| add_NA | Create NULL columns and the line 0 |
| arrange_data | Arrange Data based on Block and Trial |
| check_dependency | Check Package Dependencies |
| decision_making | Markov Decision Process |
| digits | Round Digital |
| fit_p | Fit parameters |
| func_epsilon | Epsilon Greedy |
| func_eta | Learning Rate |
| func_gamma | Utility Function |
| func_tau | Soft-Max Function |
| Mason_2024_Exp1 | Experiment 1 from Mason et al. (2024) |
| Mason_2024_Exp2 | Experiment 2 from Mason et al. (2024) |
| mode | Pretend to be Raw Data |
| model_fit | Calculate the Model Fit |
| optimize_para | Fit Parameters |
| output | Summary the Results |
| rcv_d | Parameter and Model Recovery |
| recovery_data | recovery_d |
| rev_e | Review Experimental Effect |
| RSTD | RSTD model for fit |
| run_m | Building Reinforcement Learning Model |
| set_initial_value | Set initial values for all options |
| simulate_list | simulate_l |
| summary.binaryRL | summary |
| TD | TD model for fit |
| unique_choice | Figure out how many options exist |
| Utility | Utility model for fit |