Introduction

This vignette describes the implemention for a “graphical VAR” in BGGM. In BGGM, this is fitted as a multivariate regression. The key innovation is a novel prior distribution for the residual covariance matrix. There are a variety of much cooler names than a mere “multivariate regression”, including “VAR” (vector autoregressive models) and “TSCGM” (time series chain graphical model).

R package

# need the developmental version
if (!requireNamespace("remotes")) { 
  install.packages("remotes")   
}   

# install from github
remotes::install_github("donaldRwilliams/BGGM")
library(BGGM)

# for comparsion
library(vars)

# for plotting
library(qgraph)

# combine plots
library(cowplot)

Data

I use data from the ifit (fit bit) study. The data were gathered over 100 consecutive days on a variety of variables, including the PANAS scale (positive and negative affect) and the number of steps each day. BGGM includes a subset of variables for two individuals.

# data
Y <- subset(ifit, id == 1)[,-1]

# first 3 rows
head(Y, n = 3)

#>  interested disinterested excited upset strong stressed steps
#>         72            10      50     2     50       16  7805
#>         75             6      75     0     76        0 18248
>#         36            58      38     5     45        1 12139

Estimation

The methods in BGGM are organized around Bayesian “estimation” and “hypothesis testing”. This is to reach a broader audience, as former is more similar to classical methods (those more familiar to researchers).

Fit Model

With the data in hand, the model is fitted as follows

# fit model
fit <- var_estimate(Y, beta_sd = 1)

Note that beta_sd is the prior distribution for the regression coefficients. A smaller value, say, beta_sd = 0.25, results in a Bayesian ridge regression. Note also this model, including 5000 draws from the posterior, was estimated in less than 1 second.

The results can then be printed

# print 
fit

#> BGGM: Bayesian Gaussian Graphical Models 
#> --- 
#> Vector Autoregressive Model (VAR) 
#> --- 
#> Posterior Samples: 5000 
#> Observations (n): 94 
#> Nodes (p): 7 
#> --- 
#> Call: 
#> var_estimate(Y = Y, beta_sd = 10)
#> --- 
#> Partial Correlations: 
#> 
#>               interested disinterested excited  upset strong stressed  steps
#> interested         0.000        -0.170   0.388 -0.217  0.313    0.268  0.089
#> disinterested     -0.170         0.000  -0.172 -0.029  0.094    0.160 -0.078
#> excited            0.388        -0.172   0.000 -0.126  0.500   -0.161 -0.016
#> upset             -0.217        -0.029  -0.126  0.000  0.118    0.350 -0.039
#> strong             0.313         0.094   0.500  0.118  0.000   -0.010  0.176
#> stressed           0.268         0.160  -0.161  0.350 -0.010    0.000 -0.038
#> steps              0.089        -0.078  -0.016 -0.039  0.176   -0.038  0.000
#> --- 
#> Coefficients: 
#> 
#>                  interested disinterested excited  upset strong stressed  steps
#> interested.l1         0.230        -0.009   0.182 -0.102  0.178    0.018  0.113
#> disinterested.l1     -0.051        -0.007   0.056 -0.019  0.049    0.091 -0.023
#> excited.l1           -0.088        -0.196   0.003  0.057 -0.093    0.092  0.106
#> upset.l1             -0.155         0.262  -0.097  0.435  0.057    0.324 -0.091
#> strong.l1             0.026         0.182   0.026  0.048  0.189   -0.073 -0.196
#> stressed.l1          -0.021        -0.014  -0.033 -0.048 -0.079    0.152  0.133
#> steps.l1             -0.157         0.180  -0.211  0.155 -0.092    0.209  0.042
#> --- 
#> Date: Thu Jun 04 08:54:04 2020 

Note that the coefficients are comparable, given each variable has been standardized (e.g., the predictors and the outcome are standardized). BGGM does not compute the partial directed correlation (PDC) by default (as in graphicalVAR). This is because the standardized effects can readily be tested with the Bayes factor, both across and within each model, whereas this does not seem straightforward for the PDC (which requires a transformation).

Compare to Classical

Here are the estimates from the vars package

t(round(
  vars::Bcoef( 
  vars:::VAR(scale(na.omit(Y)), type = "none")), 
  digits = 3)
)

#>                  interested disinterested excited  upset strong stressed  steps
#> interested.l1         0.229        -0.012   0.184 -0.100  0.180    0.015  0.112
#> disinterested.l1     -0.050        -0.006   0.057 -0.019  0.050    0.092 -0.022
#> excited.l1           -0.088        -0.193   0.002  0.056 -0.091    0.093  0.106
#> upset.l1             -0.155         0.260  -0.096  0.436  0.058    0.321 -0.092
#> strong.l1             0.027         0.182   0.025  0.047  0.188   -0.073 -0.192
#> stressed.l1          -0.021        -0.012  -0.033 -0.046 -0.077    0.152  0.133
#> steps.l1             -0.157         0.183  -0.210  0.153 -0.093    0.207  0.041

Recall that the “estimation” methods are similar to, in this case, ordinary least squares. The graphical structure in BGGM is determined with credible intervals, which will be quite similar to using confidence intervals. Hence for those researchers unfamiliar with Bayesian methods the “estimation” methods are perhaps a nice place to start.

