumption and have substantial impact when the tail of the survival curve is

than without:

```
e.Peron <- BuyseTest(group ~ tte(timeC,statusC), data = df, trace = FALSE)
s.Peron <- model.tables(e.Peron, column = c("favorable","unfavorable","neutral","uninf","Delta
"))
rbind("reference" = s.ref,
    "no correction" = s.Peron,
    "correction" = s.correction)</pre>
```

	favorable	unfavorable	neutral	uninf	Delta
reference	50.20480	49.79520	0	0.00000	0.00409600
no correction	49.09253	39.74775	0	11.15972	0.09344778
correction	55.25931	44.74069	0	0.00000	0.10518628

4 Simulating data using simBuyseTest

You can simulate data with the simBuyseTest function. For instance the following code simulates data for 5 individuals in the treatment arm and 5 individuals in the control arm:

set.seed(10)
simBuyseTest(n.T = 5, n.C = 5)

	id	treatment	eventtime	status	toxicity	score
	<int></int>	<fctr></fctr>	<num></num>	<num></num>	<fctr></fctr>	<num></num>
1:	1	C	0.60539304	0	yes	-1.85374045
2:	2	C	0.31328027	1	yes	-0.07794607
3:	3	C	0.03946623	0	yes	0.96856634
4:	4	C	0.32147489	1	yes	0.18492596
5:	5	C	1.57044952	0	yes	-1.37994358
6:	6	Т	0.29069131	0	no	1.10177950
7:	7	Т	0.19522131	0	yes	0.75578151
8:	8	Т	0.04640668	0	yes	-0.23823356
9:	9	Т	0.05277335	1	yes	0.98744470
10:	10	Т	0.43062009	1	yes	0.74139013

By default a categorical, continuous and time to event outcome are generated independently. You can modify their distribution via the arguments argsBin, argsCont, argsTTE. For instance the following code simulates two continuous variables with mean 5 in the treatment arm and 10 in the control arm all with variance 1:

	id	treatment	eventtime	status	toxicity	tumorSize	score
	<int></int>	<fctr></fctr>	<num></num>	<num></num>	<fctr></fctr>	<num></num>	<num></num>
1:	1	C	0.1805891	0	yes	11.086551	8.564486
2:	2	C	0.1702538	1	yes	9.237455	10.362087
3:	3	C	0.2621793	1	no	9.171337	8.240913
4:	4	C	0.2959301	0	no	10.834474	9.675456
5:	5	C	0.4816549	1	yes	9.032348	9.348437
6:	6	Т	0.6446131	1	no	5.089347	6.101780
7:	7	Т	0.7372264	1	yes	4.045056	5.755782
8:	8	Т	0.7213402	0	yes	4.804850	4.761766
9:	9	Т	0.1580651	1	yes	5.925521	5.987445
10:	10	Т	0.2212117	0	yes	5.482979	5.741390

This functionality is based on the sim function of the lava package.

5 Power calculation using powerBuyseTest

The function **powerBuyseTest** can be used to perform power calculation, i.e., estimate the probability of rejecting a null hypothesis under a specific generative mechanism. The user therefore need to specify:

• the generative mechanism via a function	- argument sim
• the null hypothesis	- argument null
• the sample size(s) for the which the power should be computed	- argument sample.size

Consider the following generative mechanism where the outcome follows a Student's t-distribution in the treatment and control group, with same variance and degrees of freedom but different mean:

	Y	group
	<num></num>	<num></num>
1:	0.02241932	0
2:	-1.07273566	0
3:	0.76072274	0
4:	-0.25812356	0
5:	0.97207866	0
198:	1.82349375	1
199:	-0.98560076	1
200:	1.48143637	1
201:	3.69314316	1
202:	0.96244416	1

We then define the null hypothesis:

null <- c("netBenefit" = 0)</pre>

Naming the value is important since that will indicate which statistic should be used (here the net treatment benefit). We can assess the power of a test based on the net treatment benefit using the following syntax:

And use the summary method to display the power (column rejection.rate):

summary(powerW)

It is also possibly to use an asymptotic approximation to derive a approximate sample size satisfying a specific type 1 and type 2 error rate:

