| explain | Explain the output of machine learning models with dependence-aware (conditional/observational) Shapley values | 
| explain_forecast | Explain a forecast from time series models with dependence-aware (conditional/observational) Shapley values | 
| get_extra_comp_args_default | Gets the default values for the extra computation arguments | 
| get_iterative_args_default | Function to specify arguments of the iterative estimation procedure | 
| get_output_args_default | Gets the default values for the output arguments | 
| get_supported_approaches | Gets the implemented approaches | 
| get_supported_models | Provides a data.table with the supported models | 
| plot.shapr | Plot of the Shapley value explanations | 
| plot_MSEv_eval_crit | Plots of the MSEv Evaluation Criterion | 
| plot_SV_several_approaches | Shapley value bar plots for several explanation objects | 
| plot_vaeac_eval_crit | Plot the training VLB and validation IWAE for 'vaeac' models | 
| plot_vaeac_imputed_ggpairs | Plot Pairwise Plots for Imputed and True Data | 
| print.shapr | Print method for shapr objects | 
| vaeac_get_extra_para_default | Function to specify the extra parameters in the 'vaeac' model | 
| vaeac_train_model_continue | Continue to Train the vaeac Model |