Summarize Model

The model can also be summarized with

print(
  summary(fit,  cred = 0.95), 
  param = "pcor"
  )


#> BGGM: Bayesian Gaussian Graphical Models 
#> --- 
#> Vector Autoregressive Model (VAR) 
#> --- 
#> Partial Correlations: 
#> 
#>                   Relation Post.mean Post.sd Cred.lb Cred.ub
#>  interested--disinterested    -0.170   0.108  -0.382   0.044
#>        interested--excited     0.388   0.085   0.219   0.546
#>     disinterested--excited    -0.172   0.104  -0.369   0.049
#>          interested--upset    -0.217   0.106  -0.417   0.000
#>       disinterested--upset    -0.029   0.101  -0.239   0.161
#>             excited--upset    -0.126   0.098  -0.315   0.066
#>         interested--strong     0.313   0.090   0.135   0.480
#>      disinterested--strong     0.094   0.112  -0.120   0.318
#>            excited--strong     0.500   0.078   0.337   0.645
#>              upset--strong     0.118   0.109  -0.100   0.325
#>       interested--stressed     0.268   0.102   0.058   0.460
#>    disinterested--stressed     0.160   0.100  -0.049   0.351
#>          excited--stressed    -0.161   0.099  -0.358   0.031
#>            upset--stressed     0.350   0.091   0.166   0.519
#>           strong--stressed    -0.010   0.107  -0.212   0.201
#>          interested--steps     0.089   0.108  -0.123   0.297
#>       disinterested--steps    -0.078   0.108  -0.284   0.125
#>             excited--steps    -0.016   0.100  -0.207   0.182
#>               upset--steps    -0.039   0.107  -0.245   0.178
#>              strong--steps     0.176   0.101  -0.024   0.364
#>            stressed--steps    -0.038   0.108  -0.236   0.193
#> --- 

The coefficients can also be printed by changing param to either all or beta, The summary can also be plotted. Here are the coefficients

plts <- plot(summary(fit,  cred = 0.95))

cowplot::plot_grid(
  cowplot::plot_grid(
                   plts$beta_plt$interested, 
                   plts$beta_plt$disinterested, 
                   plts$beta_plt$excited, 
                   nrow = 1),
cowplot::plot_grid(  
                   plts$beta_plt$upset,
                   plts$beta_plt$strong,
                   plts$beta_plt$stressed, 
                   nrow = 1
                  ), 
                  nrow = 2)

There is a plot for the partial correlations in the object plts.

Select Graph

The graphs are selected with

select(fit, cred = 0.95)

#> BGGM: Bayesian Gaussian Graphical Models 
#> --- 
#> Vector Autoregressive Model (VAR) 
#> --- 
#> Posterior Samples: 5000 
#> Credible Interval: 95 % 
#> --- 
#> Call: 
#> var_estimate(Y = Y, beta_sd = 10)
#> --- 
#> Partial Correlations: 
#> 
#>               interested disinterested excited  upset strong stressed steps
#> interested         0.000             0   0.388 -0.217  0.313    0.268     0
#> disinterested      0.000             0   0.000  0.000  0.000    0.000     0
#> excited            0.388             0   0.000  0.000  0.500    0.000     0
#> upset             -0.217             0   0.000  0.000  0.000    0.350     0
#> strong             0.313             0   0.500  0.000  0.000    0.000     0
#> stressed           0.268             0   0.000  0.350  0.000    0.000     0
#> steps              0.000             0   0.000  0.000  0.000    0.000     0
#> --- 
#> Coefficients: 
#> 
#>                  interested disinterested excited upset strong stressed steps
#> interested.l1             0         0.000       0 0.000      0    0.000     0
#> disinterested.l1          0         0.000       0 0.000      0    0.000     0
#> excited.l1                0         0.000       0 0.000      0    0.000     0
#> upset.l1                  0         0.262       0 0.435      0    0.324     0
#> strong.l1                 0         0.000       0 0.000      0    0.000     0
#> stressed.l1               0         0.000       0 0.000      0    0.000     0
#> steps.l1                  0         0.000       0 0.000      0    0.209     0
#> --- 

Plot Graph

For plotting, I use the qgraph package.

par(mfrow=c(1,2))
qgraph::qgraph(sel$pcor_weighted_adj, title = "Partials")
qgraph::qgraph(sel$beta_weighted_adj, title = "Coefficients")

Predictability

Finally, it is also possible to compute predictability, in this case Bayesian \(R^2\)

r2 <- predictability(fit)

# print
r2

#> BGGM: Bayesian Gaussian Graphical Models 
#> --- 
#> Metric: Bayes R2
#> Type: continuous 
#> --- 
#> Estimates:
#> 
#>           Node Post.mean Post.sd Cred.lb Cred.ub
#>     interested     0.144   0.057   0.050   0.271
#>  disinterested     0.166   0.061   0.060   0.302
#>        excited     0.127   0.054   0.039   0.250
#>          upset     0.220   0.070   0.093   0.368
#>         strong     0.116   0.051   0.035   0.232
#>       stressed     0.227   0.069   0.102   0.373
#>          steps     0.105   0.047   0.032   0.210

The object r2 can also be plotted

plot(r2, type = "ridgeline")

Explore

Bayesian (exploratory) testing to come…

Confirm

Bayesian (confirmatory) testing to come…

Note