This procedure is inspired from the procedure presented by Brunner et al. (2018) in section 3.8.2.2. In short, several 'large' datasets are generated and analyzed using GPC to approximate the statistic of interest (Δ) and its asymptotic variance (σ^2). The sample size needed to achieve the requested power $(1 - \beta)$ and the requested type 1 error (α) is then deduce, give a dataset, according to the equation $N = \sigma^2 \frac{(u_{1-\alpha/2}+u_{1-\beta})^2}{\Delta^2}$ where u_x denotes the x-quantile of the normal distribution. The estimated sample size is then the average calculated sample size across dataset. The argument max.sample.size specifies the number of observation per group in the 'large' dataset (here 1000 per group) and the second element of the argument n.rep specifies the number of datasets (here 10). The quality of the approximation, as well as the computation time, thus improves when increasing max.sample.size and n.rep[2]. The achieved power with the estimated sample size can be output as usual using the summary method:

summary(nW)

Sample size calculation with Generalized pairwise comparison for a power of 0.8 and type 1 error rate of 0.05

- estimated sample size (mean [min;max]): 89 [60;145] controls 89 [60;145] treated - net benefit statistic (null hypothesis Delta=0) endpoint threshold n.T n.C mean.estimate sd.estimate mean.se rejection.rate 0.2452 Y 1e-12 89 89 0.0854 0.0834 0.806 n.T : number of observations in the treatment group : number of observations in the control group n.C mean.estimate: average estimate over simulations sd.estimate : standard deviation of the estimate over simulations mean.se : average estimated standard error of the estimate over simulations : frequency of the rejection of the null hypothesis over simulations rejection (standard error: H-projection of order 1| p-value: after transformation)

6 Modifying default options

The BuyseTest.options method enable to get and set the default options of the BuyseTest function. For instance, the default option for trace is:

BuyseTest.options("trace")

\$trace

[1] 2

To change the default option to 0 (i.e. no output) use:

BuyseTest.options(trace = 0)

To change what the results output by the summary function use:

Generalized pairwise comparisons with 1 endpoint
- statistic : net benefit (delta: endpoint specific, Delta: global)
- null hypothesis : Delta == 0
- treatment groups: T (treatment) vs. C (control)
- censored pairs : deterministic score or uninformative
- uninformative pairs: score equals the averaged score of all informative pairs
- results
endpoint threshold Delta information(%)
eventtime 0.5 -0.2461 100

To restore the original default options do:

BuyseTest.options(reinitialise = TRUE)

References

- Ajufo, E., Nayak, A., and Mehra, M. R. (2023). Fallacies of using the win ratio in cardiovascular trials: challenges and solutions. *Basic to Translational Science*, 8(6):720–727.
- Brunner, E., Bathke, A. C., and Konietschke, F. (2018). Rank and pseudo-rank procedures for independent observations in factorial designs. Springer.
- Buyse, M. (2010). Generalized pairwise comparisons of prioritized outcomes in the two-sample problem. *Statistics in medicine*, 29(30):3245–3257.
- Buyse, M., Verbeeck, J., Saad, E. S., De Backer, M., Deltuvaite-Thomas, V., and Molenberghs, G. (2025). Handbook of Generalized Pairwise Comparisons Methods for Patient-Centric Analysis. Chapman & Hall.
- Dong, G., Qiu, J., Wang, D., and Vandemeulebroecke, M. (2018). The stratified win ratio. Journal of biopharmaceutical statistics, 28(4):778–796.
- Ozenne, B., Budtz-Jørgensen, E., and Péron, J. (2021). The asymptotic distribution of the net benefit estimator in presence of right-censoring. *Statistical methods in medical research*, 30(11):2399–2412.
- Péron, J., Buyse, M., Ozenne, B., Roche, L., and Roy, P. (2018). An extension of generalized pairwise comparisons for prioritized outcomes in the presence of censoring. *Statistical methods in medical research*, 27(4):1230–1239.
- Péron, J., Idlhaj, M., Maucort-Boulch, D., Giai, J., Roy, P., Collette, L., Buyse, M., and Ozenne, B. (2021). Correcting the bias of the net benefit estimator due to right-censored observations. *Biometrical Journal*, 63(4):893–906.
- Piffoux, M., Ozenne, B., De Backer, M., Buyse, M., Chiem, J.-C., and Péron, J. (2024). Restricted net treatment benefit in oncology. *Journal of Clinical Epidemiology*, 170:111340.
- Verbeeck, J., Spitzer, E., de Vries, T., van Es, G., Anderson, W., Van Mieghem, N., Leon, M., Molenberghs, G., and Tijssen, J. (2019). Generalized pairwise comparison methods to analyze (non) prioritized composite endpoints. *Statistics in medicine*.